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ABSTRACT 

Using the statistical associating fluid theory ( SAFT) and decoupled 

mode theory (DMT) we have developed a generalized model for 

transport coefficients that reproduces the angular behavour of the 

thermal conductivity of pure fluids in the critical region ,unlike the  

decoupled mode theory model based on the asymptotic cross over equation of state,the 

statistical associating fluid theory and decoupled mode theory is valid in the entire fluid  state 

region at T  ≥ Te( Te is the binomial temperature ) and at 0 reproduces the dilute gas 

contribution for the transport coefficients .A comparison is made with experimental data for 

ethanol and methanol .The agreement is found good. 

 

KEYWORDS: Associating fluid theory ,transport properties , decoupled model theory. 

 

1. INTRODUCTION 

The purpose of the present work is to develop a theory to estimate the transport properties 

like thermal conductivity of associating fluids .In associating fluids such as methanol and 

ethanol, strong attractive interactions between molecules result in the formation of molecular 

clusters that have effect on the structural properties of the species. Due to their high polarity 

and strong self association, are complex fluids that are extremely challenging for both 

experimental andtheoretical study. Molecular-based equations of state (EOS), such as 

statistical associating fluid theory (SAFT), employ equations that have been developed as an 

alternative to empirical EOS for associating liquids .Currently, in combination with the 

generalized crossover density functional (DFT) and decoupled mode theory (DMT), this 
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procedure has been also extended to the interfacial
[1,2]

 and transport
[3]

 properties of pure 

fluids. 

 

In this present paper,we have developed a Statistical Associating Fluid Theory (SAFT) and 

Decoupled Mode Theory (DMT) model for the thermal conductivity of methanol and 

ethanoland have compared this model with experimental thermal conductivity data. 

 

2. FORMULATION 

For the estimation of thermal conductivity of the methanol and ethanol, we apply decoupled-

mode theory (DMT) model for the transport coefficients of pure fluids and fluid mixtures 

developed by Kiselev and Kulikov.
[4,5]

 In the limit of pure components, the crossover 

expression for the thermal conductivity takes the form
[6-7]

 

 

     (1) 

 

whereb is the viscosity, and b is a background part of the thermal conductivity that can be 

represented as a sum of the dilute-gas and the residual contributions. 

 

    (2) 

 

where° is the dilute-gas thermal conductivity, which depends only on temperature, and r 

is the residual thermal conductivity. The crossover function   (z)=  (qD ) in eq1 is given 

by 

 

   (3) 

 

Where 

  (4) 

 

In eqs1-3, qD is a cutoff wavenumber, the renormalized correlation length is given by
[8]
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     (5) 

 

whereOZ = corresponds to the Ornstein- Zernike approximation for the correlation 

length
[11]

, and  is the dynamical scaling function
[9,10]

 

 

   (6)  

 

Calculated at a constant value of the wavenumber k1D= 0.1qD. Asymptotically close to the 

critical point at qD>> 1, the parameter y1>> 1, the crossover function (z) approaches unity, 

and the thermal conductivity along .We approximated the dilute-gas contribution for the 

thermal conductivity of methanol by adopting the correlation
[12]

 

 

          (7) 

 

while for ethanol we used the equation recommended by the DIPPR DIADEM program
[13]

 

 

       (8) 

 

where the temperature unit is K and the thermal conductivity units are Wm
-1

K
-1

. For the 

residual contribution in both fluids, methanol and ethanol, we use here a polynomial in 

temperature and density 

 

      (9) 

 

which has recently been shown to accurately represent hydrocarbon fluids such as 

isobutane,
[14]

 butane,
[15]

 and propane.
[16]

 The parameters bi,j(i = 1-3, j = 1, 2) in the residual 

contribution have been found from a fit of the GC SAFT-DMT model to the selected data sets 
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for methanol
[17,18,19]

 and ethanol
[19,20,21]

 that cover a wide range of temperature and pressure 

conditions above and below the critical point. 

 

3. RESULTS AND DISCUSSION 

The values of the coefficients bi,jin eq8 for methanol and ethanol are listed in Table 1, and 

comparisons with the experimental thermal conductivity data are shown in Figures 1-3. For 

both substances, very good agreement between the GC SAFTDMT model and experimental 

thermal conductivity data is observed. The GC SAFT-DMT model reproduces all thermal 

conductivity data for methanol (n = 430) and ethanol (n= 230) with an AAD of 0.85%. The 

sharp maxima of the thermal conductivity observed at P) 10 MPa and T) 512 K in methanol 

(Figure 1) and at near critical pressures at T) 520 K for ethanol (Figure 3) correspond to the 

critical enhancements caused by long-range density fluctuations as described by the first term 

in right-hand side of eq1 

 

Table 1: Coefficients bi,j in equation 8 for Thermal Conductivity of Methanol and 

Ethanol. 

 

 

Figure 1: Thermal conductivity data for methanol 
[19, 20]

 (symbols) with predictions of 

the SAFT-DMT model (curves). 
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Figure 2: Thermal conductivity data for ethanol along isobars
[15]

 (empty symbols) and 

along the saturated curve
[18]

 (filled symbols) as a function of temperature with 

predictions of the SAFT -DMT model (curves). 

 

. 

Figure 3: Thermal conductivity data for ethanol along isotherms
[19]

 (symbols) as a 

function of pressure with predictions of the SAFT-DMT model (curves). 

 

can see, the maxima of the thermal conductivity, observed at c, increase drastically as the 

pressure and temperature approach their critical values. 

 

4. CONCLUDING REMARKS 

In this work, we have developed a GC SAFT EOS model for n-alkanols by incorporating the 

crossover approach developed by Kiselev into the analytical SAFT equation for associating 
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fluids developed by Huang and Radoz,
[21-22] 

model.Further this model is appliedfor transport 

properties.This model has been tested against experimental thermal conductivity for methanol 

and ethanol.The next step is applying this model to mixture prediction and computation. 

Work in this direction is now in progress, and the results will be reported in future 

publications. 
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