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ABSTRACT 

During transmission of data over a noisy channel, the data gets 

corrupted due to noise. This erroneous data can be corrected using 

Forward Error Correcting Codes without a request for re-transmission 

of data. Forward Error correcting codes detect and correct errors with 

the help of complex decoders. In this paper a new approach called 

Selective Encoding for Error Recovery is proposed. This algorithm 

combines the Bezier curves over Galois Field GF (p^m) and the Low  

Density Parity Check Codes for performing encoding and decoding. He proposed decoder is 

capable of detecting and correcting errors in an image, where only selected pixel values are 

encoded and decoded.  This reduces the decoding time significantly. Further, when binary 

representation of the Galois Field is used, the speed of the decoder is enhanced as there is no 

carry generation and carry propagation when any modular arithmetic operation is carried out. 

 

KEYWORDS: Bezier curve, Bernstein Polynomial, Galois field, Error Recovery, LDPC 

codes, Selective Encoding. 
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INTRODUCTION 

The proposed work is based on Bezier curves over Galois field GF (p^m), combined with the 

Low Density Parity check (LDPC) codes for the purpose of encoding and decoding the data. 

The construction of the Generator matrix G for encoding and the parity check matrix H for 

decoding is based on  Bezier curves over Galois field GF(2^m). The proposed decoder can 

detect and correct up to 150 digits of errors in a word of 256 digits. Low Density Parity 

Check codes, Bezier curve and Galois field are discussed in the following section. 

 

Low Density Parity Check Codes 

Low density parity check codes are very widely used for error detection and correction 

purposes
[4]

. Low Density Parity Check Codes are a class of codes, which have a small 

number of 1‟s compared to zeroes.  LDPC are defined by a randomly generated parity matrix 

which can be of type regular or irregular. The Regular parity matrix P is constructed to have a 

uniform column weight and row weight
[3][4]

. Such algebraic construction methods
[3][4]

 ensure 

that each row has exactly the same number of elements and each column has exactly the same 

number of elements.  These conditions ensure that the parity matrix P has uniform row and 

column weights forming a Regular LDPC code
[3]

. The Parity matrix P that does not adhere to 

the property of having uniform row and column weight forms an Irregular Parity matrix. 

 

In the proposed work the parity matrix P is of type regular, constructed using  Bezier curve 

elements over Galois Field GF (p^m). 

 

Bezier Curve 

Bezier curves are parametric curves, which were widely publicized in 1962 by the French 

engineer Pierre Bezier. Bernstein polynomial functionally defines the Bezier curve
[11][12]

. 

These  curves are a method of designing polynomial curve segments, where in the shape of 

curves can be controlled using the control points. These curves have control points from P0 to 

Pn, where n is the order of the Bezier curve. Based on the value of „n‟, the following are the 

different classes of Bezier curves. 

 

Linear Bezier Curves 

Figure 1 shows the plot of the Linear Bezier curve B (t) Versus t, where ]1,0[t . Linear 

Bezier curves are equivalent to linear interpolation between two points. 

The equation for linear Bezier curve is given by ]1,0[,)1()( 10  ttPPttB Where P0 and 

P1 are the control points. 
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Figure: 1 Linear Bezier Curve. 

 

Quadratic Bezier Curve 

Figure 2 shows the plot of the Quadratic Bezier curve B (t) versus t where ]1,0[t . These 

Quadratic Bezier Curve  can be interpreted as the linear interpolate of corresponding points 

on the linear Bezier curves from P0 to P1 and from P1 to P2 respectively. 

 

A quadratic Bezier curve 
[11]

 is defined by the function B (t), with P0, P1, and P2 as control 

points. The curve equation is. 

]1,0[,)1(2)1()( 2

2

10

2  tPtPttPttB

 

 
Figure : 2 Quadratic Bezier Curve. 

 

Cubic Bezier Curves 

Figure 3 shows the plot of the Cubic Bezier curve B (t) versus t where ]1,0[t . 

Four control points P0, P1, P2 and P3 defines a cubic Bezier curve
[11]

 for n=3. 

The explicit form of the cubic Bezier curve is given by 

)1,0(;)1(3)1(3)1()( 3

3

2

2

1

2

0

3  tPtPttPttPttB
 



Srividya et al.                                 World Journal of Engineering Research and Technology 

 

 

 

www.wjert.org  

 

72 

The first and the last points are on the curve, while the middle two points are not on the 

curve. The change in the control points, changes the shape of the curve. Connecting the 

control points by the line segments form a control polygon. The curve is tangent to the 

control polygon. 

 
Figure 3 : Cubic Bezier Curve. 

Quartic Bezier Curves 

Figure 4 shows the plot of the Quartic Bezier curve B (t) versus t where ]1,0[t . 

Five points P0, P1, P2, P3and P4 define a Quartic Bezier curve
[11]

 given n=4. The explicit 

form of the Quartic Bezier curve is given by 

4

4

3

3

2

22

1

3

0

4 )1(4)1(6)1(4)1( PtPttPttPttPt  Where )1,0(t  

 
Figure 4 : Quartic Bezier Curve. 

 

Galois Field 

Galois field Algebra is named after its inventor Evariste Galois. In Galois field GF (2^m), 

there are finite number of elements. These finite fields are extensively used in BCH Codes, 



Srividya et al.                                 World Journal of Engineering Research and Technology 

 

 

 

www.wjert.org  

 

73 

Reed Solomon codes
[10]

. The order of a finite field is always a prime or power of a prime. 

Coding theory focuses on finite fields. For any prime integer p and any integer m greater than 

or equal to 1, there is a unique field with p
m

 elements denoted as GF (p
m

).In case m is equal 

to 1, the field is just the integers mod p. In coding theory, and in cryptography, normal 

practice is to almost always take the value of p to be 2, which is called as binary extension 

and represented as GF (2
m

). Let α €GF (2
m

) be the root of a primitive polynomial of degree m 

over GF (p), then the elements of GF (2
m

) are {0, 1, α α
2
, α

3
… α

m-2
}. Each element in GF 

(2
m

) can be represented using m-bits. Arithmetic operations can be performed for the 

elements of GF (2
m

), which is useful in coding theory. 

 

The following section shows the arithmetic operations performed on GF (2
m

) 

 

Elements in GF (2
m

) 

In GF (2
m

), modular arithmetic operations are simpler. The need for hardware also reduces 

since there is no concept of carry generation and carry propagation. 

 

The elements of Galois field GF (2
4
) is constructed using the primitive polynomial P(x) = x

4
 

+ x + 1 and is shown in Table 1 

 

Table 1: Elements of GF (2
4
). 

Element Polynomial representation Binary representation 

0 0 (0000) 

α
0
 1 (1000) 

α
1 

X (0100) 

α
 2 

X
2 

(0010) 

α
3 

X
3
 (0001) 

α
4 

X+1 (1100) 

α
5 

X
2
+X (0110) 

α
6 

X
2
+ X

3
 (0011) 

α
7 

1+X+ X
3
 (1101) 

α
8 

1+X
2
 (1010) 

α
9 

X+ X
3
 (0101) 

α
10

 1+X+X
2
 (1110) 

α
11

 X+X
2
+ X

3
 (0111) 

α
12

 1+X+X
2
+ X

3
 (1111) 

α
13

 1+X
2
+X

3
 (1011) 

α
14

 1+ X
3
 (1001) 
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Addition in GF (2
m

) 

Illustrating the Galois field addition with an example: The Galois Field GF (2
4
) has 

P(x) = x
4
 + x + 1 as the primitive polynomial.  Table 1 show that each element in GF (2

4
) can 

be represented using 4-bits in binary. Bitwise XOR is used while adding the elements of GF 

(2
4
). For example: 

α
5
 + α

5
 = (0110) + (0110) = (0000) = 0= α

0
 

α
 2

 + α
5
= (0010) + (0110) = (0100) = 1= α

1
 

The addition table for the same is as shown in Table2 

 

Table 2: Addition in GF (2
4
). 

+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 

2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13 

3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12 

4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11 

5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10 

6 6 7 4 5 2 3 0 1 14 15 12 13 10 110 8 9 

7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 

8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 

9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6 

10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5 

11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4 

12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3 

13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2 

14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1 

15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

 

Multiplication in GF (2
m

) 

In most algorithms the modular product is computed using the polynomial multiplication 

succeeded by the modular reduction. Let A(x), B(x) be the polynomial represented elements 

of GF (2
m

) and P(x) be the irreducible field generator polynomial, then modular 

multiplication is as illustrated in the following example. 

Example: If P(x) =X
4
+X+1, A(x) = X

2
+1, B(x) = X

2
+X 

Then A(x)* B(x) = (X
2
+1)* (X

2
+X)   = ( X

4
+ X

3
+ X

2
+X) 

Modular reduction of the above result is  ( X
4
+ X

3
+ X

2
+X) mod(X

4
+X+1) =1+X

2
+X

3
 

Using the Galois Field GF (2
4
) which is based on P(x) =x

4
+x+1, the multiplication table for 

GF ( 2
4)[10]

 is  as shown in Table 3. 
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Table 3: Multiplication in GF (2
4
). 

X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 2 4 6 8 10 12 14 3 1 7 5 11 9 15 13 

3 3 6 5 12 15 10 9 11 8 13 14 7 4 1 2 

4 4 8 12 3 7 11 15 6 2 14 10 5 1 13 9 

5 5 10 15 7 2 13 8 14 11 4 1 9 12 3 6 

6 6 12 10 11 13 7 1 5 3 9 15 14 8 2 4 

7 7 14 9 15 8 1 6 13 10 3 4 2 5 12 11 

8 8 3 11 6 14 5 13 12 4 15 7 10 2 9 1 

9 9 1 8 2 11 3 10 4 13 5 12 6 15 7 14 

10 10 7 13 14 4 9 3 15 5 8 2 1 11 6 12 

11 11 5 14 10 1 15 4 7 12 2 9 13 6 8 3 

12 12 11 7 5 9 14 2 10 6 1 13 15 3 4 8 

13 13 9 4 1 12 8 5 2 15 11 6 3 14 10 7 

14 14 15 1 13 3 2 12 9 7 6 8 4 10 11 5 

15 15 13 2 9 6 4 11 1 14 12 3 8 7 5 10 

 

Multiplication takes place on the 4-bit binary values and then the modular reduction is 

performed on the binary product. 

The Binary representation of P(x) = (X
4
+X+1) = (1101). 

The modular multiplication in binary can be performed as illustrated in Table 3. For example: 

If A=9 and B=9, then 

AXB= 9 × 9 = (1001) × (1001) = (1010001) 

(1010001) mod (1101) = (1011) = 13 

Further, exponential operation can be performed using GF (2
m

) as shown below. 

5
7
= (5 x 5 x 5 x 5 x 5 x5 x 5) GF (2

4
) 

= (2 x 2 x 2 x 5) GF (2
4
) 

= (4 x 10) GF (2
4
) 

=14 

Section 2 discusses the related work on LDPC and Section 3 briefly describes the proposed 

algorithm. 

Section 4 discusses the results obtained and Section 5 is the conclusion arrived about the 

proposed work. 
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Related Work 

Author Paper Title Proposed Work Advantages Disadvantages 

Improvement 

achieved  in the 

proposed work 

Padmini U 

Wasule, 

Shubhagini 

Ugale[1] 

Review paper on 

decoding of LDPC 

codes using 

Advanced Gallagers 

algorithm 

Fully parallel 

implementation of 

LDPC encoder and 

decoder to 

Reduces  the Bit 

Error Rate and 

hardware 

complexity 

Increase in area  to 

achieve maximum 

throughput 

Reduction in area  as 

the Hardware used is 

XOR gates. 

Alin 

Sindhu[2] 

A Galois field based 

very fast and 

compact error 

correcting technique 

Euclidean 

Geometry based 

LDPC where serial 

one step majority 

logic decoder is 

used. The received 

vector is cyclically 

shifted and then fed 

to the shift register 

circuit to perform 

the error correction. 

Performs Error 

Correction 

As the number of 

bits increases, the 

decoding time 

increases. Also the 

hardware 

complexity 

enhances, if the 

information to be 

encoded increases, 

as the proposed 

method uses p-

input XOR gates, 

depending on the 

size of the parity 

matrix. 

 

M. P. C. 

Fossorier, 

M. 

Mihaljevic, 

and H. 

Imai
[7]

 

Reduced complexity 

iterative decoding of 

low density parity 

check nodes based on 

belief propagation 

Fast decoding 

algorithms based 

on Fast Fourier 

Transform to 

reduce the 

computation 

complexity of the 

belief propagation 

algorithm using 

higher order Galois 

field but for 

moderate code 

lengths. 

The Min-sum 

algorithm 

reduces the 

computational 

complexity by 

simplifying the 

check node 

computation 

Unable to  improve 

the decoding 

performance of the 

LDPC codes 

Not addressed 

J.P chen and 

M.P.C 

Fossorier
[6]

 

Density evolution for 

two improved BP-

based decoding 

algorithm for LDPC 

codes 

Algorithms called 

normalized min-

sum (NMS) and 

Offset min-sums 

(OMS) are 

proposed 

Improvement in 

the decoding 

performance 

But the decoding 

performance suffer 

from degradation 

when output is near 

to zero 

No performance 

degradation seen 

when output is zero. 

Meng Xu, 

Jianhui Wu, 

Meng 

Zhang
[9]

 

A modified offset 

Min-sum decoding 

algorithm for LDPC 

codes 

Modified Offset 

min-sum algorithm 

(MOMS) is 

introduced 

Improvement in 

the decoding 

performance 

Required P+2 more 

addition operations 

compared to OMS 

algorithm. 

Requires K-P 

modulo-additions, 

where K is the 

length of the 

information digits 

and P is the number 

of non zero digits of 

the Parity matrix. 

 

 



Srividya et al.                                 World Journal of Engineering Research and Technology 

 

 

 

www.wjert.org  

 

77 

Proposed Method 

From literature survey, it has been observed that a better improvement in the decoder 

performance can be achieved using Selective Encoding in Galois Field GF(2
m

). Also the 

complexity of the hardware can be simplified and a better performance of the decoder can be 

achieved even when output is zero. All these have been achieved by using the proposed 

algorithm. 

 

Selective Encoding and Decoding has been achieved using n-order Bezier curves over Galois 

Field GF (2
m

). The n-order Bezier curve is used for construction of the Parity matrix P. The 

Parity matrix is used in the Generator matrix G to generate codeword and the Parity Check 

matrix H to calculate the syndrome for the received vector. 

 

If the syndrome is zero, the received vector is error free else it implies that the received 

vector is erroneous. In this algorithm, the decoder scans for the first zero syndrome digit. The 

checksum of the identified zero syndrome is used for correcting the errors. The encoding and 

decoding is based on Galois Field GF (2
m

)  which is  reduced to K-P modulo-additions, 

where K is the length of the information digits and P is the number of non zero digits of the 

Parity matrix. Also fast decoding is achieved without any performance degradation when 

output is near to zero which was a drawback in
[6]

. 

 

Construction of Parity Matrix 

Construction of LDPC codes are based on Cubic Bezier curve over Galois fields GF (2
8
). The 

systematic generator matrix G is defined as [P IK] that is used for the purpose of encoding. 

While the parity check matrix H defined as [IN-K P
T
] is used for the purpose of decoding. 

The coefficients of the Bezier curve over GF (2
8
) are used for the construction of Parity 

matrix. The first row of the Parity matrix is the coefficients of the Cubic Bezier curve over 

GF (2
8
). The Remaining rows are obtained by shifting the coefficients of the Bezier curve to 

the left using shift register. The Parity matrix so obtained is of size 256X256. 

The parity matrix P has the following important properties. 

 Any i
th

 row or j
th

 column is the transpose of the other. 

 Also (P.P
T
) over GF (2

8
) = I256; where P

T
 is the transpose of P. 

The systematic generator matrix G is obtained by appending I256 which is 256X256 Identity 

matrix, to the Parity matrix P, thereby making the generator matrix of size 256X512. 
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Selective Encoding 

Let KXK be the size of the image to be encoded and NXN be the encoded image. In selective 

encoding, the encoded data is generated by multiplying the selected digits of the message and 

the generator matrix G over Galois field GF (2
8
). 

This encoded data   is obtained by performing modular multiplication of the selected non-

binary data and the constructed generator matrix G over Galois field GF (2^8). The code 

word C is given by 

C= [D][G] 

The non-binary code vector C is of the form C= [C1 C2 C3…………… C512] where the first 

256 digits of codeword C are the checksum produced and the remaining 256 digits is the 

information. 

 

Figure 5 shows the flow chart used in Selective encoding. When the data to be encoded is  of 

size 256 digits and  if two consecutive data digits data(i) and data(i+1) are the  same, then the 

first digit data(i) is replaced with a zero. This process continues till all the 256 digits of data 

have been checked for repetition with its adjacent value. This selected data denoted as Ds has 

zeros when adjacent values are the same. This selected data Ds is encoded, by performing 

modular multiplication of Ds and the Generator matrix G. 

 
Figure 5: Selective Encoding. 
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In Selective encoding, the repeated data is replaced by zero. The following example 

illustrates the methodology used in selective encoding. Let   D be the data that needs to be 

encoded and the pixel values form 84-103 that needs to be encoded is chosen from one of the 

rows of an image. D= [84, 84, 84, 86, 88, 89, 90, 100, 100, 101, 101, 101, 101, 103, 103, 

103]. After selecting the data to be encoded, the repeating pixel values are replaced by zeros 

leading to Ds= [0, 0, 84, 86, 88, 89, 90, 0, 100, 0, 0, 0, 101, 0, 0, 103]. 

 

Ds, when multiplied with G over GF (2
m

), gives the codeword C. It is seen that in selective 

encoding, replacing the repetitive pixel values by zero, reduces the number of multiplication 

operation leading to increase in speed of encoding. 

 

Proposed Decoding 

The decoder has to recover the original data from the received code vector, without 

requesting for re-transmission. To achieve this,  the FEC codes are applied. In LDPC, each 

row of the encoded image has 512 digits of data that is given as input to the decoder which 

consist of 256 digits of checksum and 256 digits of information. The Received vector R has 

256 digits of checksum and 256 digits of information. 

 

The decoder calculates the syndrome after obtaining this received vector. This syndrome S is 

calculated using S=R.H
T 

by performing modular multiplication over GF (2
8
), where R is the 

received vector and H is the parity check matrix. The syndrome is 256 digits denoted as S= 

[S1 S2 S3 S4… S256] where S € GF (2
8
). 

 

If the Syndrome S is Zero, then the received vector is error free else, the decoder determines 

the location of the error. The error location is determined by referring to the Parity Check 

matrix H. 

 

To illustrate this with an example, if the Syndrome S1 is zero and the syndrome digits 

[S2...S256] is non-zero, then according to the Parity Check matrix H, the received data has 

errors between RI107 to RI256.  These P digits of errors can be corrected using the checksum 

equation C256=2RI2+ 6RI3+ 7RI4+10RI5+15RI6+17RI7+ 21RI8+ 23RI9+ 31RI10 + 

32RI11 + 36RI12 +…. 252RI105 + 255RI106. 

 

The following Table 4 illustrates some of the Zero Syndrome value and the possible error 

locations, which is determined using the parity check matrix. 
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Table 4: Syndrome values. 

Zero Syndrome Error in position 

S1 (RI107- RI256) 

S8 (RI100-RI249) 

S16 (RI92-RI241) 

S32 (RI76-RI225) 

S64 (RI64-RI193) 

S128 (RI1-RI129) &(RI236-RI256) 

S255 (RI1-RI2)&(RI109-RI256) 

 

These erroneous digits can be corrected by determining the first zero syndrome digit. The 

checksum corresponding to the identified zero syndrome digit is used to correct errors.  

 

After correcting the errors, the consecutive zeros will be replaced by the right most non zero 

pixel value. The following example illustrates the removal of consecutive zeroes after the 

error correction is performed by the decoder.  If the corrected vector Vc is obtained as [0, 0, 

84, 86, 88, 89, 90, 0,100 ,0 ,0 ,0 ,101, 0, 0, 103], then by replacing all zeros with the right 

most non zero value the final decoded vector V would be,  V=[84, 84 ,84, 86 ,88, 89, 90 ,100, 

100, 101 ,101, 101, 103, 103, 103]. 

 

Mean Square Error can be calculated between the Data D that was encoded selectively before 

transmission and the decoded data V at the receiver, to check for equality.  The speed of error 

correction increases, as the repeating consecutive pixel values are replaced by zero. 

 

Figure 6 shows the flowchart of the proposed decoding method. The syndrome is calculated 

after obtaining the received vector. If the Syndrome S is Zero, then the received vector is 

error free else, the decoder determines the location of the error, by determining the first zero 

syndrome digit. The checksum equation corresponding to the zero syndrome is used to obtain 

the error free data „V‟. 
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Figure 6: Proposed Decoding. 

 

The figure 7 shows the pseudo code for correcting P digits of errors when the Syndrome digit 

S107=0. 

for j=1:149 

temp1=0; 

for i=1:105 

temp(i)=RI(i+150-j)*H(i+150-j,107+j); /*multiplication over GF(2
8
)*/ 

temp1(i+1)=temp(i)+temp1(i);/*addition over GF(2
8
)*/ 

if(s(107)= =0&temp1(106)~ =(RC(107+j)) 

end 

temp2=temp1(106)+ RC(107+j) 

/* addition over GF(2
8
)*/ 

temp3=temp2+2*temp4; 

temp4=temp4+1; 

repeat until temp3==0; 

end 

/*All the additions and multiplications are over Galois field GF(2
8
)*/ 

Figure 7: Pseudo code. 
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The proposed algorithm for encoding and decoding is verified for an image by taking 

different cases of occurrence of error and is discussed in the following section. 

 

If the image to be transmitted is denoted as I, then the encoded image is denoted as CI which 

is obtained by  performing matrix multiplication of the selected Image pixel values Is and the 

Generator matrix G, over GF (2
8
). CI= [Is][G] over GF (2

8
). The receiver calculates the 

syndrome of the received image, to know whether the image is erroneous. If the Syndrome is 

zero, then the image received is error free else the image has to be recovered from the 

modified image. 

 

The Mean Square Error is calculated between the Original image and the decoded image. The 

Mean Square Error (MSE) measures the difference between the Original image and the 

estimated image. 

The MSE is given 2

1

)(
1

XiXi
n

n

i






 where 


Xi  are the pixel values of the estimated image and 

Xi are the pixel values of the original image. 

The coding for the proposed algorithm is done in MATLAB. 

The Bit Error Rate (BER) is the number of bit errors divided by the total number of 

transferred bits during a time interval. BER is considered to ascertain the algorithm 

performance. 

 

Case1: Without Selective Encoding 

Here for the purpose of experimentation, noise has been introduced randomly. The BER is a 

parameter used to ascertain the performance of the algorithm and is taken as 596/2063 in this 

case. 

 

The image considered for experimental purpose is lena.jpg, which is of size 256X256 pixels. 

Figure 8a, b, c shows the original image, the modified image and the recovered image. The 

original Image is encoded and transmitted. The encoded image is obtained by performing 

modular multiplication of the pixel values of the image with the generator matrix over GF 

(2
8
). Error has been introduced randomly. At the receiver‟s end, a modified image due to the 

introduced error has been obtained. Now the decoder identifies the error by calculation of the 

syndrome values. Based on these values, errors are corrected to retrieve the original image. 
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Figure 8a: Original Image; Figure 8b: Modified Image, Figure 8c: Recovered Image. 

 

From case 1, it is found that figure 8b, the modified image (the darkened portion of the 

image) has    non zero syndrome values from S108 to S168 and S228 to S240 and this has 

been eliminated using the decoding algorithm as seen in figure 8c. 

 

Case 2: Without Selective Encoding. 

Here for the purpose of experimentation, White Gaussian Noise with value of mean=0.3 and 

variance=0.1 has been introduced. The BER is a parameter used to derive conclusion about 

the performance of the algorithm and is taken as 622/1157 in this case. 

 

When an electrical variation obeys a Gaussian distribution, then it is called as Gaussian noise. 

It is a statistical noise having a probability density function (PDF) equal to that of the normal 

distribution. 

 

The Probability density function for Normal Distribution is given by 

2

2

2
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2

1
)( 











z

ezPg  where z is the Gaussian Random variable. µ is the mean and σ is the 

standard deviation. 

 

The proposed algorithm is tested for various values of mean µ and variance σ
2
. 

Figure 9a, b, c shows the original image, the modified image and the recovered image. The 

original image is encoded and transmitted. The encoded image is obtained by performing 

modular multiplication of the pixel values of the image with the generator matrix over GF 

(2
8
). Error has been introduced by white Gaussian noise. At the receiver‟s end, a modified 

image due to the introduced error has been obtained as shown in 9(b). Now the decoder 

identifies the error by calculation of the syndrome values. Based on these values, errors are 

corrected to retrieve the original image 9(c). 
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Figure 9a: Original image; Figure 9b: Modified image , Figure 9c: Recovered Image. 

 

From case 2, it is found that figure 9b, the modified image has non zero syndrome values 

from S1 to S256 and has been eliminated using the decoding algorithm. 

 

Case 3: With Selective Encoding 

Here for the purpose of experimentation, noise has been introduced randomly. The BER is 

taken as 746/2048 in this case. 

 

Figure 10a, b, c, d shows the original image, the encoded image, the modified image and the 

recovered image. Non repeating pixel values of the original Image is encoded and 

transmitted. The encoded image is obtained by performing modular multiplication of the 

selected pixel values of the image with the generator matrix over GF (2
8
). Error has been 

introduced randomly. At the receiver‟s end, a modified image due to the introduced error has 

been obtained. Now the decoder identifies the error by calculation of the syndrome values. 

Based on these values, errors are corrected to retrieve the original image. 

 

    

Figure 10a: Original Image Figure, 10b: Encoded image, Figure 10c: Modified image, 

Figure 10d: Decoded image. 
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The figure 10b shows the encoded image that needs to be transmitted. The dots in the 

encoded image indicate the repeating pixel values replaced by zeros. 

 

At the receiver‟s end, a modified image due to the introduced error has been obtained. Now 

the decoder identifies the error by calculation of the syndrome values. Based on these values, 

errors are corrected to retrieve the original image. 

 

The Figure 10c shows the MATLAB snapshot of the received image that is modified (the 

darkened portion of the image). 

 

The Figure 10d shows the MATLAB snapshot of the decoded image after error correction. 

The zero Mean Square Error calculated after the Error correction, reveals the corrected image 

to be same as the encoded image after decoding. 

 

From case 3, it is found that figure 10c, the selectively encoded modified image (the 

darkened portion of the image) has    non zero syndrome values from S108 to S168 and S228 

to S240 and has been eliminated using the decoding algorithm. 

 

A mean square error of zero is obtained between the original image and the decoded image 

that implies the corrected image to be same as the original image. Figure 11 shows the mean 

square error between the original image and the received image, as well as the mean square 

error between the original image and the corrected image. 

 

 
Figure 11: Mean Square Error of Original image and Corrected image. 

 

According to figure 11, the Mean Square Error between the original image and the Received 

image is close to 255, which means many of the repeating consecutive pixel values are 

replaced by zeros. The Mean Square Error between the original image and the corrected 

image is close to 0, indicating both the images to be the same. 
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Case 4: With Selective Encoding 

Here for the purpose of experimentation, White Gaussian Noise with value of mean=0.3 and 

variance=0.1 has been introduced. The BER is taken as 622/1157 in this case. 

 

Figure 12a, b shows the original image, the modified image and the recovered image. The 

original image is selectively encoded and transmitted. The encoded image is obtained by 

performing modular multiplication of the non repeating pixel values of the image with the 

generator matrix over GF (2
8
). Error has been introduced by white Gaussian noise. At the 

receiver‟s end, a modified image due to the introduced error has been obtained. The decoder 

identifies the error by calculating the syndrome values. Based on these values, errors are 

corrected to retrieve the original image 

 

 
Figure 12a: Original Image; Figure 12b: Modified Image and Recovered image 

 

From case 4, it is found that figure 12b, the modified image has non zero syndrome values 

from S1 to S256 and has been eliminated using the decoding algorithm. 

Figure 13, is a MATLAB snap shot that shows the mean Square Error between the Original 

image and Received image to be 254.38 before applying the error correcting algorithm and 

also the Mean Square Error between the original image and the corrected image to be 0 after 

applying the error correcting algorithm, indicating both the images to be the same after 

performing decoding. 

 
Figure 13: Mean square error of the Original image and the corrected image. 
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RESULTS 

The Table 5 gives the comparison between the Bit Error Rates without LDPC codes and with 

LDPC codes during the transmission of the digital data. It is seen that the proposed algorithm 

works for all values of BER, when affected by Gaussian noise. 

 

Table 5: Bit Error Rates with and without LDPC. 

Mean Square Error BER without LDPC codes BER with LDPC codes 

1 149/2048 0 

9 248/2048 0 

49 447/2048 0 

225 596/2048 0 

961 745/2048 0 

3969 894/2048 0 

16129 1043/2048 0 

64516 1192/2048 0 

 

Table 6 shows the execution times, Mean Square Error, and the number of bits encoded using 

selective encoding. For experimentation purpose, 3840 bits are considered. If repetitions 

between the consecutive pixel values are not considered, the mean square error between the 

original vector and the vector to be encoded is zero. The encoding time is around 9msec. If 

the repetitions between the consecutive pixel values are considered, the mean square error is 

found to increase with more number of repetitions in the consecutive pixel values. 

 

It can be inferred from the Table that the execution time is lesser if there are more number of 

repeating consecutive pixel values which leads to the increase in the Mean Square Error 

between the original data and the data that needs to be encoded. 

 

Table 6: Execution times of Selective Encoding and without Selective Encoding. 

MSE between  original vector 

and vector for encoding 

Number of bits 

encoded 

No. of repetitions 

in data 

Execution time 

in mSec 

0 3840 out of 3840 0 9 

4.871e+03 3136 out of 3840 704 7 

5.1066e+03 2960 out of 3840 880 6.2 

8.5429e+03 2536 out of 3840 1304 5.6 

 

The figure 14 shows the plot of Number of Repetitions in data with Selective encoding (i.e. 

with more number of consecutive pixel values being the same) Vs Encoding time in mSec. 

From the graph it can be seen that with increase in the number of repetitions between the 

consecutive pixel values, time taken for encoding decreases. 
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Figure 14: No. of Repetitions vs encoding time in mSec. 

 

Figure 15 shows a plot of the execution times for different values of BER using selective 

encoding and without using selective encoding.  When Selective encoding is used, the 

repeating consecutive pixel values are replaced by zeros which significantly reduces the time. 

The time taken for performing error correction using selective Encoding  is lesser compared 

to the method which does not use selective encoding. 

 

Figure 15: Comparison between Selective Encoding and without selective encoding. 
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CONCLUSION 

This paper, establishes the working of Selective Encoding using LDPC with cubic Bezier 

curve over Galois field GF (2^8). Bezier curves are used for the construction of the generator 

matrix G and parity check matrix H. The generator matrix is used for encoding at the 

transmitter and the Parity check matrix is used for decoding at the receiver. The proposed 

decoder can handle BER=1200/2048. 

 

The proposed algorithm uses Selective Encoding, where in the repeating consecutive pixel 

values of the image are replaced by zeros. Using this approach, it is possible to encode a few 

non zero pixel values. The Encoding and Decoding involves modular arithmetic operations.   

At the receiver,   decoding a few pixel values still preserves the concept of Error detection 

and correction. These modular arithmetic operations are not performed when the data is zero. 

Hence, Selective encoding speeds up the encoding and decoding process, as the repeating 

consecutive pixel values are replaced by zeros thus enhancing the speed of error recovery. It 

is found that this method is more convenient as the encoding and the error correction involves 

modular addition over Galois field and also reduces the hardware complexity. The speed 

further enhances as, there is neither carry generation nor carry propagation while performing 

Galois field addition. 

 

REFERENCES 

1. Padmini U Wasule, Shubhagini Ugale,” Review paper on decoding of LDPC codes using 

Advanced Gallagers algorithm”, IJAICT, November 2014; 1(7). 

2. AlinSindhu A et al. “Galois field based very fast and compact error correcting technique” 

Int. Journal of Engineering Research and Applications www.ijera.com ISSN: 2248-9622, 

4(1) January 2014; 94-97. 

3. Jaehong Kim, Aditya Ramamoorthy, “The Design of Efficiently Encodable Rate- 

Compatible LDPC Codes”IEEE transactions on communications, February 2009; 57(2). 

4. V.S.Ganepola et.al “Performance study of non-binary LDPC codes over Galois field” 

CSNDSP08, IEEE, 2008. 

5. L. Barnault and D. Declercq, "Fast   Decoding Algorithm for LDPC over GF (2^q),” The 

Proc.  2003 Inform. Theory Workshop, 2003; 70-73. 

6. J P chen and M P C Fossorier” Density evolution for two improved BP-based decoding 

algorithm for LDPC codes” , IEEE Communication letters, May 2002; 6(5): 208-210. 



Srividya et al.                                 World Journal of Engineering Research and Technology 

 

 

 

www.wjert.org  

 

90 

7. M. P. C. Fossorier, M. Mihaljevic, and H. Imai, "Reduced complexity iterative decoding 

of low density parity check nodes based on belief propagation," IEEE Trans. on 

Communication, May 1999; 47(5): 673-680. 

8. Grzegorz Borowik and Andrzej Paszkiewicz,” Method for generating Irreducible 

polynomials over GF(3) on the basis of trinomials”,  Eurocast 2011, part II, LNCS 6928, 

Springer- Verlag Berlin Heidelberg, 2012; 335-342. 

9. Meng Xu, Jianhui Wu, Meng Zhang, “A modified offset Min-sum decoding algorithm for 

LDPC codes”,  3
rd

  IEEE International Conference on computer science and information 

technology, (ICCSIT), 2010; 3. 

10. The Encyclopedia of design theory: Galois fields by Peter J.Cameron, May 30, 2003. 

11. web.iitd.ac.in/~hegde/cad/lecture/L13_Bezier  curve.pdf. 

12. Online geometric modeling notes: Bernstein; Visualization and graphics research group; 

department of computer science, University of California. 

13. http://mathworld.wolfram.com 

14. Online notes : Low Density Parity Check Codes by Robert Gallager. 

15. Shu Lin, D.L.C., "Error Control coding fundamentals and application", 2
nd

 Edition, 

Editor, Prentice Hall series in computer application in Electrical Engineering. 

16. Costello D J, J., Imai H,  Wicker S.B,” Applications of Error-Control Coding”, IEEE 

Transactions on Information Theory, October 1998, 44(6). 

http://mathworld.wolfram.com/

