
www.wjert.org

Malatesh et al. World Journal of Engineering Research and Technology

112

JOB SCHEDULING SCHEME FOR IMAGE PROCESSING TO

IMPROVE PERFORMANCE IN HADOOP

1*

Malatesh S. H.,
2
Pallavi S. T.,

3
Raveena B.,

4
Shreyanka G. P. and

5
Vanitha Y.

1
Head of the Department, Computer Science and Engineering, M. S. Engineering College,

Bengaluru.

2,3,4,5
Computer Science and Engineering, M. S. Engineering College, Bengaluru.

Article Received on 31/05/2016 Article Revised on 20/06/2016 Article Accepted on 10/07/2016

ABSTRACT

With the growth of technology, the number of images being uploaded

to the internet is exploding. Most current image processing

applications, designed for small and local computation, do not

integrate well to web-sized problems with their large requirements for

resources used in computation and storage. Hadoop and its Mapreduce

paradigm are emerging as an important standard for large and data-

intensive processing in both industry and academia. A Mapreduce cluster is typically shared

among many users with various types of workloads. One challenging issue is to efficiently

schedule all the jobs in shared Mapreduce environment in Hadoop. However, we find that

prior scheduling algorithms supported by Hadoop cannot ensure good performance for

different Image processing workloads. To address this we have developed the Hadoop Image

Processing Framework that provides a library that is Hadoop based to support large-scale

image processing using Mesos, the resource manager. We propose a new Hadoop scheduler

that leverages the study of workload patterns to improve the performance of the system by

tuning the resource share dynamically among users and the scheduling algorithms for each

user in Hadoop. Mesos is designed using the same principles as the Linux kernel, only at a

different level of abstraction. The Mesos kernel will be running on every machine and will

provide applications (e.g., Hadoop, Spark, Kafka, and Elastic Search) with API's for

scheduling and resource management across the whole data center and all cloud

ISSN 2454-695X Research Article wjert, 2016, Vol. 2, Issue 4, 112 -122

World Journal of Engineering Research and Technology

WJERT

www.wjert.org SJIF Impact Factor: 3.419

*Corresponding Author

Malatesh S. H.

Head of the Department,

Computer Science and

Engineering, M. S.

Engineering College,

Bengaluru.

http://www.wjert.org/

www.wjert.org

Malatesh et al. World Journal of Engineering Research and Technology

113

environments. This new framework enhances the performance of about 5-10% of image

processing in hadoop.

KEYWORDS: MapReduce, Hadoop, Scheduling, Performance, Mesos.

INTRODUCTION

Apache Hadoop based cluster is built for not only homogenous or single job at a time, once

cluster is commissioned; cluster in real time scenario will be shared by many jobs. Classic

implementation of Hadoop uses FIFO based schedulers, which is a default scheduler. When

multiple jobs are submitted by users simultaneously, the default job scheduler gives

precedence for the job which takes precedence in submission order. There is considerable

performance bottleneck in this approach.

To overcome the shortcomings of FIFO scheduler, Fair scheduler was introduced to deal with

small jobs and user heterogeneity and to manage access to their Hadoop cluster. Fair

scheduling is a method of assigning resources to jobs such that all jobs get, on average, an

equal share of resources over time. The main disadvantage is that jobs will be allocated to all

the slots in the cluster with maximum slot capacity and the algorithm does not consider the

job weight of each node.

Moreover, recent advances in multi core processor, requires trade-off between performance

and power budget. Hadoop job loads can be classified as large batch jobs, iterative jobs,

interactive jobs, etc.., while large batch job require throughput, interactive job require

performance to speed up the execution time. On heterogeneous cluster platform with multi

core processors, jobs happened to be treated with even trade off for slow and fast cores.

Current implementation has fixed approach which by cluster level job execution degrades its

performance.

REQUIREMENT

Hardware Requirements

 System: Pentium IV 2.4 GHz.

 Hard Disk: 40 GB.

 Floppy Drive: 44 MB.

 Monitor: 15 VGA Colour.

 Ram: 512 MB.

www.wjert.org

Malatesh et al. World Journal of Engineering Research and Technology

114

Software Requirements

 Operating system: Ubuntu.

 Coding Language: Java 1.7.

 Software: Apache Hadoop 1.2.1, Mesos.

 IDE: Eclipse

Software Overview

Mesos

A distributed systems kernel, Mesos is built using the same principles as the Linux kernel,

only at a different level of abstraction. The Mesos kernel runs on every machine and provides

applications (e.g., Hadoop, Spark, Kafka, Elastic Search) with API’s for resource

management and scheduling across entire datacenter and cloud environments.

Figure 1: Architecture of Mesos.

The above figure 1 shows the main components of Mesos. Mesos consists of a master

daemon that manages slave daemons running on each cluster node, and Mesos

frameworks that run tasks on these slaves.

Hadoop Image Processing Interface (HIPI)

The primary input object to a HIPI program is a Hipi Image Bundle (HIB) as shown in the

figure 2. A HIB is a collection of images represented as a single file on the HDFS. The HIPI

distribution includes several useful tools for creating HIBs, including a MapReduce program

that builds a HIB from a list of images downloaded from the Internet.

http://hipi.cs.virginia.edu/javadoc/org/hipi/imagebundle/HipiImageBundle.html
http://hipi.cs.virginia.edu/javadoc/org/hipi/imagebundle/HipiImageBundle.html
http://hipi.cs.virginia.edu/examples.html

www.wjert.org

Malatesh et al. World Journal of Engineering Research and Technology

115

Figure 2: Processing of image in HIPI.

Objective

 To minimize job scheduling time.

 To exploit new hadoop scheduler, that exploits capabilities offered by heterogeneous

cores with a single-multi processor for achieving a variety of performance objectives.

 To facilitate efficient and high-throughput image processing with map reduce style

parallel programs typically executed on a cluster.

System Architecture

The following Figure 3 shows the system architecture of job scheduling of different

workloads effectively to improve performance using image processing application.

Figure 3: System Architecture.

The system architecture consists of different modules to process images. Here the images are

being crawled from the web. The scheduler Dyscale is placed on a Mesos framework which

is used to efficiently manage the resources. The images downloaded are sent to HIPI to

www.wjert.org

Malatesh et al. World Journal of Engineering Research and Technology

116

convert them to.hib format which is in turn sent to MapReduce phase for generation of key-

value pairs, processing and storing images.

Work flow

Map Reduce Algorithm with Pseudo Code

 Synchronization is perhaps the most tricky aspect of designing MapReduce algorithms (or

for that matter, parallel and distributed algorithms in general).

 Other than embarrassingly-parallel problems, processes running on separate nodes in a

cluster must, at some point in time, come together—for example, to distribute partial

results from nodes that produced them to the nodes that will consume them.

 Within a single MapReduce job, there is only one opportunity for cluster-wide

synchronization—during the shuffle and sort stage where intermediate key-value pairs are

copied from the mappers to the reducers and grouped by key.

Mesos algorithm

 This technique for explicit reconciliation reconciles all non-terminal tasks, until an update

is received for each task, using exponential backoff to retry tasks that remain

unreconciled. Retries are needed because the master temporarily may not be able to reply

for a particular task. For example, during master failover the master must re-register all of

the slaves to rebuild its set of known tasks (this process can take minutes for large

clusters, and is bounded by the --slave_reregister_timeout flag on the master).

 Steps:

 let start = now()

 let remaining = { T in tasks | T is non-terminal }

 Perform reconciliation: reconcile(remaining)

 Wait for status updates to arrive (use truncated exponential backoff). For each update,

note the time of arrival.

 let remaining = { T in remaining | T.last_update_arrival() < start }

 If remaining is non-empty, go to 3.

Hadoop Image Processing Interface (HIPI)

The primary input object to a HIPI program is a Hipi Image Bundle (HIB). A HIB is a

collection of images represented as a single file on the HDFS. The HIPI distribution

http://hipi.cs.virginia.edu/javadoc/org/hipi/imagebundle/HipiImageBundle.html
http://hipi.cs.virginia.edu/javadoc/org/hipi/imagebundle/HipiImageBundle.html

www.wjert.org

Malatesh et al. World Journal of Engineering Research and Technology

117

includes several useful tools for creating HIBs, including a MapReduce program that builds a

HIB from a list of images downloaded from the Internet.

Downloading and storing the image

Hadoop uses the Hadoop Distributed File System (HDFS)
[15]

 to store files in various nodes

throughout the cluster. One of Hadoop’s significant problems is that of small file storage.
[16]

A small file is one which is significantly smaller than HDFS block size. Large image datasets

are made up of small image files in great numbers, which is a situation HDFS has a great deal

of trouble handling. This problem can be solved by providing a container to group the files in

some way. Hadoop offers a few options.

 HAR File

 Sequence File

 Map File

Processing image bundle using Map Reduce

 Hadoop MapReduce program handles input and output data very efficiently, but their

native data exchange formats are not convenient for representing or manipulating image

data.

 For instance, distributing images across map nodes require the translation of images into

strings, then later decoding these image strings into specified formats in order to access

pixel information.

 This is both inefficient and inconvenient. To overcome this problem, images should be

represented in as many different formats as possible, increasing flexibility.

 The framework focuses on bringing familiar data types directly to user. As distribution is

important in MapReduce, images should be processed in the same machine where the

bundle block resides.

 In a generic MapReduce system, the user is responsible for creating InputFormat and

RecordReader classes to specify the MapReduce job and distribute the input among

nodes.

Extracting image bundles using Map Reduce

 In addition to creating and processing image bundles, the framework provides a method

for extracting and viewing these images. Generally, Hadoop extracts images from an

image bundle iteratively, inefficiently using a single node for the task.

http://hipi.cs.virginia.edu/examples.html

www.wjert.org

Malatesh et al. World Journal of Engineering Research and Technology

118

 To address this inefficiency, we designed an Extractor module which extracts images in

parallel across all available nodes. Distribution plays a key role in MapReduce;

 we want to make effective and efficient use of the nodes in the computing cluster. As

previously mentioned in the description of the Processor module, a user working in a

generic Hadoop system must again devise custom InputFormat and RecordReader classes

in order to facilitate distributed image extraction.

 The Hadoop Image Processing Framework provides this functionality for the extraction

task as well, providing much greater ease of use for the development of image processing

applications.

Related work

In this work, we reduced the overall performance time of the Job by scheduling the

prioritized job queues that are awaiting CPU time and by determining which job is to be

taken from which queue and the amount of time to be allocated to the job. We designed a

framework for creating virtual Hadoop clusters with different processing capabilities (i.e.,

clusters with fast and slow slots) and we implement a new scheduling scheme to support jobs

with different performance objectives for utilizing the created virtual clusters and sharing

their spare resources to achieve efficient workload performance.

Performance Analysis

The below Figure 4 shows the Output Graph indicating the CPU time taken to process the

different sets with the modified Hadoop scheduler and the existing Fair scheduler.

Figure 4: Performance evaluations with respect to CPU time.

www.wjert.org

Malatesh et al. World Journal of Engineering Research and Technology

119

The below Figure 5 shows the size of the different image sets which are being processed in

MB.

Figure 5: Data Size Versus Image Sets.

CONCLUSION AND FUTURE ENHANCEMENTS

We propose a new framework for scheduling using Dyscale Scheduler in combination with

Mesos Resource manager for Image Processing in Hadoop. Dyscale is easy to use because

the created virtual clusters have access to the same data stored in the underlying distributed

file system, and therefore, any job and any dataset can be processed by either fast or slow

virtual resource pools, or their combination. We implement scheduling algorithm for image

processing. The comparison of the existing fair scheduler is done against the modified

Hadoop scheduler. Our experimental results show 5-10% improvement in the CPU time

using Dyscale in combination with Mesos compared to a default Fair scheduler in Hadoop. A

comparison of the implementation results to our default hadoop configured with similar

features show that they closely match. These results points to significant opportunities for

image processing in hadoop.

In the future we plan to conduct more testbed experiments using Dyscale with the

combination of Mesos and a variety of Job ordering scheduling policies for different kinds of

applications for achieving fairness guarantees and better job completion time. We also plan to

quantify the impact of the number of nodes used in order of improvement comparison in

processing.We plan to exploit the possible migration features, compare our schedulers to

more state of-the-art schedulers and under more challenging scenarios. We would like to

introduce a more diverse set of applications including I/O bound applications; data skew

work flows and explore new methods for improving their performance with respect to

www.wjert.org

Malatesh et al. World Journal of Engineering Research and Technology

120

throughput and time taken.The current dynamic tuning model will also be enhanced to

address the challenges associated with the applications.

REFERENCES

1. T. White, Hadoop: The Definitive Guide. Yahoo press.

2. F. Ahmad et al., ―Tarazu: Optimizing MapReduce of Heterogeneous Clusters,‖ in

Proceedings of ASPLOS, 2012.

3. J. Dean and S. Ghemawat, ―MapReduce: Simplified data processing on large clusters,‖

Communications of the ACM, 2008; 51(1).

4. M. Zaharia et al., ―Delay scheduling: A simple technique for achieving locality and

fairness in cluster scheduling,‖ in Proceedings of EuroSys, 2010.

5. Apache, ―Capacity Scheduler Guide,‖ 2010. [Online]. Available:

http://hadoop.apache.org/common/docs/r0.20.1/ capacity scheduler.html

6. Z. Zhang, L. Cherkasova, and B. T. Loo, ―Benchmarking approach for designing a

mapreduce performance model,‖ in ICPE, 2013; 253–258.

7. S. Rao et al., ―Sailfish: A Framework For Large Scale Data Processing,‖ in Proceedings

of SOCC, 2012.

8. Gates, O. Natkovich, S. Chopra, P. Kamath, S. Narayanam, C. Olston, B. Reed, S.

Srinivasan, and U. Srivastava, ―Building a highlevel dataflow system on top of

mapreduce: The pig experience,‖ PVLDB, 2009; 2(2): 1414–1425.

9. Verma, L. Cherkasova, and R. H. Campbell, ―ARIA: Automatic Resource Inference and

Allocation for MapReduce Environments,‖ in Proc. of ICAC, 2011.

10. ―Play It Again, SimMR!‖ in Proceedings of Intl. IEEE Cluster’2011.

11. S. Ren, Y. He, S. Elnikety, and S. McKinley, ―Exploiting Processor Heterogeneity in

Interactive Services,‖ in Proceedings of ICAC, 2013.

12. H. Esmaeilzadeh, T. Cao, X. Yang, S. M. Blackburn, and K. S. McKinley, ―Looking back

and looking forward: power, performance, and upheaval,‖ Commun. ACM, 2012; 55(7).

13. Bienia, S. Kumar, J. Singh, and K. Li, ―The PARSEC benchmark suite:Characterization

and architectural implications.‖ in Technical Report TR-811-08, Princeton University,

2008.

14. ―PassMark Software. CPU Benchmarks,‖ 2013. [Online]. Available:

http://www.cpubenchmark.net/cpu.php?cpu=Intel+ Xeon+E3-1240+%40+3.30GHz

15. F. Yan, L. Cherkasova, Z. Zhang, and E. Smirni, ―Optimizing power and performance

trade-offs of mapreduce job processing with heterogeneousmulti-core processors,‖ in

www.wjert.org

Malatesh et al. World Journal of Engineering Research and Technology

121

Proc. of the IEEE 7th International Conference on Cloud Computing (Cloud’2014), June,

2014.

16. Verma et al., ―Deadline-based workload management for mapreduce environments:

Pieces of the performance puzzle,‖ in Proc. of IEEE/IFIP NOMS, 2012.

17. R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas, ―Single-isa

heterogeneous multi-core architectures for multithreaded workload performance,‖ in

ACM SIGARCH Computer Architecture News, 2004; 32(2).

18. K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer, ―Scheduling

heterogeneous multi-cores through performance impact estimation (pie),‖ in Proceedings

of the 39th International Symposium on Computer Architecture, 2012.

19. M. Becchi and P. Crowley, ―Dynamic thread assignment on heterogeneous

multiprocessor architectures,‖ in Proceedings of the 3rd conference on Computing

frontiers, 2006.

20. Shelepov and A. Fedorova, ―Scheduling on heterogeneous multicore processors using

architectural signatures,‖ in Proceedings of the Workshop on the Interaction between

Operating Systems and Computer Architecture, 2008.

21. K. Van Craeynest and L. Eeckhout, ―Understanding fundamental design choices in

single-isa heterogeneous multicore architectures,‖ ACM Transactions on Architecture and

Code Optimization (TACO), 2013; 9(4).

22. M. Zaharia et al., ―Improving mapreduce performance in heterogeneous environments,‖

in Proceedings of OSDI, 2008.

23. Q. Chen, D. Zhang, M. Guo, Q. Deng, and S. Guo, ―Samr: A self-adaptive mapreduce

scheduling algorithm in heterogeneous environment,‖ in IEEE 10th International

Conference on Computer and Information Technology (CIT), 2010.

24. R. Gandhi, D. Xie, and Y. C. Hu, ―Pikachu: How to rebalance load in optimizing

mapreduce on heterogeneous clusters,‖ in Proceedings of 2013 USENIX Annual

Technical Conference. USENIX Association, 2013.

25. J. Xie et al., ―Improving mapreduce performance through data placement in

heterogeneous hadoop clusters,‖ in Proceedings of the IPDPS Workshops: Heterogeneity

in Computing, 2010.

26. G. Gupta, C. Fritz, B. Price, R. Hoover, J. DeKleer, and C. Witteveen,

―ThroughputScheduler: Learning to Schedule on Heterogeneous Hadoop Clusters,‖ in

Proc. of ICAC, 2013.

www.wjert.org

Malatesh et al. World Journal of Engineering Research and Technology

122

27. G. Lee, B.-G. Chun, and R. H. Katz, ―Heterogeneity-aware resource allocation and

scheduling in the cloud,‖ in Proceedings of the 3rd USENIX Workshop on Hot Topics in

Cloud Computing, Hot Cloud, 2011.

28. J. Polo etal., ―Performance management of accelerated mapreduce workloads in

heterogeneous clusters,‖ in Proceedings of the 41st Intl. Conf. on Parallel Processing,

2010.

29. W. Jiang and G. Agrawal, ―Mate-cg: A map reduce-like framework for accelerating data-

intensive computations on heterogeneous clusters,‖ in Parallel Distributed Processing

Symposium (IPDPS), 2012 IEEE 26th International, May 2012; 644–655.

30. Apache, ―Apache Hadoop Yarn,‖ 2013. [Online]. Available:

http://hadoop.apache.org/docs/current/hadoop-yarn/ hadoop-yarn-site/YARN.html

31. Verma, L. Cherkasova, and R. H. Campbell, ―Resource Provisioning Framework for Map

Reduce Jobs with Performance Goals,‖ Proc. of the 12th ACM/IFIP/USENIX

Middleware Conference, 2011.

