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ABSTRACT 

This  paper  provides number of zeros of a class of orthogonal 

polynomial which is a sequence of mutually independent, normally 

distributed random variables with mean zero and variance unity then 

the  average number of zeros of the random  orthogonal polynomial   is 

asymptotic to 3/n .  
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INTRODUCTION 

 Let 



n

0k
kkk

)t(b)w(yy be random polynomial such that  
n

0kk
)w(y


is a sequence of 

mutually independent, normally distributed random variables with mean zero and variance 

unity and (Φk (t) is a sequence of classical Gegenbauer polynomials such that  
n

0k
k

)t(b


 is 

a sequence of normalized orthogonal polynomials. Then, it is proved that the average number 

of zeros of the random polynomial is asymptotic to 3/n . 
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Let 



n

0k
kkk

)t()w(yby  , 0<w<1  be random polynomial, where {y0, (w), y1 

(w),……….yn(w)} is a sequence of mutually independent, normally distributed random 

variables with mathematical expectation zero and variance one. Let {Φ0 (t),……. Φ1 (t)} is a 

sequence of real valued polynomials (functions) and (b0, b1…..) is a sequence of real 

constants. J.E. Littlewoods and A.C. Offord 
[4,5,6]

 showed that, when bk=1 and Φk(t)=t
k

, most 

of the equation of the form y=0, have at most 25(logn)
2
 real zeros for large n. When b0=0, 

bk=1 for k≠0, and Φ0(t)= cosk(cos
-1

t), J.E.A., Dunnage 
[3]

 estimated the average number of 

zeros of the family of equations y=0 to be asymptotic to 2n/√3 in the interval (-1,1). 

 

It is interesting to observe that while t
k
’s are a set of functions monotonic in (-∞,0) and [0, ∞], 

cosk(cos
-1

 t), for each k, oscillates k times between –1 and 1. The fact that the average 

number of zeros of y=0 when Φk(t)=cosk (cos
-1

t) is proportional to the number of individual 

oscillations of Φk(t) about the t-axis, draws attention to the equation as to how far the 

oscillatory nature of Φk(t) decisively affects the zeros of y=0. Although the answer remains 

still inconclusive, we attempt to show that for large n, the above equation may be excepted to 

have c.n., (C>0) number of real roots when Φk(t) happens to be the ultra spherical classical 

orthogonal polynomial (Gegenbauer polynomial). In other words the oscillatory property of 

Φk(t) is also shared by 



n

0k

kkk
)t()w(yb  

 

Now Φk(t) is associated with a weight function u(t)=(1-t
2
)
-1/2

, λ>1/2 corresponding to the 

interval (-1,1) over which the integral of u(t), Φk(t) is a positive number hk. We take bk=h
-1/2

k. 

Then the integral of )t(b)t(
k

2

k

2

k

2   over the given interval is unity, so that each of the 

terms of the polynomial 



n

0k
kkk

)t()w(yb =



n

0k

kkk
)t()w(yb  has same weightage in the 

same sense.  

 

Thus, in what follows, we find the average number of zeros of the equation 





n

0k
kkk

)t()w(yb                    (1.1) 

We denote by ENn(f:α,β) the expected number of real zeros of (1.1) in the interval (α,β). 

Das
[2]

 was first to find ENn(f: α,β) for a random orthogonal polynomial, although Ψk(t) 
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considered by him was a normalized Legendre polynomial, which is a special case of the 

polynomial considered by us. 

 

1.2. Formula for ENn (f: a,b) Following the procedure of  Kac,
[7]

 we obtain 
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                                              (1.2) 
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The last inequality holds good by Cauchy’s inequality. 

Let us put 
1n

11
nnn

rhIμ



 where rn is the coefficient of t

n
 in Φn(t). The famous Crammer and 

Leadbetter
[1]

 formula of the theory of orthogonal functions reads as follows. 

 
tμ

)t()μ()t()μ(
μ)t()μ(h 1nnn1n

n

0k

nkkk

1




 





                                                            (1.3) 

Putting μ=t+γ in the formula (1.3), we obtain by Taylor’s expansion that 
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Now, equating coefficients of like powers of γ on both the sides, we obtain 

   ,)t()t()t()t(μ)t(h
n

'

1nn1n

'

nk
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1
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                                               (1.4) 
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                                               (1.5) 
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Differentiating (1.5), we get 
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Hence, from (1.4), (1.5) and (1.7), it is evident that 
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Now, making use of (1.4), (1.5) and (1.7), together with the fact that μn≠0, we obtain 
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1.3. Proof of the theorem 

To prove the theorem, we divide the interval (-1,1) into three subintervals; 

(i)  (-1, ε, 1+ ε), 

(ii) (-1, -1+ε), (iii). (1-ε, 1). 

We choose δ4

1

n 


 . 

 

In the above section we find out the average number of zeros in the interval (-1, ε, 1+ ε ). 

In the section 1.4 we prove that the number of zeros in the intervals (ii) and (iii) are 

negligible in comparison to those in the interval (i). 

 

1.4. Expected Number of Zeros in The Interval (-1,ε,1+ ε ) 

In order to evaluate ENn(f: -1+ε, 1+ ε ), we se the formula derived in 1.2. 

From  above , we have 
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)t()λ2n(n)t(t)1λ2()t()t1(
nn

'

n

''2          (1.9) 

and 

)t()λ21n)(1n()t(t)1λ2()t()t1(
1n1n

'

1n

''2


        (1.10) 

Multiplying (1.9) by )t(
1n

''


  and (1.10) by )t(

n

'' , we obtain 
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Subtracting (1.11) from (1.12), we have 
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Subtracting (1.15) from (1.14), we have 
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Differentiating (1.9) and (1.10), we obtain 
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For large n, we shall use the asymptotic estimate of )t(
n

  as 
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Thus from (1.8), we have 
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1.5. Number of Zeros in Subintervals (ii) and (iii). 

Here we show that in the range (1-ε,1) and (-1, -1+ε) the number of zeros of (1.1) is 

negligibly small in comparisons to  ENn(f: -1+ε, 1+ ε ), 

Let
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Then
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For the Gegenbauer polynomials, hn is determined 
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where  α1 is a constant. 

For the integral representation of Gegenbauer polynomial, we have 
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where α2 and α3 are constants involving λ only. 

Hence from (1.40), we get (1.42)     ),2exp(T              4
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where A is a constant 
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Hence from (1.39), it follows that  
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So from (1.37) and (1.45), we obtain 
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Let n(e) denote the number of zeros of f(y(w),z)=0 inside the circle .1z   

 

It is easy to see that the number of zeros of (3.1.1) inside the interval 1-e≤t≤1 does not exceed 

n(e). 

 

By Jensen’s theorem, we have  
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except for a set of measure at most 2/n, as evident from (1.46). 

Thus from (1.47) and remarks made earlier, we obtain that the number of zeros of (1.1) in (1-

e,1) is at most 
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An  identical result is obtainable for the number of zeros of (1.1) in (-1, -1+e), so that ENn(f:-

1+e, 1-e)= 
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The above derivation together with the estimate of ENn(f:-1+e, 1-e) in section 1.3. proves that   
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