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during the functional clock cycles of a test. In addition, the power

dissipation during the fast functional clock cycles of functional

broadside tests does not exceed that possible during functional

operation. On-chip test generation has the added advantage that it reduces test data volume
and facilitates at-speed test application. This paper shows that on-chip generation of
functional broadside tests can be done using a simple and fixed hardware structure, with a
small number of parameters that need to be tailored to a given circuit, and can achieve high
transition fault coverage for testable circuits. With the proposed on-chip test generation
method, the circuit is used for generating reachable states during test application. This

alleviates the need to compute reachable states offline.
KEYWORDS: Functional broadside tests, power dissipation.

I.INTRODUCTION

OVERTESTING due to the application of two-pattern scan-based tests was described in.[!
Overtesting is related to the detection of delay faults under non-functional operation
conditions. One of the reasons for these non-functional operation conditions is the following.
When an arbitrary state is used as a scan-in state, a two-pattern test can take the circuit
through state-transitions that cannot occur during functional operation. As a result, slow paths

that cannot be sensitized during functional operation may cause the circuit to fail.!! In
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addition, current demands that are higher than those possible during functional operation may
cause voltage drops that will slow the circuit and cause it to fail.[?" B! In both cases, the circuit
will operate correctly during functional operation. Functional broadside tests!! ensure that the
scan-in state is a state that the circuit can enter during functional operation, or a reachable
state. As broadside tests™, they operate the circuit in functional mode for two clock cycles
after an initial state is scanned in. This results in the application of a two-pattern test. Since
the scan-in state is a reachable state, the two-pattern takes the circuit through state-transitions
that are guaranteed to be possible during functional operation. Delay faults that are detected
by the test can also affect functional operation, and the current demands do not exceed those
possible during functional operation. This alleviates the type of overtesting described in.M !
In addition, the power dissipation during fast functional clock cycles of functional broadside
tests does not exceed that possible during functional operation. Test generation procedures
for functional and pseudo-functional scan-based tests were described in* and.' ! The
procedures generate test sets offline for application from an external tester. Functional scan-
based tests use only reachable states as scan-in states. Pseudo-functional scan-based tests use
functional constraints to avoid unreachable states that are captured by the constraints. This
work considers the on-chip (or busilt-in) generation of functional broadside tests. On-chip
test generation reduces the test data volume and facilitates at-speed test application. On-chip
test generation methods for delay faults, such as the ones described in™ and*®, do not
impose any constraints on the states used as scan-in states. Experimental results indicate that
an arbitrary state used as a scan-in state is unlikely to be a reachable state.”! The on-chip test
generation method from™® applies pseudo-functional scan-based tests. Such tests are not
sufficient for avoiding unreachable states as scan-in states. The on-chip test generation
process described in this work guarantees that only reachable states will be used. It should be
noted that the delay fault coverage achievable using functional broadside tests is, in general,
lower than that achievable using arbitrary broadside tests as inl**" *® or pseudo-functional
broadside tests as in.*" This is due to the fact that functional broadside tests avoid
unreachable scan-in states, which are allowed by themethods described in.M ') However,
the tests that are needed for achieving this higher fault coverage are also ones that can cause
overtesting. They can also dissipate more power than possible during functional operation.
Only functional broadside tests are considered in this work. Under the proposed on-chip test
generation method, the circuit is used for generating reachable states during test application.
This alleviates the need to compute reachable states or functional constraints by an offline

process as int P11 and 1281 The underlying observation is related to one of the methods
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used in™! for offline test generation, and is the following. If a primary input sequence is
applied in functional mode starting from a reachable state, all the states traversed under are
reachable states. Any one of these states can be used as the initial state for the application of a
functional broadside test.

By generating on-chip and ensuring that it takes the circuit through a varied set of reachable
states, the on-chip test generation process is able to achieve high transition fault coverage
using functional broadside tests based on. It should be noted that, for the detection of a set of
faults, at most different reachable states are required. This number is typically only a small
fraction of the number of all the reachable states of the circuit. Thus, the primary input
sequence does not need to take the circuit through all its reachable states, but only through a
sufficiently large number relative to, in order to be effective for the detection of target faults.
The hardware used in this paper for generating the primary input sequence consists of a
linear-feedback shift-register (LFSR) as a random source*”), and of a small number of gates
(atmost six gates are needed for every one of the benchmark circuits considered). The gates
are used for modifying the random sequence in order to avoid cases where the sequence takes
the circuit into the same or similar reachable states repeatedly. This is referred to as repeated
synchronization.™® In addition, the on-chip test generation hardware consists of a single gate
that is used for determining which tests based on will be applied to the circuit. The result is a
simple and fixed hardware structure, which is tailored to a given circuit only through the
following parameters.

1) The number of LFSR bits.

2) The length of the primary input sequence.

3) The specific gates used for modifying the LFSR sequence into the sequence.

4) The specific gate used for selecting the functional broadside tests that will be applied to the
circuit based on.

5) Seeds for the LFSR in order to generate several primary input sequences and several

subsets of tests.

The on-chip test generation hardware is based on the one described in.[** It differs from it in
the following ways. The logic that produces the primary input sequence is designed in this
paper to reduce the dependencies between the values assigned to the primary inputs,
considering the following sources of dependency. In™*%, for a circuit with primary inputs and

a parameter mod, the LFSR used for producing has bits. The left-most bits are used for
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driving the primary inputs of the circuit, and the mod right-most bits are used for modifying
the random sequence in order to avoid repeated synchronization. With this structure, all the
primary input values are modified using the same function of the mod right-most bits of the
LFSR. Thus, they are always modified together and to the same values. In addition, some

primary inputs receive shifted values of the primary inputs immediately preceding them.

Model Design of Hardware

The discussion in this paper assumes that the circuit is initialized into a known state before
functional operation starts. Initialization may be achieved by applying a synchronizing
sequence, by asserting a reset input or by a combination of both. The initial state of the circuit
is denoted by. The discussion also assumes that functional operation consists of the
application of primary input sequences starting from state. In addition to producing reachable
states, the primary input sequence can also be used as a source for the primary input vectors
of functional broadside tests. In particular, every subsequence of length two of defines a
functional broadside test. T(u)=(s(u),a(u),a(u+1)) By using a(u)and a(u+1) from, it is possible
to avoid the need for a different source for these primary input vectors during on-chip test
generation.

I1.ON-CHIP GENERATION OF FUNCTIONAL BROADSIDE TESTS

The simplest way to generate a primary input sequence on-chip is to use a random source
such as an LFSR. However, random sequence A may bring the circuit from the initial state
into a limited set of reachable states sr. This can be explained by the effect observed in and
referred to as repeated synchronization. According to, a primary input cube synchronizes a
subset of state variable s(c) if the following conditions are satisfied. Let be applied to the
primary inputs when the circuit is in the all-unspecified present-state. Suppose that this

results in a next-state. The state variables whose values are specified in are included in.
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Fig 1: S27 as an example.
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The on-chip test generation hardware described so far has parameters |, d, mod and sel. These

parameters determine the primary input sequence, and the tests that will be applied based on

it. Keeping I, d, mod and sel constant in order to keep the hardware fixed, there is flexibility

only in determining the seed of the LFSR. Different seeds yield different primary input

sequences and different tests. Therefore, it is possible to increase the fault coverage by using

several different seeds. To select seeds for a circuit it is possible to use an approach similar to

the one used for

test data compression. Using a symbolic seed, it is possible to compute a

primary input sequence and the subset of tests based on it, and then solve equations based on

functional broadside tests that are known to detect target faults. The approach used in this

paper avoids deterministic test generation to identify effective functional broadside tests by

considering random seeds. A set of seeds is selected using the following process.

The generalized implementation flow diagram of the project is represented as follows.
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Fig 2:

The generalized implementation flow diagram of the project.
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Figure 2.General Implementation Flow Diagram

Once the functional verification is clear, the RTL model will be taken to the synthesis
process. Three operations will be carried out in the synthesis process such as
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The hardware used for generating a primary input sequence consists of a Linear Feedback
Shift Register and a small number of gates. Gates are used to modify the random sequence in
order to avoid repeated synchronization that is the sequence takes the circuit to repeat the
same or similar states. In addition to this, a single gate is used for determining the tests to be
applied based on primary input sequence.
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CONCLUDING REMARKS

This paper described an on-chip test generation method for functional broadside tests. The
hardwarewas based on the application of primary input sequences starting from a known
reachable state, thus using the circuit to produce additional reachable states. Random primary
input sequences were modified to avoid repeated synchronization and thus yield varied sets
of reachable states. Two-pattern tests were obtained by using pairs of consecutive time units
of the primary input sequences. The hardware structure was simple and fixed, and it was
tailored to a given circuit only through the following parameters: 1) the length of the LFSR
used for producing a random primary input sequence; 2) the length of the primary input

sequence; 3) the specific gates used for modifying the random primary input sequence; 4) the
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specific gate used for selecting applied tests; and 5) the seeds for the LFSR. The on-chip
generation of functional broadside tests achieved high transition fault coverage for testable

circuits.
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