
www.wjert.org  

Rotich et al.                                    World Journal of Engineering Research and Technology 

 

 

79 

 

 

 

 

 

SOLUTION OF TWO DIMENSIONAL BURGERS EQUATION BY 

USING HYBRID CRANK-NICHOLSON AND LAX-FREDRICHS’ 

FINITE DIFFERENCE SCHEMES ARISING FROM OPERATOR 

SPLITTING 

 
1*

J.K. Rotich, 
2
J.K. Bitok and 

3
M.Z. Mapelu 

 
1
University of Kabianga, Mathematics & Computer Science Department, P.O Box 2030-

20200, Kericho, Kenya. 

2
University of Eldoret, Mathematics & Computer Science Department, P.O Box 1125-30100, 

Eldoret, Kenya. 

3
University of Eldoret, Physics Department, P.O Box 1125-30100, Eldoret, Kenya. 

 

Article Received on 20/05/2016               Article Revised on 08/06/2016             Article Accepted on 30/06/2016 

 

ABSTRACT 

Solving Burgers equation continues to be a challenging problem. 

Burgers’ equation is a fundamental partial differential equation from 

fluid mechanics. It occurs in various areas of applied mathematics, 

such as modeling of gas dynamics and traffic flow. It relates to the 

Navier-Stokes equation for incompressible flow with the pressure term 

removed. So far the methods that have been used to solve such  

equations are: Alternative Direction Implicit (ADI) methods, Variation of Iteration Method 

(VIM), locally one dimensional method and Finite Difference Method (FDM) approach 

which is used in this work. In this paper the pure Crank-Nicholson (CN) Scheme and Crank-

Nicholson-Lax-Fredrichs’ (CN-LF) method is developed by Operator Splitting. Crank-

Nicholson-Du-Fort and Frankel is an hybrid scheme made by combining the Crank-

Nicholson and Lax-Fredrich schemes. Lax-Friedrichs’ scheme is conditionally stable and an 

explicit scheme. The developed schemes are solved numerically using initially solved 

solution via Hopf-Cole transformation and separation of variables to generate the initial and 

boundary conditions. Analysis of the resulting schemes was found to be unconditionally 

ISSN 2454-695X Research Article wjert, 2016, Vol. 2, Issue 4, 79 -92 

World Journal of Engineering Research and Technology 
WJERT 

 

www.wjert.org SJIF Impact Factor: 3.419 
 

*Corresponding Author 

Dr. Rotich John Kimutai 

University of Kabianga, 

Mathematics & Computer 

Science Department, P.O 

Box 2030-20200, Kericho, 

Kenya. 

http://www.wjert.org/


www.wjert.org  

Rotich et al.                                    World Journal of Engineering Research and Technology 

 

 

80 

stable. The results of the hybrid scheme are found to compare well with those of the pure 

Crank-Nicholson.  

 

KEYWORDS: Burgers-Equation, Operator-Splitting, Finite-Difference-Methods (FDM), 

Crank- Nicholson. 

 

1. INTRODUCTION 

Burgers’ equations occur very frequently in science, engineering and mathematics. Many 

partial differential equations cannot be solved by analytical methods in closed form solution. 

In most research work in fields like: applied elasticity, theory of plate and shells, hydro-

dynamics, quantum mechanics among others, the research problems reduce to partial 

differential equations. Various Numerical approaches to solve the Burgers’ equations have 

been used in the past. Certain types of boundary value problems can be solved by replacing 

the differential equation by the corresponding finite difference equation and then solving the 

latter by a process of iteration. These methods have been used by many mathematicians 

according to Jain [2004]. Linearized parabolic equations appear as models in heat flow and 

gas dynamics. Finite difference solutions of these equations are found by using ordinary 

discretization (see (Ames, 1994) and Mitchell and Grffiths [1980]). These methods give fairly 

accurate results. 

 

The Burgers’ equation was first introduced by Bateman (1915) and studied in details by 

(Burgers, A Mathematical Model illustrating the theory of turbulence, 1948). Analytic 

solution of the Burgers’ equation involves series solutions which converge very slowly for 

small values of viscousity constant according to Idris (2007). 

 

(Espen, 2011) discussed numerical quadratures in one and two dimensions, which was 

followed by a discussion regarding the differentiation of general operators in Banach spaces. 

In the research they investigated the Godunov and Strang method numerically for the viscous 

Burgers’ equation and the KdV equation and presented different numerical methods for the 

subequations from the splitting. They discovered that the Operator splitting methods work 

well numerically for the two equations. (Chang, Improved alternating-direction implicit 

method for solving transient three-dimensional heat diffusion problems, 1991). 
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2. DEVELOPMENT OF THE HYBRID SCHEMES 

The 2-D Burgers equation is of the form: 

                                                                     (2.1) 

Subject to initial conditions: 

                                                                                        (2.2) 

and boundary conditions: 

                                                                             (2.3) 

Where  and  is its boundary  and  

are the velocity components to be determined,  and  are known functions and R is 

the Reynolds number. 

 

Which is a fundamental partial differential equation in fluid mechanics and it occurs in 

various areas of applied mathematics, such as modeling of gas dynamics, heat conduction, 

and acoustic waves (Hongqing [2010]). 

 

2.1 Overview of Operator Splitting 

Consider the Taylor’s expansion 

                                   

           

                                                                                                    (2.4) 

In equation (2.4) we can replace  by  that is 

                                                                                        (2.5)  

The exact solution of the equation (2.1) at the grid point  

is  with ,  and  being the grid spacing in the - direction, - direction and -  

direction respectively. ,  and k are intergers.  is the origin. The approximate 

solution at this point is denoted by . The finite difference (FD) approximation of 

equation (2.5) can thus be expressed as:  

                                                                                                         (2.6) 
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In equations (2.5) and (2.6)   is called the solution operator for equation (2.1)  is replaced 

by finite difference approximation. In equation (2.6)  can be taken to be a sum of differential 

operators with respect to .  

If    

Then equation (2.6) can be written as 

               

                                         (2.7)       

                                                                            (2.8)                 

                                                                                            (2.9) 

The approximate solution can be obtained from equation (2.8) by first solving  

                                                                                                             (2.10) 

 and then using this solution we can find  

                                                                                                     (2.11) 

We go on like this until we attain  

                                                                                                                               (2.12) 

which is actually the approximate solution of equation (2.1) 

 

2.2 Pure Crank-Nicholson (CN) Scheme 

We consider the 2-D Burgers equation of the form 

   (2.13) 

   (2.14) 

Here s=2 

And so  

  

Let  

  

  

  

  

From equation (2.8) the approximate solution is found by 
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  (2.15) 

    

    (2.16)                                                                                                                                      

 It is necessary that we first develop the pure Crank-Nicholson method resulting from this 

splitting. This is because other hybrid methods are derived from it. Thus the Crank-Nicholson 

method is as follows: 

                                                                (2.17)                                                                                    

                                                                                             
(2.18)

 

                                                                        (2.19) 

                                                           (2.20)
  

                                                (2.21) 

   
                                             (2.22)  

       
                     (2.23)

 

                               
                    (2.24) 

                                               (2.25) 

                                                      (2.26) 

                                                (2.27) 

                                   (2.28) 

                   (2.29) 

                        (2.30) 

Using equations (2.17)-(2.30) in equation (2.16) and letting , we obtain a discretization 

scheme by operator splitting. 

 

2.3 Approximation at the Boundary   

We use work developed by Kweyu (2012) for the initial and boundary conditions. We then 

use it on the derived numerical scheme to derive the solution. 
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The solution are given as:           
                     

 

                                                          (2.31) 

                                                          (2.32) 

 

and so  

     (2.33)     

  (2.34)        

(2.35)     

        (2.36)                           

 Using forward finite difference to approximate equations (2.36) we have  

 
                                                        (2.37) 

                                                                                                                    

                                                                                                                                            (2.38) 
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Using Newman’s boundary conditions at the boundaries to approximate   and 

 

At the  and the   boundaries, we have: 

  

                                                  (2.39)                                                                            

And so  

   

                                                                                                                                                               (2.40)                                                       

At the  and the , boundaries 

    

  respectively                                                        (2.41)     

and so  

           

                                                                                                          (2.42)                                                                        

In equations (2.37)-(2.42)  or  

For  

   

                                                                                                                                                     (2.43)                                              

and  

  

                                                                                                   (2.44)   

For ω= n  

  

                                                                                                                                                                 (2.45) 

and  

  

                                                                                                           (2.46)  

Using equations (2.43)-(2.46) in equation developed in the previous section 2.1, we obtain 

the pure Crank-Nicholson scheme as shown below 
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(2.47) 

 

2.4 Crank-Nicholson-Lax-Friedrich’s (CN-LF) Scheme. 

For this scheme the first term  in the right hand side of equation (2.47) is replaced by 

. 

 

3. RESULTS OF THE NUMERICAL SCHEMES DEVELOPED 

We present the results using the following data: k=0.001, h=0.1, l=0.1. We now present the 

results. We shall display these results using tables and 3-D figures. 
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Table 1: Numerical Solution of u for Coupled Burgers’ equation at ,   and 

Re=5000. 

x Exact Solution u (*e-006) Pure CN u (*e-006) Hybrid CN-LF u (*e-006) 

0.1    -0.3616507343010196 -0.3617871553843277    -0.3616370653493181 

0.2    -0.7253219953726393 -0.7255883625253537    -0.7252953059518908 

0.3    -1.090398562803828 -1.090790321153974    -1.090359309108974 

0.4    -1.455935883797210 -1.45645150093615    -1.455884219315911 

0.5    -1.820803748461822 -1.821445349043890    -1.820739460401386 

0.6    -2.183867594804465 -2.184640978240838     -2.183790102318204 

0.7    -2.544179042412541 -2.545093045825047      -2.544087460418207 

0.8    -2.901144228647610 -2.902209524822090    -2.901037488242522 

0.9    -3.254642313537360 -3.255869840866498     -3.254519319265866 

1.0    -3.605076050695351 -3.606475329816048    -3.604935849144376 

 

Table 2: Numerical Solution of v for Coupled Burgers’ equation at ,   and 

Re=5000. 

x Exact Solution v (*e-006) Pure CN v (*e-006) Hybrid CN-LF v (*e-006) 

0.1    -3.972865925156529   -3.972759495591895    -3.972769188311192 

0.2    -3.944368960551156   -3.944150135923467    -3.944170064848759 

0.3    -3.913451475311227    -3.913110259949161    -3.913141335562608 

0.4    -3.879306517566780    -3.878829975277790    -3.878873375785226 

0.5    -3.841464954144779    -3.840838649848937    -3.840895689849297 

0.6    -3.799845044283970    -3.799054658806107    -3.799126642198932 

0.7    -3.754756190904309    -3.753789086686633    -3.753877164071588 

0.8    -3.706856112188096    -3.705702631355121    -3.705807681840335 

0.9   -3.657068620610165    -3.655722949394422    -3.655845501933214 

1.0    -3.606475329816048    -3.604935849144376    -3.605076050695351 

 

We provide a table of absolute errors and its line graph to give us a clear comparison. This is 

done in Table 3, Table 4, Graph 1 and Graph 2. The tables and graphs are self-explanatory. 

 

Table 3: Absolute errors in Numerical Solution of u for Coupled Burgers’ equation  

at ,   and Re=5000. 

x Pure CN u (*e-006) Hybrid CN-LF u (*e-006) 

0.1 0.000136421083307969 0.0000136689517010180 

0.2 0.000266367152713998 0.0000266894207490154 

0.3 0.000391758350150040 0.0000392536948499167 

0.4 0.000515617138939994 0.0000516644813000067 

0.5 0.000641600582069968 0.0000642880604400098 

0.6 0.000773383436369901 0.0000774924862603221 

0.7 0.000914003412499920 0.0000915819943396734 

0.8 0.001065296174479700 0.0001067404050902890 

0.9 0.001227527329129790 0.0001229942714999770 

1 0.001399279120689820 0.0001402015509799350 
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Table 4: Absolute errors in Numerical Solution of v for Coupled Burgers’ equation  

at ,   and Re=5000. 

x CN (*e-006) CN-LF (*e-006) 

0.1 0.000106429564629806 0.000096736845329737 

0.2 0.000218824627689962 0.000198895702399948 

0.3 0.000341215362059888 0.000310139748620042 

0.4 0.000476542288989634 0.000433141781559954 

0.5 0.000626304295840097 0.000569264295480210 

0.6 0.000790385477870359 0.000718402085040371 

0.7 0.000967104217669768 0.000879026832719898 

0.8 0.001153480832970290 0.001048430347760030 

0.9 0.001345671215740030 0.001223118676950020 

1 0.001539480671669760 0.001399279120689820 

The above table shows that the CN-LF scheme provides accurate results closer to the exact 

solutions as compared to the CN scheme. 
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Figure 1: Absolute error in Solution of u for the 2-D Coupled Burgers’ equation. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

-3

x

v(
x,

y,
t)*

e-
00

6

Absolute error in Solutions of v for the 2-D Burgers’ equations

CN

CN-LF

 
Figure 2: Absolute error in Solution of v for the 2-D Coupled Burgers’ equation 

 

Figure 1 and figure 2 clearly shows a decreased absolute error in CN-LF compared to 

CN for numerical solution of both u and v. 
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We now present 3-D solutions: 
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Figure 3: CN Numerical Solution of u at t=1.000 
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Figure 3: CN-LF Numerical Solution of u at t=1.000 
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Figure 3: CN Numerical Solution of v at t=1.000 
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Figure 3: CN-LF Numerical Solution of v at t=1.000 

 

We note that the 3-D solutions from all the methods developed take the same shape. It is thus 

established that the finite difference schemes developed are convergent. 

 

4. CONCLUSION  

The hybrid CN-LF scheme is the more accurate compared with the pure CN scheme with 

regard to the exact solution. The decrease in the absolute error also verifies the consistency of 

the scheme. 
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