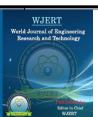
World Journal of Engineering Research and Technology

WJERT

www.wjert.org

SJIF Impact Factor: 4.326



EXPECTED NUMBER OF LEVEL CROSSINGS OF A RANDOM ORTHOGONAL POLYNOMIAL

*Dr. P. K. Mishras

Associate Professor Department of Mathematics Cet, Bput, Bbsr, Odisha, India.

Article Received on 05/02/2017 Article Revised on 26/02/2017 Article Accepted on 18/03/2017

*Corresponding Author Dr. P. K. Mishra Associate Professor Department of Mathematics Cet, Bput, Bbsr, Odisha, India.

ABSTRACT

This paper provides number of zeros of a class of orthogonal polynomial which is a sequence of mutually independent, normally distributed random variables with mean zero and variance unity then the average number of zeros of the random orthogonal polynomial is asymptotic to $\sqrt{n/3}$.

1991 Mathematics subject classification (Amer. Math. Soc.): 60 B 99.

KEYWORDS AND PHRASES: Independent, identically distributed random variables, random algebraic polynomial, random algebraic equation, real roots, domain of attraction of the normal law, slowly varying function.

INTRODUCTION

Let $y = \sum_{k=0}^{n} y_k(w) b_k \Phi_k(t)$ be random polynomial such that $\{y_k(w)\}_{k=0}^{n}$ is a sequence of mutually independent, normally distributed random variables with mean zero and variance unity and $(\Phi_k(t))$ is a sequence of classical Gegenbauer polynomials such that $\{b_k \Phi(t)\}_{k=0}^{n}$ is a sequence of normalized orthogonal polynomials. Then, it is proved that the average number of zeros of the random polynomial is asymptotic to $\sqrt{n/3}$.

Let $y = \sum_{k=0}^{n} b_k y_k(w) \Phi_k(t)$, 0 < w < 1 be random polynomial, where $\{y_0, (w), y_1 (w), \ldots, y_n(w)\}$ is a sequence of mutually independent, normally distributed random variables with mathematical expectation zero and variance one. Let $\{\Phi_0(t), \ldots, \Phi_1(t)\}$ is a sequence of real valued polynomials (functions) and (b_0, b_1, \ldots) is a sequence of real constants. J.E. Littlewoods and A.C. Offord ^[4,5,6] showed that, when $b_k=1$ and $\Phi_k(t)=t^k$, most of the equation of the form y=0, have at most 25(logn)² real zeros for large n. When $b_0=0$, $b_k=1$ for $k \neq 0$, and $\Phi_0(t)= cosk(cos^{-1}t)$, J.E.A., Dunnage ^[3] estimated the average number of zeros of the family of equations y=0 to be asymptotic to $2n/\sqrt{3}$ in the interval (-1,1).

It is interesting to observe that while t^k 's are a set of functions monotonic in $(-\infty,0)$ and $[0, \infty]$, $cosk(cos^{-1} t)$, for each k, oscillates k times between -1 and 1. The fact that the average number of zeros of y=0 when $\Phi_k(t)=cosk$ ($cos^{-1}t$) is proportional to the number of individual oscillations of $\Phi_k(t)$ about the t-axis, draws attention to the equation as to how far the oscillatory nature of $\Phi_k(t)$ decisively affects the zeros of y=0. Although the answer remains still inconclusive, we attempt to show that for large n, the above equation may be excepted to have c.n., (C>0) number of real roots when $\Phi_k(t)$ happens to be the ultra spherical classical orthogonal polynomial (Gegenbauer polynomial). In other words the oscillatory property of

$$\Phi_k(t)$$
 is also shared by $\sum_{k=0}^n b_k y_k(w) \Phi_k(t)$

Now $\Phi_k(t)$ is associated with a weight function $u(t)=(1-t^2)^{-1/2}$, $\lambda > 1/2$ corresponding to the interval (-1,1) over which the integral of u(t), $\Phi_k(t)$ is a positive number h_k . We take $b_k = h^{-1/2}_k$. Then the integral of $\Psi_k^2(t) = b_k^2 \Phi_k^2(t)$ over the given interval is unity, so that each of the terms of the polynomial $\sum_{k=0}^{n} b_k y_k(w) \Psi_k(t) = \sum_{k=0}^{n} b_k y_k(w) \Phi_k(t)$ has same weightage in the same sense.

Thus, in what follows, we find the average number of zeros of the equation

$$\sum_{k=0}^{n} b_{k} y_{k}(w) \Psi_{k}(t)$$
 (1.1)

We denote by $\text{ENn}(f;\alpha,\beta)$ the expected number of real zeros of (1.1) in the interval (α,β) . Das^[2] was first to find $\text{ENn}(f;\alpha,\beta)$ for a random orthogonal polynomial, although $\Psi_k(t)$ considered by him was a normalized Legendre polynomial, which is a special case of the polynomial considered by us.

1.2. Formula for ENn (f: a,b) Following the procedure of Kac,^[7] we obtain

$$EN_{n}(f:a,b) = \frac{1}{\pi} \int_{a}^{b} \frac{\left(\{X_{n}(t)\}\{Z_{n}(t)\}-\{Y_{n}(t)\}^{2}\}\right)^{\frac{1}{2}}}{X_{n}(t)} dt$$
(1.2)

where $X_{n}(t) = X \sum_{k=0}^{n} \Psi_{k}(t)^{2}$

$$Y_{n}(t) = Y_{n} \sum_{k=0}^{n} [\Psi'_{k}(t)] [\Psi'_{k}(t)]$$
$$Z_{n}(t) = Z_{n} \sum_{k=0}^{n} [\Psi'_{k}(t)]^{2}$$

provided that $X_n Z_n - Y_n^2 > 0$.

The last inequality holds good by Cauchy's inequality.

Let us put $\mu_n = I_n h_n^{-1} r^{-1}_{n+1}$ where r_n is the coefficient of t^n in $\Phi_n(t)$. The famous Crammer and Leadbetter^[1] formula of the theory of orthogonal functions reads as follows.

$$\sum_{k=0}^{n} h^{-1}{}_{k} \Phi_{k}(\mu) \Phi_{k}(t) = \mu_{n} \frac{\left\{ \Phi_{n+1}(\mu) \Phi_{n}(t) - \Phi_{n}(\mu) \Phi_{n+1}(t) \right\}}{\mu - t}$$
(1.3)

Putting μ =t+ γ in the formula (1.3), we obtain by Taylor's expansion that

$$\sum_{k=0}^{n} h^{-1}_{k} \Phi_{k}(\mu) \Phi_{k}(t+\gamma) = \mu_{n} \frac{\{\Phi_{n+1}(\mu) \Phi_{n+1}(t) - \Phi_{n}(\mu) \Phi_{n+1}(t+\gamma) \Phi_{n+1}(t)\}}{t+\gamma-t}$$

Now

$$LHS(=)\sum_{k=0}^{n} h^{-1}{}_{k}(t)\Phi_{k}(t) + \gamma\Phi'_{k}(t) + \frac{\gamma^{2}}{2!}\Phi''_{k}(t) + \dots$$

$$= \sum_{k=0}^{n} h^{-1}{}_{k}\Phi^{2}{}_{k}(t) + \gamma\sum_{k=0}^{n} h^{-1}{}_{k}\Phi_{k}(t) + \Phi'_{k}(t) + \frac{\gamma^{2}}{2!}\sum_{k=0}^{n} h^{-1}{}_{k}\Phi_{k}(t) + \Phi''_{k}(t) + \dots$$

$$RHS_{n}(=)\mu\left[\Phi_{n}(t)\left\{\Phi_{n+1}(t) + \gamma\Phi'_{n+1}(t) + \gamma\Phi'_{k}(t) + \frac{\gamma^{2}}{2!}\Phi''_{n+1}(t) + \frac{\gamma^{3}}{3!}\Phi''_{n+1}(t)\right\}\right]$$

$$-\Phi_{n+1}(t)\left\{\Phi_{n}(t) + \gamma\Phi'_{n}(t) + \frac{\gamma^{2}}{2!}\Phi''_{n}(t) + \frac{\gamma^{3}}{3!}\Phi''_{n}(t)\right\}$$

$$= \mu_{n}\left\{\Phi_{n}(t) + \Phi'_{n+1}(t) + \frac{1}{2}\Phi_{n}(t) + \Phi''_{n+1}(t)\gamma + \frac{1}{6}\Phi_{n}(t)\Phi''_{n+1}(t)\gamma^{2}\right\}$$

$$-\Phi_{n+1}(t)\Phi'_{n}(t) - \frac{1}{2}\Phi_{n+1}(t)\Phi''_{n}(t)\gamma - \frac{1}{6}\Phi_{n+1}(t)\Phi''_{n}(t)\gamma^{2}\dots$$

www.wjert.org

Now, equating coefficients of like powers of γ on both the sides, we obtain

$$\sum_{k=0}^{n} h_{k}^{-1} \left[\Phi_{k}(t) \right] = \mu_{n} \left[\Phi_{n+1}(t) \Phi_{n}(t) - \Phi_{n+1}(t) \Phi_{n}(t) \right],$$
(1.4)

$$\sum_{k=0}^{n} h_{k}^{-1} \left[\Phi_{k}(t) \Phi_{k}^{'}(t) \right] = \frac{\mu_{n}}{2} \left[\Phi_{n+1}^{''}(t) \Phi_{n}(t) - \Phi_{n+1}(t) \Phi_{n}^{''}(t) \right],$$
(1.5)

$$\sum_{k=0}^{n} h_{k}^{-1} \left[\Phi_{k}(t) \Phi_{k}^{'}(t) \right] = \frac{\mu_{n}}{3} \left[\Phi_{n+1}^{''}(t) \Phi_{n}(t) - \Phi_{n+1}(t) \Phi_{n}^{''}(t) \right],$$
(1.6)

Differentiating (1.5), we get

$$\sum_{k=0}^{n} h_{k}^{-1} \left[\Phi_{k}^{'}(t) + \Phi_{k}^{'}(t) \right] = \frac{\mu_{n}}{2} \left[\Phi_{n+1}^{''}(t) \Phi_{n}(t) + \Phi_{n}^{'}(t) \Phi_{n+1}^{''}(t) - \Phi_{n+1}^{''}(t) \Phi_{n+1}^{''}(t) - \Phi_{n+1}^{''}(t) \Phi_{n+1}^{''}(t) \right],$$

$$\sum_{k=0}^{n} h_{k}^{-1} \left[\Phi_{k}^{'}(t) + \Phi_{k}^{''}(t) \right] = \frac{\mu_{n}}{2} \left[\Phi_{n+1}^{'''}(t) \Phi_{n}(t) + \Phi_{n}^{''}(t) \Phi_{n+1}^{''}(t) - \Phi_{n+1}^{''}(t) \Phi_{n}^{''}(t) - \Phi_{n}(t) \Phi_{n}^{'''}(t) \right],$$
or

$$\begin{split} \sum_{k=0}^{n} h_{k}^{-1} \left[\Phi_{k}^{'}(t) \right]^{2} &= \\ \frac{\mu_{n}}{2} \left[\Phi_{n+1}^{'}(t) \Phi_{n}^{'}(t) - \Phi_{n+1}^{'}(t) \Phi_{n}^{'}(t) \right] & \text{Hence, from (1.4), (1.5) and (1.7), it is evident that} \\ &+ \frac{\mu_{n}}{6} \left[\Phi_{n+1}^{''}(t) \Phi_{n}(t) - \Phi_{n+1}(t) \Phi_{n}^{''}(t) \right] (1.6) \\ \sum_{k=0}^{n} h_{k}^{-1} \left[\Phi_{k}(t) \right]^{2} &= \sum_{k=0}^{n} h_{k}^{-1/2} \left[\Phi_{k}(t) \right]^{2} \\ &= \sum_{k=0}^{n} (\Psi_{k}(t))^{2} = X_{n} \\ & \text{and} \\ \sum_{k=0}^{n} h_{k}^{-1} \left[\Phi_{k}(t) \right]^{2} &= \sum_{k=0}^{n} h_{k}^{-1/2} \left[\Phi_{k}(t) \right]^{2} \\ &= \sum_{k=0}^{n} (\Psi_{k}^{'}(t))^{2} = Y_{n} \end{split}$$

and

$$\sum_{k=0}^{n} h_{k}^{-1} [\Phi_{k}(t)]^{2} = \sum_{k=0}^{n} h_{k}^{-1/2} [\Phi_{k}(t)]^{2}$$
$$= \sum_{k=0}^{n} (\Psi_{k}(t))^{2} = Z_{n}$$

Now, making use of (1.4), (1.5) and (1.7), together with the fact that $\mu_n \neq 0$, we obtain

$$\frac{X_{n}Z_{n}-Y_{n}^{2}}{X_{n}^{2}}=\frac{Z_{n}}{X_{n}}-\left(\frac{Y_{n}}{X_{n}}\right)^{2}$$

$$=\left\{\frac{\frac{\mu_{n}}{2}\left[\Phi_{n+1}^{(*)}(t)\Phi_{n}^{(*)}(t)-\Phi_{n+1}^{(*)}(t)\Phi_{n}^{(*)}(t)\right]+\frac{\mu_{n}}{6}\left[\Phi_{n+1}^{(*)}(t)\Phi_{n}^{(*)}(t)-\Phi_{n+1}(t)\Phi_{n}^{(*)}(t)\right]}{\mu_{n}\left[\Phi_{n+1}^{(*)}(t)\Phi_{n}^{(*)}(t)-\Phi_{n+1}^{(*)}(t)\Phi_{n}^{(*)}(t)\right]}\right\}^{2}$$
 i.e. EN _n(f:a,b) = $\frac{1}{\pi}\int_{a}^{b}g_{n}(t)dt$. (1.8)

where

$$g_{n}^{2}(t) = \left[\frac{W_{n}(t) + V_{n}(t)}{R_{n}(t)} - \frac{U_{n}^{2}(t)}{4R_{n}^{2}(t)}\right],$$

$$R_{n}(t) = R_{n} = \Phi_{n+1}^{'}(t)\Phi_{n}(t) - \Phi_{n+1}(t)\Phi_{n}^{'}(t),$$

$$U_{n}(t) = U_{n} = \Phi_{n+1}^{'}(t)\Phi_{n}(t) - \Phi_{n+1}(t)\Phi_{n}^{'}(t),$$

$$V_{n}(t) = V_{n} = \frac{1}{2}\left[\Phi_{n+1}^{'}(t)\Phi_{n}^{'}(t) - \Phi_{n+1}^{'}(t)\Phi_{n}^{'}(t)\right]$$
and
$$W_{n}(t) = W_{n} = \frac{1}{6}\left[\Phi_{n+1}^{''}(t)\Phi_{n}(t) - \Phi_{n+1}(t)\Phi_{n}^{''}(t)\right]$$

1.3. Proof of the theorem

To prove the theorem, we divide the interval (-1,1) into three subintervals;

(i) (-1, ϵ , 1+ ϵ), (ii) (-1, -1+ ϵ), (iii). (1- ϵ , 1). We choose $\epsilon = n^{-\frac{1}{4+\delta}}$.

In the above section we find out the average number of zeros in the interval (-1, ϵ , 1+ ϵ). In the section 1.4 we prove that the number of zeros in the intervals (ii) and (iii) are negligible in comparison to those in the interval (i).

1.4. Expected Number of Zeros in The Interval $(-1,\epsilon,1+\epsilon)$

In order to evaluate $EN_n(f:$ -1+ $\epsilon,$ 1+ ϵ), we se the formula derived in 1.2.

From above, we have

$$(1-t^{2})\Phi_{n}^{''}(t) = (2\lambda+1)t\Phi_{n}^{'}(t) + n(n+2\lambda)\Phi_{n}(t)$$
(1.9)

and

$$(1-t^{2})\Phi_{n+1}(t) - (2\lambda+1)t\Phi_{n+1}(t) - (n+1)(n+1+2\lambda)\Phi_{n+1}(t)$$
(1.10)

Multiplying (1.9) by $\Phi_{n+1}^{"}(t)$ and (1.10) by $\Phi_{n}^{"}(t)$, we obtain

$$(1-t^{2})\Phi''_{n}(t)\Phi'_{n+1}(t) = (2\lambda+1)t\Phi'_{n}(t)\Phi'_{n+1}(t) - n(n+2\lambda\lambda)_{n}(t)\Phi'_{n+1}(t)$$
(1.11)

and

$$(1-t^{2})\Phi''_{n+1}(t)\Phi'_{n}(t) = (2\lambda+1)t\Phi'_{n}(t)\Phi'_{n+1}(t) - n + 1(n+1+2\lambda\lambda)_{n+1}(t)\Phi'_{n}(t)$$
(1.12)

Subtracting (1.11) from (1.12), we have

$$(1-t^{2})\Phi''_{n}(t)\Phi'_{n+1}(t) = (2\lambda+1)t\Phi'_{n}(t)\Phi'_{n+1}(t)$$
$$-n(n+2\lambda\lambda)_{n}(t)\Phi'_{n+1}(t) \quad (1.13)$$

Multiplying (1.9) by $\Phi_{n}^{"}(t)$ and (1.10) by $\Phi_{n}(t)$, we have

$$(1-t^{2})\Phi''_{n}(t)\Phi'_{n+1}(t) = (2\lambda+1)t\Phi'_{n}(t)\Phi'_{n+1}(t)$$
$$-n(n+2\lambda\lambda)_{n}(t)\Phi'_{n+1}(t)(1.14)$$

and

$$(1-t^{2})\Phi''_{n}(t)\Phi'_{n+1}(t) = (2\lambda+1)t\Phi'_{n}(t)\Phi'_{n+1}(t)$$

$$-n(n+2\lambda\lambda)_{n}(t)\Phi'_{n+1}(t)$$
(1.15)

Subtracting (1.15) from (1.14), we have

$$(1-t^{2})\Phi''_{n+1}(t)\Phi_{n}(t) - \Phi''_{n}(t)\Phi_{n+1}(t)$$

= $(2\lambda+1)t\left(\Phi'_{n+1}(t)\Phi_{n}(t) - \Phi'_{n}(t)\Phi_{n+1}(t)\right)$
- $(2n+1+2\lambda\lambda)_{n+1}(t)\Phi_{n}(t)$ (1.16)

Differentiating (1.9) and (1.10), we obtain

$$-2t\Phi''_{n}(t) + (1-t^{2})\Phi''_{n}(t) = (2\lambda+1)\Phi'_{n}(t) + (2\lambda+1)t\Phi''_{n}(t) - n(n+2\lambda\lambda)'_{n}(t)$$
(1.17)

and

$$-2t\Phi''_{n}(t) + (1-t^{2})\Phi''_{n}(t) = (2\lambda+1)\Phi'_{n+1}(t)$$

= $(2\lambda+1)t\Phi'_{n+1}(t) + (2\lambda+1)\Phi''_{n+1}(t)$
- $(n+1)(n+12\lambda)\Phi'_{n+1}(t)$ (1.18)

Multiplying (1.9) by $\Phi_n^{(t)}(t)$ and (1.10) by $\Phi_n(t)$, and subtracting, we have

$$(1-t^{2})(\Phi''_{n+1}(t)\Phi_{n}(t)-\Phi''_{n}(t)\Phi_{n+1}(t))$$

= $2t\left(\Phi'_{n+1}(t)\Phi_{n}(t)-\Phi_{n+1}(t)\Phi''_{n}(t)\right)$
+ $(2\lambda+1)t(\Phi''_{n+1}(t)\Phi_{n}(t)-\Phi''_{n}(t)\Phi_{n+1}(t))$
- $n(n+2\lambda)(\Phi''_{n+1}(t)\Phi_{n}(t)-\Phi''_{n}(t)\Phi_{n+1}(t))$

$$= (2\lambda + 3)t(\Phi_{n+1}^{"}(t)\Phi_{n}(t) - \Phi_{n}^{"}(t)\Phi_{n+1}(t) + (2\lambda + 1) - n(n + 2\lambda)(\Phi_{n+1}^{"}(t)\Phi_{n}(t) - \Phi_{n}^{"}(t)\Phi_{n+1}(t) - (2n + 1 + 2\lambda)(\Phi_{n+1}^{'}(t)\Phi_{n}(t))$$

$$\begin{split} &(2\lambda+3)t\Bigg[\frac{(2\lambda+1)}{(1-t^{2})}(\Phi_{n+1}^{'}(t)\Phi_{n}(t)-\Phi_{n}^{'}(t)\Phi_{n+1}(t)\Bigg] \\ &-\Bigg[\frac{(2n+1+2\lambda)}{(1-t^{2})}(\Phi_{n+1}^{'}(t)\Phi_{n}(t)\Bigg] \\ &+\Bigg[(2\lambda+1)-n(n+2\lambda)(\Phi_{n+1}^{'}(t)\Phi_{n}(t)-\Phi_{n}^{'}(t)\Phi_{n+1}(t)\Bigg] (we have substituted) \\ &+\Bigg[\frac{(2n+1+2\lambda)}{(1-t^{2})}(\Phi_{n}(t)(n+1)t\Phi_{n+1}(t)-(2\lambda+1)\Phi_{n}(t)\Bigg] \\ &(t^{2}-1)(\Phi_{n+1}^{'}(t)=(n+1)t\Phi_{n+1}(t)-(2\lambda+1)\Phi_{n}(t) \\ &=\Bigg[\frac{(2\lambda+3)(2\lambda+1)t^{2}}{(1-t^{2})}+(2\lambda+1)-n(n+2\lambda)(\Phi_{n+1}^{'}(t)-\Phi_{n}^{'}(t)\Phi_{n+1}(t)\Bigg] \\ &-\Bigg[\frac{(2n+1+2\lambda)(2\lambda+3)t}{(1-t^{2})}-\frac{t(n+1)(2n+1+2\lambda)}{(1-t^{2})}\Bigg]\Phi_{n+1}(t)\Phi_{n}(t) \\ &-\Bigg[\frac{(2n+1+2\lambda)(2\lambda+1)\Phi_{n}^{2}(t)}{(1-t^{2})}\Bigg] (1.19) \end{split}$$

For large n, we shall use the asymptotic estimate of $\Phi_{\rm n}(t)$ as

$$\Phi_{n}(t) \sim \frac{2^{\lambda}}{(\pi n)^{\frac{1}{2}}} (1-t)^{-\frac{1}{2}} (1+t)^{-\frac{1}{2}} \left[\cos x + o\left(\frac{1}{n\sin\theta}\right) \right],$$

where X=($n\theta + \lambda\theta - \lambda\theta$) and t=cos θ . (We have taken $\alpha = \beta = \lambda - \frac{1}{2}$ From above, we get

$$(1-t^{2})\Phi'_{n}(t) = (2\lambda - 1 + n)\Phi_{n-1}(t) - nt\Phi_{n}(t)$$
(1.20)

and

$$(1-t^{2})\Phi'_{n+1}(t) = (2\lambda + n)\Phi_{n}(t) - (n+1)t\Phi_{n+1}(t)$$
(1.21)

From the two relations, we have

$$(1-t^{2})(\Phi'_{n+1}(t)\Phi_{n}(t) - \Phi'_{n}(t)\Phi_{n+1}(t))$$

= $(1-t^{2})R_{n}(t)$
= $(\lambda+n)\Phi^{2}_{n}(t) - \Phi_{n+1}(t)\Phi_{n}(t) - (2\lambda+1+n)\Phi_{n-1}(t)\Phi_{n+1}(t).$

From the two relations, we have

$$(1-t^{2})(\Phi'_{n+1}(t)\Phi_{n}(t) - \Phi'_{n}(t)\Phi_{n+1}(t))$$

$$= (1-t^{2})R_{n}(t)$$

$$= (\lambda+n)\Phi^{2}_{n}(t) - \Phi_{n+1}(t)\Phi_{n}(t) - (2\lambda+1+n)\Phi_{n-1}(t)\Phi_{n+1}(t).$$
(1.22)

Hence

$$(1-t^{2})R_{n}(t)$$

$$-(\lambda+n)\frac{2^{2\lambda}}{\pi n}(1-t)^{-\lambda}(1+t)^{-1}\left[\cos^{2}X+O\left(\frac{1}{n\sin n\theta}\right)\right]$$

$$-t\frac{2^{2\lambda}}{\pi [n(n+1)]^{\frac{N}{2}}}(1-t)^{-\lambda}(1+t)^{-1}\left[\cos X\cos(X+\theta)+O\left(\frac{1}{n\sin n\theta}\right)\right]$$

$$-(2\lambda-1+n)\frac{2^{2\lambda}}{\pi [n(n+1)]^{\frac{N}{2}}}(1-t)^{-\lambda}(1+t)^{-1}\left[\cos X\cos(X-\theta)+O\left(\frac{1}{n\sin n\theta}\right)\right]$$

$$\sim \sigma^{2}\left[\cos^{2}X+O\left(\frac{1}{n\sin n\theta}\right)\right]-\sigma^{2}\left[\cos X\cos(X-\theta)\cos(X+\theta)+O\left(\frac{1}{n\sin n\theta}\right)\right]$$

$$\sigma^{2}\left[\sin^{2}\theta+O\left(\frac{1}{n\sin n\theta}\right)\right]$$

where

$$\sigma = \frac{2^{\lambda}}{\pi^{\frac{1}{2}}} (1-t)^{-\lambda/2} (1+t)^{-\lambda/2}.$$

Hence

$$(1-t^{2})R_{n}(t) = \frac{2^{2\lambda}}{\pi n}(1-t)^{-\lambda}(1+t)^{-1}\left[(1-t^{2})+O\left(\frac{1}{n\sin n\theta}\right)\right]$$

$$R_{n}(t) = \frac{2^{2\lambda}}{\pi(1-t^{2})}(1-t)^{-\lambda}(1+t)^{-1}\left[(1-t^{2})+O\left(\frac{1}{n\sin n\theta}\right)\right]$$
(1.23)

Now

$$\Phi_{n}(t)\Phi_{n+1}(t) = \frac{2^{2\lambda}}{\pi n}(1-t)^{-\lambda}(1+t)^{-1}\left[\cos X \cos(X+\theta) + O\left(\frac{1}{n\sin n\theta}\right)\right]$$

$$\leq \frac{K}{n}(1-t)^{-\lambda}(1+t)^{-1}$$
(1.24)

and

$$\Phi_{n}^{2}(t) \leq \frac{K}{n} (1-t)^{-\lambda} (1+t)^{-1}$$
(1.25)

Hence

$$\frac{\Phi_{n}(t)\Phi_{n+1}(t)}{\Phi_{n+1}(t)\Phi_{n}(t)-\Phi_{n}(t)\Phi_{n+1}(t)} \leq \frac{\frac{K}{n}(1-t)^{-\lambda}(1+t)^{-\lambda}}{(1-t^{2})^{-1}(1+t)^{-\lambda}\left\{(1-t^{2})+O\left(\frac{1}{n\sin n\theta}\right)^{-\lambda}\right\}}$$

So that

$$\frac{\Phi_{n+1}(t)\Phi_n(t)}{R_n(t)} = O(\frac{1}{n})$$
(1.26)

and

$$\frac{\Phi_n^2(t)}{R_n(t)} = O\frac{1}{n}(1.27)$$

Now

$$(1 - t^{2})\Phi_{n}^{\prime}(t)\Phi_{n+1}(t)$$

$$= (2\lambda - 1 + n)\Phi_{n-1}^{\prime}(t)\Phi_{n+1}(t) - nt\Phi_{n}(t)\Phi_{n+1}(t)$$

$$= (2\lambda - 1 + n)\frac{\sigma^{2}}{n}\left[\cos(X - \theta)\cos(X + \theta) + O\left(\frac{1}{n\sin n\theta}\right)\right]$$

$$- nt\frac{\sigma^{2}}{n}\left\{\cos X + O\left(\frac{1}{n\sin n\theta}\right)\right\}\left\{\cos(X + \theta) + O\left(\frac{1}{n\sin n\theta}\right)\right\}$$

www.wjert.org

Hence

$$\frac{\Phi'_{n}(t)\Phi_{n+1}(t)}{R_{n}(t)} = O\left(\frac{1}{(1-t^{2})}\right)(1.28)$$

Now

$$\frac{V_{n}(t)}{R_{n}(t)} = \frac{\Phi_{n+1}^{'}(t)\Phi_{n}(t) - \Phi_{n+1}^{'}(t)\Phi_{n}^{'}(t)}{2\left(\Phi_{n+1}^{'}(t)\Phi_{n}(t) - \Phi_{n+1}(t)\Phi_{n}^{'}(t)\right)}$$
$$= \frac{\left\{n(n+2\lambda)(\Phi_{n}(t)\Phi_{n+1}^{'}(t) - \Phi_{n+1}^{'}(t)\Phi_{n+1}(t)) - (2n+1+2\lambda)\Phi_{n+1}(t)\Phi_{n}^{'}(t)\right\}}{2\left(\Phi_{n+1}^{'}(t)\Phi_{n}(t) - \Phi_{n+1}(t)\Phi_{n}^{'}(t)\right)}$$

$$=\frac{n(n+2\lambda)}{2(1-t^{2})} - \frac{\{2n+1+2\lambda\}}{2(1-t^{2})} \frac{\{\Phi_{n+1}(t)\Phi_{n}(t)\}}{(\Phi_{n+1}^{'}(t)\Phi_{n}(t)-\Phi_{n+1}(t)\Phi_{n}^{'}(t))} = \frac{(2\lambda+3)(2\lambda+1)t^{2}}{6(1-t^{2})^{2}} + \frac{\{1+2\lambda\}}{6(1-t^{2})} - \frac{n\{n+2\lambda\}}{6(1-t^{2})}$$
$$= \frac{n^{2}}{2(1-t^{2})} + O\left(\frac{n}{2(1-t^{2})}\right), \quad (1.29)$$
$$= \frac{n^{2}}{6(1-t^{2})} + O\left(\frac{n}{(1-t^{2})^{2}}\right) + O\left(\frac{n}{(1-t^{2})^{2}}\right) + O\left(\frac{n}{(1-t^{2})^{2}}\right) + O\left(\frac{n}{(1-t^{2})^{2}}\right) = \frac{n^{2}}{6(1-t^{2})} + O\left(\frac{n}{(1-t^{2})^{2}}\right) + O\left(\frac{n}{(1-t^{2})^{2}}\right) + O\left(\frac{n}{(1-t^{2})^{2}}\right) = \frac{n^{2}}{6(1-t^{2})} + O\left(\frac{n}{(1-t^{2})^{2}}\right) + O\left(\frac{n}{(1-t^{2})^{2}}\right) = \frac{n^{2}}{6(1-t^{2})} = \frac{n^{2}}$$

From (1.28) and (1.29), we have

$$\frac{W_{n}(t) + V_{n}(t)}{R_{n}(t)} = \frac{n^{2}}{3(1 - t^{2})} + O\left(\frac{n}{(1 - t^{2})^{2}}\right),$$
(1.31)

Also we have

$$\frac{U_{n}(t)}{2R_{n}(t)} = \frac{\Phi_{n+1}^{*}(t)\Phi_{n}(t) - \Phi_{n+1}(t)\Phi_{n}^{*}(t)}{2\left[\Phi_{n+1}^{*}(t)\Phi_{n}(t) - \Phi_{n+1}^{*}(t)\Phi_{n}(t)\right]} = \begin{cases} \frac{(2\lambda+1)t(\Phi_{n+1}^{*}(t)\Phi_{n}(t) - \Phi_{n}^{*}(t)\Phi_{n+1}(t)) - (2n+1+2\lambda)\Phi_{n+1}(t)\Phi_{n}(t)}{2(1-t^{2})(\Phi_{n+1}^{*}(t)\Phi_{n}(t) - \Phi_{n}^{*}(t)\Phi_{n+1}(t))} \end{cases} \\ = \frac{(2\lambda+1)t}{2\left[(1-t^{2})^{2}} - \frac{\left\{2n+1+2\lambda\right\}}{2\left[(1-t^{2})^{2}} - \frac{\Phi_{n+1}(t)\Phi_{n}(t)}{\Phi_{n+1}^{*}(t)\Phi_{n}(t) - \Phi_{n+1}(t)\Phi_{n}^{*}(t)\right]} \\ = \frac{(2\lambda+3)(2\lambda+1)t^{2}}{2\left[(1-t^{2})^{2}} + \frac{\left\{1+2\lambda\right\}}{2\left(t-2\lambda\right)^{2}} - \frac{n\left\{n+2\lambda\right\}}{n\left\{1-2\lambda\right\}}} \qquad O\left(\frac{1}{(1-t^{2})^{2}}\right) + O\left(\frac{1}{(1-t^{2})^{2}}\right) \end{cases}$$

$$= = \frac{(2\lambda + 3)(2\lambda + 1)t}{6(1 - t^2)^2} + \frac{(1 + 2\lambda)}{6(1 - t^2)} - \frac{n(t + 2\lambda)}{6(1 - t^2)}$$
$$= \frac{(2n + 1 + 2\lambda)(2\lambda + 3)}{(1 - t^2)^2} + \frac{\Phi^2_n(t)}{6(\Phi_{n+1}^{-}(t)\Phi_n(t) - \Phi_{n+1}(t)\Phi_n^{-}(t))}$$

$$O\left(\frac{1}{\left(1-t^{2}\right)^{2}}\right)+O\left(\frac{1}{n\left(1-t^{2}\right)^{2}}\right)$$

Hence

$$\frac{W_n(t) + V_n(t)}{R_n(t)} \frac{U_n^2(t)}{4R_n^2(t)} = \frac{n^2}{3(1-t^2)} + O\left(\frac{n}{(1-t^2)^2}\right) \quad (1.32)$$

and

$$\frac{U_n(t)}{4R_n^2(t)} = O\left(\frac{1}{(1-t^2)^2}\right)(1.33)$$

so that

$$g_{n}(t) = \sqrt{\frac{W_{n}(t) + V_{n}(t)}{R_{n}(t)} - \frac{U_{n}^{2}(t)}{4R_{n}^{2}(t)}} = \frac{n}{\sqrt{3}(1 - t^{2})^{\frac{1}{2}}} + O\left(\frac{1}{(1 - t^{2})^{2}}\right)^{\frac{1}{2}}$$

For the range $(-1+\varepsilon, 1-\varepsilon)$, we notice that

$$1-t^2 > 2 \in -\epsilon^2 = \frac{2n^{\frac{1}{4+\delta}} - 1}{n^{\frac{2}{4+\delta}}}, \text{ where } \epsilon = n^{\frac{1}{4+\delta}}, \text{ as previously specified.}$$

Thus $(1-t^2)^{-1} = O\left(n^{\frac{1}{4+\delta}}\right).$

This observation together with (1.33), shows that

$$g_{n}(t) = \frac{n}{\sqrt{3}(1-t^{2})^{\frac{1}{2}}} \left[1 + O\left(n^{-\frac{2+\delta}{4+\delta}}\right) \right]^{\frac{1}{2}}$$
$$= \frac{n}{\sqrt{3}(1-t^{2})^{\frac{1}{2}}} \left[1 + O\left(n^{-\frac{2+\delta}{4+\delta}}\right) \right]$$
(1.34)

Thus from (1.8), we have

 $EN_n(f: -1+\varepsilon, 1+\varepsilon),$

$$\int_{-1+\epsilon}^{1-\epsilon} \frac{n}{\sqrt{3}(1-t^2)^{\frac{1}{2}}} \left[1+O\left(n^{\frac{2+\delta}{4+\delta}}\right) \right]$$
$$= \frac{n}{\sqrt{3}} \left[1+O\left(n^{\frac{-2+\delta}{4+\delta}}\right) \right] \left[\sin^{-1} t \right]_{-1+\epsilon}^{1-\epsilon}$$
$$= \frac{n}{\pi\sqrt{3}} \left[1+O\left(n^{\frac{-2+\delta}{4+\delta}}\right) \right] \left[\sin^{-1}(1-\epsilon) - \sin^{-1}(\epsilon-1) \right]$$
$$= \frac{n}{\pi\sqrt{3}} \left[1+O\left(n^{\frac{-2+\delta}{4+\delta}}\right) \right] \left[2\sin^{-1}(1-\epsilon) \right]$$
$$= \frac{n}{\sqrt{3}} \left[1+O\left(n^{\frac{-2+\delta}{4+\delta}}\right) \right]$$

(as $\sin^{-1}(1-\epsilon) \sim \pi/2$) (1.35)

1.5. Number of Zeros in Subintervals (ii) and (iii).

Here we show that in the range $(1-\varepsilon,1)$ and $(-1, -1+\varepsilon)$ the number of zeros of (1.1) is negligibly small in comparisons to $EN_n(f: -1+\varepsilon, 1+\varepsilon)$,

Let
$$f(z) = f(\vec{y}(w), z) = \sum_{k=0}^{n} y_k(w) \Psi_k(z) (1.36)$$

where y(w) denotes the random vector $(y_0(w), y_1(w), \dots, y_n(w))$.

$$_{\text{Now}} f(\vec{y}(w), 1) = \sum_{k=0}^{n} y_{k}(w) \Psi_{k}(1),$$

is a random variable with mean zero and

variance
$$\sigma^2 = \sum_{k=0}^{n} \Psi^2_{k}(1) \ge \Psi_0^2(1) \ge 0$$
,

and hence has the distribution function

$$\frac{1}{\sqrt{2\pi\sigma^2}}\int_{-\infty}^{t} \exp\left(-\frac{v^2}{2\sigma^2}\right) dv.$$

Now

$$P(|f(1)| \le e^{-2n\epsilon}) = \left(\frac{2}{\pi\sigma^2}\right)^{\frac{1}{2}} \int_0^{e^{-2t}} e^{x} \exp\left(-\frac{V^2}{2\sigma^2}\right)$$
$$= \left(\frac{2}{\pi\sigma^2}\right)^{\frac{1}{2}} e^{-2n\epsilon} < e^{-n\epsilon}$$
(1.37)

Let

$$\mathbf{I}_{n} = \max_{0 \le k \le n} \left(\mathbf{y}_{k}(\mathbf{w}) \right) \quad (1.38)$$

$$P(I_{n} \le n) = P\left(\max_{0 \le k \le n} (y_{k}(w))\right)$$

$$= P\left(\prod_{k=0}^{n} |y_{k}(w)| \le n\right)$$

$$= \left(\prod_{k=0}^{n} |P(y_{k}(w)| \le n)\right)$$

$$= \left(\prod_{k=0}^{n} |1 - P(y_{k}(w)| > n)\right)$$
hen
$$= \left(\prod_{k=0}^{n} \left[1 - \sqrt{\frac{2}{\pi}} \int_{n}^{\infty} e^{-v^{2}/2} dv\right]\right)$$

Tł

$$\geq \left[1 - (n+1)\sqrt{\frac{2}{\pi} \int_{n}^{\infty} e^{-v^{2}/2} dv}\right] 1 - e^{-n^{2}/2} \quad (n > n_{0}).$$
(1.39)

Let $T_n = \max_{0 \le k \le n} |\Psi_k(1 + 2 \in e^{i\theta})|$

For the Gegenbauer polynomials, h_n is determined

As
$$\frac{2^{1-2\lambda}\pi\Gamma(n+2\lambda)}{(n+\lambda)(\Gamma(\lambda)^2\Gamma(n+1))}$$
 for $\lambda > \frac{1}{2}$.

Hence

$$b_n = h^{-1/2} a_1 \alpha_1 n^{1/2}$$

where α_1 is a constant.

For the integral representation of Gegenbauer polynomial, we have

$$\Phi_{n}(\mathbf{t}) = \frac{2^{1-2\lambda} \pi \Gamma(n+2\lambda)}{(n!(\Gamma(\lambda)^{2}) \int_{0}^{n} (t+i\sqrt{1-t^{2}}\cos\theta)n(\sin\theta)^{2\lambda-1} d\theta(1.40)$$

Remembering that $\in = n^{-1/(4+\delta)}$ we have

$$\begin{split} \left| \Phi_n (1+2 \in e^{i\theta} \right| &< \frac{2^{1-2\lambda} \pi \Gamma(n+2\lambda)}{(n!(\Gamma(\lambda))^2} (1+2 \in)^n \\ &< \alpha_3 n^{\alpha 2} (1+2 \in)^n \\ &< \alpha_3 n^{\alpha 2} \exp(2n^{\frac{3+\delta}{4+\delta}}), \ (1.41) \end{split}$$

www.wjert.org

where α_2 and α_3 are constants involving λ only.

Hence from (1.40), we get
$$T_n < An^{\alpha 2+1/2} \exp(2n^{\frac{3+\delta}{4+\delta}})$$
, (1.42) where A is a constant

Also

$$\left| f(1+2 \in e^{i\theta} \right| = \left| \sum_{k=0}^{n} y_{k}(w) \Psi_{k}(1+2 \in e^{i\theta}) \right|$$
$$\leq \left| \sum_{k=0}^{n} y_{k}(w) \Psi_{k}(1+2 \in e^{i\theta}) \right|$$
$$\leq 1 \sum_{n k=0}^{n} T_{n} = n \mathbb{1}_{n} T_{n} \qquad (1.43)$$

Hence from (1.39), it follows that

$$P\left|(1+2 \in e^{i\theta}\right| \le n^2 T_n) \ge 1 - e^{-n2/2}$$
 (1.44))

This together with (1.42), gives

$$P \left| f(1+2 \in e^{i\theta} \right| \le An^{\alpha} \exp(2n^{\frac{3+\delta}{4+\delta}}) \ge 1 - e^{-n^{2}/2} (1.45)$$

where $\alpha = \alpha_2 + 5/2$.
So from (1.37) and (1.45), we obtain
$$P \frac{\left| f(1+2 \in e^{i\theta} \right|}{f(1)} \le An^{\alpha} \exp(2n^{\frac{3+\delta}{4+\delta}} + 2n \in)$$
$$\ge P \left| f(1+2 \in e^{i\theta} \right| \le An^{\alpha} \exp(2n^{\frac{3+\delta}{4+\delta}})$$
$$- P \left| f(1) \right| \le e^{-2ne}$$
$$> 1 - e^{-n^{2}/2} - e^{-ne}$$

$$>1-\frac{2}{n} \tag{1.46}$$

Let n(e) denote the number of zeros of f(y(w),z)=0 inside the circle $|z-1| \leq \in$.

It is easy to see that the number of zeros of (3.1.1) inside the interval $1-e \le t \le 1$ does not exceed n(e).

By Jensen's theorem, we have

$$n(\epsilon) \leq \frac{1}{2\pi \log 2} \int_{\theta}^{2\pi} \log \left| \frac{f(1+2\epsilon)e^{i\theta}}{f(1)} \right| d\theta \quad \text{for } f(1) \neq 0$$
$$\frac{1}{2\pi \log 2} \int_{\theta}^{2\pi} \log \left\{ An^{\alpha} \exp\left(2n^{\frac{3+\delta}{4+\delta}}\right) + 2n\epsilon \right\} d\theta, \quad (1.47)$$

except for a set of measure at most 2/n, as evident from (1.46).

Thus from (1.47) and remarks made earlier, we obtain that the number of zeros of (1.1) in (1-

e,1) is at most
$$O\left(n^{\frac{3+\delta}{4+\delta}}\right)$$
 with probability at least 1-2/n.

An identical result is obtainable for the number of zeros of (1.1) in (-1, -1+e), so that $EN_n(f:-1+e)$

The above derivation together with the estimate of $EN_n(f:-1+e, 1-e)$ in section 1.3. proves that

$$EN_{n}(f:-1,1)=\frac{n}{\sqrt{3}}+O\left(n^{\frac{3+\delta}{4+\delta}}\right).$$

REFERENCES

- Crammer, H and Leadbetter, N.R. "Stationary and Related Stochastic Processes", Wiley, New York, 1967.
- Das, M.K. Real zeros of a random sum of orthogonal polynomials, *Proc. Amer. Math.* Soc, 1971; 27(1): 147-153.
- Dunnage, J.E.A. The number of real zeros of a class of random algebraic polynomials (I), *Proc. London Math. Soc*, 1968; 18(3): 439-460.
- 4. Little wood, J.E. and Offord, A.C. On the number of real roots of a random algebraic equation (II), *Proc. Cambridge phil. Soc*, 2005; 35: 133-148.
- 5. Little wood, J.E. and Offord, A.C. On the number of real roots of a random algebraic equation (II), *Proc. Cambridge phil. Soc*, 1998; 35: 133-148.
- 6. Little wood, J.E. and Offord, A.C. On the number of real roots of a random algebraic equation (1) Jour. London Math. Soc, 1989; 288-295.
- Kac, M. On the average number of real roots of random algebraic equation, *Bull. Amer. Math. Soc*, 1943; 49: 314-320.