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ABSTRACT 

With the growth of technology, the number of images being uploaded 

to the internet is exploding. Most current image processing 

applications, designed for small and local computation, do not 

integrate well to web-sized problems with their large requirements for 

resources used in computation and storage. Hadoop and its Mapreduce 

paradigm are emerging as an important standard for large and data- 

intensive processing in both industry and academia. A Mapreduce cluster is typically shared 

among many users with various types of workloads. One challenging issue is to efficiently 

schedule all the jobs in shared Mapreduce environment in Hadoop. However, we find that 

prior scheduling algorithms supported by Hadoop cannot ensure good performance for 

different Image processing workloads. To address this we have developed the Hadoop Image 

Processing Framework that provides a library that is Hadoop based to support large-scale 

image processing using Mesos, the resource manager. We propose a new Hadoop scheduler 

that leverages the study of workload patterns to improve the performance of the system by 

tuning the resource share dynamically among users and the scheduling algorithms for each 

user in Hadoop. Mesos is designed using the same principles as the Linux kernel, only at a 

different level of abstraction. The Mesos kernel will be running on every machine and will 

provide applications (e.g., Hadoop, Spark, Kafka, and Elastic Search) with API's for 

scheduling and resource management across the whole data center and all cloud 
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environments. This new framework enhances the performance of about 5-10% of image 

processing in hadoop. 

 

KEYWORDS: MapReduce, Hadoop, Scheduling, Performance, Mesos. 

 

INTRODUCTION 

Apache Hadoop based cluster is built for not only homogenous or single job at a time, once 

cluster is commissioned; cluster in real time scenario will be shared by many jobs. Classic 

implementation of Hadoop uses FIFO based schedulers, which is a default scheduler. When 

multiple jobs are submitted by users simultaneously, the default job scheduler gives 

precedence for the job which takes precedence in submission order. There is considerable 

performance bottleneck in this approach. 

 

To overcome the shortcomings of FIFO scheduler, Fair scheduler was introduced to deal with 

small jobs and user heterogeneity and to manage access to their Hadoop cluster. Fair 

scheduling is a method of assigning resources to jobs such that all jobs get, on average, an 

equal share of resources over time. The main disadvantage is that jobs will be allocated to all 

the slots in the cluster with maximum slot capacity and the algorithm does not consider the 

job weight of each node. 

 

Moreover, recent advances in multi core processor, requires trade-off between performance 

and power budget. Hadoop job loads can be classified as large batch jobs, iterative jobs, 

interactive jobs, etc.., while large batch job require throughput, interactive job require 

performance to speed up the execution time. On heterogeneous cluster platform with multi 

core processors, jobs happened to be treated with even trade off for slow and fast cores. 

Current implementation has fixed approach which by cluster level job execution degrades its 

performance. 

 

REQUIREMENT 

Hardware Requirements 

 System: Pentium IV 2.4 GHz. 

 Hard Disk: 40 GB. 

 Floppy Drive: 44 MB. 

 Monitor: 15 VGA Colour. 

 Ram: 512 MB. 
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Software Requirements 

 Operating system: Ubuntu. 

 Coding Language: Java 1.7. 

 Software: Apache Hadoop 1.2.1, Mesos. 

 IDE: Eclipse 

 

Software Overview 

Mesos 

A distributed systems kernel, Mesos is built using the same principles as the Linux kernel, 

only at a different level of abstraction. The Mesos kernel runs on every machine and provides 

applications (e.g., Hadoop, Spark, Kafka, Elastic Search) with API’s for resource 

management and scheduling across entire datacenter and cloud environments. 

 

 

Figure 1: Architecture of Mesos. 

 

The above figure 1 shows the main components of Mesos. Mesos consists of a master 

daemon that manages slave daemons running on each cluster node, and Mesos 

frameworks that run tasks on these slaves. 

 

Hadoop Image Processing Interface (HIPI) 

The primary input object to a HIPI program is a Hipi Image Bundle (HIB) as shown in the 

figure 2. A HIB is a collection of images represented as a single file on the HDFS. The HIPI 

distribution includes several useful tools for creating HIBs, including a MapReduce program 

that builds a HIB from a list of images downloaded from the Internet. 

http://hipi.cs.virginia.edu/javadoc/org/hipi/imagebundle/HipiImageBundle.html
http://hipi.cs.virginia.edu/javadoc/org/hipi/imagebundle/HipiImageBundle.html
http://hipi.cs.virginia.edu/examples.html
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Figure 2: Processing of image in HIPI. 

 

Objective 

 To minimize job scheduling time. 

 To exploit new hadoop scheduler, that exploits capabilities offered by heterogeneous 

cores with a single-multi processor for achieving a variety of performance objectives. 

 To facilitate efficient and high-throughput image processing with map reduce style 

parallel programs typically executed on a cluster. 

 

System Architecture 

The following Figure 3 shows the system architecture of job scheduling of different 

workloads effectively to improve performance using image processing application. 

 
Figure 3: System Architecture. 

 

The system architecture consists of different modules to process images. Here the images are 

being crawled from the web. The scheduler Dyscale is placed on a Mesos framework which 

is used to efficiently manage the resources. The images downloaded are sent to HIPI to 
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convert them to.hib format which is in turn sent to MapReduce phase for generation of key-

value pairs, processing and storing images. 

 

Work flow 

Map Reduce Algorithm with Pseudo Code 

 Synchronization is perhaps the most tricky aspect of designing MapReduce algorithms (or 

for that matter, parallel and distributed algorithms in general). 

 Other than embarrassingly-parallel problems, processes running on separate nodes in a 

cluster must, at some point in time, come together—for example, to distribute partial 

results from nodes that produced them to the nodes that will consume them. 

 Within a single MapReduce job, there is only one opportunity for cluster-wide 

synchronization—during the shuffle and sort stage where intermediate key-value pairs are 

copied from the mappers to the reducers and grouped by key. 

 

Mesos algorithm 

 This technique for explicit reconciliation reconciles all non-terminal tasks, until an update 

is received for each task, using exponential backoff to retry tasks that remain 

unreconciled. Retries are needed because the master temporarily may not be able to reply 

for a particular task. For example, during master failover the master must re-register all of 

the slaves to rebuild its set of known tasks (this process can take minutes for large 

clusters, and is bounded by the --slave_reregister_timeout flag on the master). 

 Steps: 

 let start = now() 

 let remaining = { T in tasks | T is non-terminal } 

 Perform reconciliation: reconcile(remaining) 

 Wait for status updates to arrive (use truncated exponential backoff). For each update, 

note the time of arrival. 

 let remaining = { T in remaining | T.last_update_arrival() < start } 

 If remaining is non-empty, go to 3. 

 

Hadoop Image Processing Interface (HIPI) 

The primary input object to a HIPI program is a Hipi Image Bundle (HIB). A HIB is a 

collection of images represented as a single file on the HDFS. The HIPI distribution 

http://hipi.cs.virginia.edu/javadoc/org/hipi/imagebundle/HipiImageBundle.html
http://hipi.cs.virginia.edu/javadoc/org/hipi/imagebundle/HipiImageBundle.html
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includes several useful tools for creating HIBs, including a MapReduce program that builds a 

HIB from a list of images downloaded from the Internet. 

 

Downloading and storing the image 

Hadoop uses the Hadoop Distributed File System (HDFS)
[15]

 to store files in various nodes 

throughout the cluster. One of Hadoop’s significant problems is that of small file storage.
[16]

 

A small file is one which is significantly smaller than HDFS block size. Large image datasets 

are made up of small image files in great numbers, which is a situation HDFS has a great deal 

of trouble handling. This problem can be solved by providing a container to group the files in 

some way. Hadoop offers a few options. 

 HAR File 

 Sequence File 

 Map File 

 

Processing image bundle using Map Reduce 

 Hadoop MapReduce program handles input and output data very efficiently, but their 

native data exchange formats are not convenient for representing or manipulating image 

data. 

 For instance, distributing images across map nodes require the translation of images into 

strings, then later decoding these image strings into specified formats in order to access 

pixel information. 

 This is both inefficient and inconvenient. To overcome this problem, images should be 

represented in as many different formats as possible, increasing flexibility. 

 The framework focuses on bringing familiar data types directly to user. As distribution is 

important in MapReduce, images should be processed in the same machine where the 

bundle block resides. 

 In a generic MapReduce system, the user is responsible for creating InputFormat and 

RecordReader classes to specify the MapReduce job and distribute the input among 

nodes. 

 

Extracting image bundles using Map Reduce 

 In addition to creating and processing image bundles, the framework provides a method 

for extracting and viewing these images. Generally, Hadoop extracts images from an 

image bundle iteratively, inefficiently using a single node for the task. 

http://hipi.cs.virginia.edu/examples.html
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 To address this inefficiency, we designed an Extractor module which extracts images in 

parallel across all available nodes. Distribution plays a key role in MapReduce; 

 we want to make effective and efficient use of the nodes in the computing cluster. As 

previously mentioned in the description of the Processor module, a user working in a 

generic Hadoop system must again devise custom InputFormat and RecordReader classes 

in order to facilitate distributed image extraction. 

 The Hadoop Image Processing Framework provides this functionality for the extraction 

task as well, providing much greater ease of use for the development of image processing 

applications. 

 

Related work 

In this work, we reduced the overall performance time of the Job by scheduling the 

prioritized job queues that are awaiting CPU time and by determining which job is to be 

taken from which queue and the amount of time to be allocated to the job. We designed a 

framework for creating virtual Hadoop clusters with different processing capabilities (i.e., 

clusters with fast and slow slots) and we implement a new scheduling scheme to support jobs 

with different performance objectives for utilizing the created virtual clusters and sharing 

their spare resources to achieve efficient workload performance. 

 

Performance Analysis 

The below Figure 4 shows the Output Graph indicating the CPU time taken to process the 

different sets with the modified Hadoop scheduler and the existing Fair scheduler. 

 
Figure 4: Performance evaluations with respect to CPU time. 
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The below Figure 5 shows the size of the different image sets which are being processed in 

MB. 

 
Figure 5: Data Size Versus Image Sets. 

 

CONCLUSION AND FUTURE ENHANCEMENTS 

We propose a new framework for scheduling using Dyscale Scheduler in combination with 

Mesos Resource manager for Image Processing in Hadoop. Dyscale is easy to use because 

the created virtual clusters have access to the same data stored in the underlying distributed 

file system, and therefore, any job and any dataset can be processed by either fast or slow 

virtual resource pools, or their combination. We implement scheduling algorithm for image 

processing. The comparison of the existing fair scheduler is done against the modified 

Hadoop scheduler. Our experimental results show 5-10% improvement in the CPU time 

using Dyscale in combination with Mesos compared to a default Fair scheduler in Hadoop. A 

comparison of the implementation results to our default hadoop configured with similar 

features show that they closely match. These results points to significant opportunities for 

image processing in hadoop. 

 

In the future we plan to conduct more testbed experiments using Dyscale with the 

combination of Mesos and a variety of Job ordering scheduling policies for different kinds of 

applications for achieving fairness guarantees and better job completion time. We also plan to 

quantify the impact of the number of nodes used in order of improvement comparison in 

processing.We plan to exploit the possible migration features, compare our schedulers to 

more state of-the-art schedulers and under more challenging scenarios. We would like to 

introduce a more diverse set of applications including I/O bound applications; data skew 

work flows and explore new methods for improving their performance with respect to 



www.wjert.org  

Malatesh et al.                                World Journal of Engineering Research and Technology 

 

120 

throughput and time taken.The current dynamic tuning model will also be enhanced to 

address the challenges associated with the applications. 
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