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INTRODUCTION

Let y:Zyk(W)bkCDk(t) be random polynomial such that {yk(W)} Efois a sequence of
k=0 B

mutually independent, normally distributed random variables with mean zero and variance

unity and (@ (t) is a sequence of classical Gegenbauer polynomials such that {bkCD(t)} IS

n
k=0
a sequence of normalized orthogonal polynomials. Then, it is proved that the average number

of zeros of the random polynomial is asymptotic to+/n/3.
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Let y=> b,y (wW)®, (t) , O<w<l be random polynomial, where {y,, (W), y1
k=0

(37 ya(W)} is a sequence of mutually independent, normally distributed random
variables with mathematical expectation zero and variance one. Let {®y (1)........ ®; ()} isa
sequence of real valued polynomials (functions) and (bg, b;.....) is a sequence of real
constants. J.E. Littlewoods and A.C. Offord [“*® showed that, when b=1 and ®(t)-t most
of the equation of the form y=0, have at most 25(logn)? real zeros for large n. When b,=0,
b=1 for k0, and ®y(t)= cosk(cos™t), J.E.A., Dunnage ™! estimated the average number of

zeros of the family of equations y=0 to be asymptotic to 2n/ 3 in the interval (-1,1).

It is interesting to observe that while t°s are a set of functions monotonic in (-00,0) and [0, o],
cosk(cos™ t), for each k, oscillates k times between —1 and 1. The fact that the average
number of zeros of y=0 when ®y(t)=cosk (cos™t) is proportional to the number of individual
oscillations of dy(t) about the t-axis, draws attention to the equation as to how far the
oscillatory nature of ®y(t) decisively affects the zeros of y=0. Although the answer remains
still inconclusive, we attempt to show that for large n, the above equation may be excepted to
have c.n., (C>0) number of real roots when ®(t) happens to be the ultra spherical classical

orthogonal polynomial (Gegenbauer polynomial). In other words the oscillatory property of

@ (t) is also shared by zn:bkyk(w)cl)k (1)
k=0

1/2

Now ®y(t) is associated with a weight function u(t)=(1-t)’¥2, A>1/2 corresponding to the

interval (-1,1) over which the integral of u(t), ®x(t) is a positive number hy. We take b=h?

Then the integral of W2, (t) =b* @ (t) over the given interval is unity, so that each of the

terms of the polynomial > b, y, (W)¥, () => b,y (W)P,(t) has same weightage in the
k=0 k=0

same sense.

Thus, in what follows, we find the average number of zeros of the equation
> by (W), (1) (1.0)
k=0

We denote by ENn(f:a,B) the expected number of real zeros of (1.1) in the interval (a,f).
Das? was first to find ENn(f: a,p) for a random orthogonal polynomial, although Wy(t)
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considered by him was a normalized Legendre polynomial, which is a special case of the

polynomial considered by us.

1.2. Formula for ENn (f: a,b) Following the procedure of Kac,!"! we obtain

b _ 2\%

a

where X, (1) =X YW, (1)?

n k=0

Y.(0=Y ¥, O, 0]

Z,(t) =2 kzi;[‘lf'k(t)]z

providedthat X Z _-Y.*> 0.
The last inequality holds good by Cauchy’s inequality.

Letus put p =l ha 't where r, is the coefficient of t" in ®n(t). The famous Crammer and

n+1

Leadbetter! formula of the theory of orthogonal functions reads as follows.

:Zohlkobk(u)@k(t) =, 1,000 (?l :(f .. 00 -

Putting p=t+y in the formula (1.3), we obtain by Taylor’s expansion that

k”zoh'lkmk(u)@k(tw):un (0,,00,,(0 iiu_)?ml(tw)@m(t)}

Now

n 2

LHS=JY b, (00, (1)+70, ()+%®“k(t)+ ......

k=0

n 20

Zh @, 1) Z* (t)+®'k(t)+%2h1k(I)k(t)+<D"k(t)+ ......

k=0 * k=0

RHS, (<[ ®

()+ n+1()+}'q)n+1()++}'(b () ”n+1(t) }/ (D n+1(t)}:|

M(){ (0470 () o[+ gm (t)]

=H {q)n(t) + Q) n+1(t) + %(Dn (t) + (D n+1(t)7 + éq)n(t)q) n+1(t)}/2}

n+1 }/q)ml n+1 )(D n(t)}/2
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Now, equating coefficients of like powers of y on both the sides, we obtain

> o, )=, [0 00, 0,00, 0] 19
e o, 00, 0]=22f0',,00,0-,.00",0) (15
Yo, 00, 0=, 00,0-0,.007, 0] (1.6

Differentiating (1.5), we get

k"zohkl[q)k(t)m)‘k(t)]:

000,040, 00°,0-0 ,00",(0-0",00,,0]

ihkl[m'k(t)+(l)'k(t)]=

?[an+1(t)®n (t) t (Dn(t)(D n+1(t) B (Dn+1(t)q) n (t) _(Dn(t)(Dn(t)]
or
ihk‘l[cp'k(t)]z _

“2 v (@, M) -, )", ()]  Hence, from (1.4), (1.5) and (1.7), it is evident that

+ % o ., 1) -, 0", 0))16)

> he [0, OF = 0 [, OF

=k2:;(‘1'k<t» =X,
and

kzi;hk*[cbk(t)]z = kzi;hk‘“[cbk(t)]z

=§(\P'k(t» -y,

and
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ghkl[cmt)]z =30, 0]

k=0
n 2
=> (¥, (1) =Z,
k=0
Now, making use of (1.4), (1.5) and (1.7), together with the fact that p,#0, we obtain
XZo Y2 Z, (Y, )
X2 X, X,
Baler ma o e 1l b
000, 0-0,,00 01 Tl 00.0-0,.00.0] e N, (frab) =L [g,(mat @8)
. , T
10, 00,00-0,,00 0]

where

9%, ()

_{WL @04V () U
- R, (t) ARG (1) |

R,(t)=R,= @ ,, ()@, ()~ ()P (1),
U,0=U=0 0,0, ),
VO =Bl 00, 0-0 .00, 1)
and

w0 =W = Yo" 00,0 -0,.00, 1)

1.3. Proof of the theorem

To prove the theorem, we divide the interval (-1,1) into three subintervals;
@) (-1, 1+¢),

(i) (-1, -1+¢), (iii). (1-¢, 1).

1
We choose e=n .

In the above section we find out the average number of zeros in the interval (-1, €, 1+ ¢).
In the section 1.4 we prove that the number of zeros in the intervals (ii) and (iii) are

negligible in comparison to those in the interval (i).

1.4. Expected Number of Zeros in The Interval (-1,&,1+ €)
In order to evaluate EN,(f: -1+¢, 1+ ¢ ), we se the formula derived in 1.2.

From above , we have
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(-t ()= (A +Dtd (1) +n(n+20)D, (1) (1.9)
and
(-0, () -2+, (1) -(n+)(n+1+ 2D (1) (1.10)

Multiplying (1.9) by @ (t) and (1.10) by @ _(t), we obtain

(1—t2)cp"n(t)q)'n+1(t):(2x+1)tcp'n(t)q>'n+1(t)-n(n+2mn(t)cp'n+1(t) (1.12)
and

2 1 | i | | ) ‘ |
(-0 n+1(t)(1) n(l)-(21+1)t® n(t)(b n+1(l) n+1(n+1+2M)n+1(l)(D n(l) (112)
Subtracting (1.11) from (1.12), we have
(1- tz)cp"n 00, O=@+10 1o 0

n+1
a2y (00 (113)
Multiplying (1.9) by @ _(t) and (1.10) by @ _(t), we have

(1- t2)q>"n (t)qa'n UE (2x+1)tq>'n (t)cp'n 40

—n(n+2) (t)cb'n L,014)
and

b C
(1-t%)o n(t)d) n,+1(t) = (@ + Dt n(t)(D n+1(t) (1.15)
-n(+24) OO 0

Subtracting (1.15) from (1.14), we have

-t e O-0 O

_ (2x+1)t(q>' 00 -0 oo 1(t))
—@nele20) L O0 1) (L16)

Differentiating (1.9) and (1.10), we obtain

-2t(D“n(t)+(1—t2)<Dmn(t):(2k+1)®'n(t)+(2k+1)t(D”n(t)-n(n+2M)]n(t) (L.17)
and
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oD NORYE ) NOE @A +1) D 10

- Q0+ DtDd R A +1)D 40
-(n+1) (n+120) D", (t)

Multiplying (1.9) by @ _(t) and (1.10) by @ (t), and subtracting, we have

-t 00 0-0 00 0

n+1 n+1

n+ 1(t)(Dn ® P 1(t)q)” n (t))

+(2A+Dt(@

- 2t(c1>"
0+102,0)- q)"n 0%, .1
-n(n+ 21)(<1>"n RULNUE o (1D

®
(®)

n n+1

+1(t)®n(t)'q)“n (t)q)n +1

+(2A4+1)-n(n+24) (@"n +1(t)ch(t)-cD n(t)(l)n +1(t)

o, (1)

=(22+3t@ (t)

-(2n+1+424) (@ 141

(zms){((zlk_;l)) @, 00 0-0 00 1(t)}

(2n+1+2)) , .
[W(@ n+1(t)(1)n(t)]

H2)-n+2@ 00 -0 (0

®

] (we have substituted)

n+1

+

(2n+1+2))
e ((I)n (t)(n +1)t<I>n +1(t) - (2k+1)®n(t)]

-0 . O=m+Dtd | @0)- @410 (1)

n+1

| @32+ 244D -n(+2)(0 ,[0)-0 (10,0

(1-t)
(2n+1+22)22+ 3t tn+1)2n+1+24)
(1-t) (1-t)

__(2n+1+2/1)(22/1+1)(1)n2(t)] 419
o

n+1

}Dml(t)q)n(t)

For large n, we shall use the asymptotic estimate of @ (t) as
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L

2 e oosed L
(nn)% (1-t) 2(L+1) {cosxw[nsin eﬂ

where X=(Nn0 + 10— A0)and t-=cos6. (We have taken o —g = » _1 From above, we get

(Dﬂ(t) -

2
(1-t2)c1>'n ()= @r-1+)0 __ ([O)-ntd>, (1) (1.20)
and
1-t2)D L O=@mo O-(+1),.,(0) (1.21)

From the two relations, we have

2
)@ L 00,0-0 00,0
(1-t%)R, (0
=(+m0Z (-0, (00 (- @1+1+0)0,, (O, ()

From the two relations, we have
(t)(D n+l (t)

(L-t2)R, () (122)
=(h+ n)<I)2 0 (t)-® (t)(I)n t)-(2r+1+n)d (DD, (1)

2
- 00,00

n+l

Hence

(-tOR )

-(M+ n)zn(l-t)'7‘(1+t)'1{coszx+0(_1H

i nsinnd

22'A . s 1
_ el (L-1)"(1+1) {cosXcos(X+9)+O[nsmmaj]

% s ; 1
_(2k_1+n)n[n(n+1)]% (L-1)"(1+1) {cosXcos(X—e)+O(nsinne]]
~oz{coszx+o[ _1 j]—o{cosXcos(X—9)cos(X+6)+O[_lj]

nsinng nsinng
oz{smzem(_l]]
nsinnf
where
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_ 2" 202 M2
6= (- )2+ 1),
7-[ 2

Hence

(1-t2)R, (1)

:ZM(1—t)"“(1+t)'{(1-t2)+O( _1 ﬂ (1.23)
7N nsinno

R (t)—2727”(1-t)'*(1+t)'l (1-t2)+o( L J

" r(-t?) nsinno

Now

2

0,()0,.0)= z—n(l- )t (1+1) {cosXcos(X +0)+ o[i]]
T

nsinnd

K (1.24)
(1914

n
and

2 K -A -1
D (b)) < F(l_t) (1+1) (1.25)
Hence
K =) -\
o) . T
b n+1(t)q)n(t)_q) n(t)q)ml(t) (l-tz)_l(]ﬁ't)_k{(l—tz)+O(.1j}
nsinng

So that
<I>n+1R(t)(iI;n M _ o¢ % ) (1.26)
and
M =0 l (1.27)

R, (t) N
Now

(1-t)D" (P, (1)
=2 -1+m@’ ()P, (1) -t ()P, (1)

2

=(2h -1+ n)%|:COS(X—6)COS(x+6)+O( L ﬂ

nsinno

2
ntZ cosX+O( _1 j cos(X+6)+O( _1 j :
n nsinno nsinno
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Hence

P OPua® _of 1 )0
R, (t) @-t?) )

Now

Vn(t) - (D”nﬂ( ) ( ) n+1(t)q) n(t)

R 20 ,.00,0-0,.00,0)

{n(n+u)( (tm (0)-0',()0,.,(0)- (21+1+20)0, .00 ()]
000,000,000 ,0)

a2l Rele2d (o000 _(2A+3)@2+10" {1424} nin+22)
T ) oe,0 o000  e-rf o si-t) et
n’ n (2n+1+22)(24+3) o (t)
:ﬂﬂ”@#ﬂ‘m) T o,.00,0-0,.00,0)

oy gyl

From (1.28) and (1.29), we have

W,()+V, (1) _ n? +{@n ] (131)

R,()  30-t}) —2f )
Also we have

U0 0, (00,0-0,,00,0
R0 20,,00,0-0,,00,0)
mmmmwmmmmmmma)%
2-1)0 ,(00,0)-0,(00,.()
@t st o, (00,0
Wi A B 00,0-0,00,0]

2 1 1
— _(22+3)2A+1)t +{1+2/1}7n{n+2/1}
A R () ler)

_(2n+1+22)(22+3) @2 (t)
(-f 6(@ ., ()@, (1) -, O, (1))

Hence

W.OHVOUEG _ 0 N
R,()  4R?* (1) 3(1-t*) |(@-t?)?

j (1.32)

and
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U0 _ O[

4R* ()

so that

@a—t?)?

1 j(1.33)

WOV, UL L
gn(t)‘\/ R (1) 4R2n(t)_xﬁ(l-t2)%+o[(l )Zj

-t

For the range (-1+¢, 1- €) , we notice that

1-t?>2e— &%=

1

2n4s —1 2
————, where e=n*? as previously specified.

n 4+3

1
Thus (1-t*)"= O(n4+8 J

This observation together with (1.33), shows that

B 2+3 %
n “avs
g”(t)_\/§(1—t2)% _1+O(n H

Ty {1+O(n } (1.34)

Thus from (1.8), we have

ENn(f: -1+¢, 1+ ¢)

b

l-e n _g
_L@(l_ﬁ)% [1+O[n j]

i

248
= 1+O£n e

‘ =

=

248
= 1+O£n e

‘ =

=

i

sintt]

-l+e

[sin* (1- €) -sin" (e -1)|

[2sin*(1- €)]

(as sin"'(1-€) ~n/2) (1.35)
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1.5. Number of Zeros in Subintervals (ii) and (iii).
Here we show that in the range (1-¢,1) and (-1, -1+€) the number of zeros of (1.1) is

negligibly small in comparisons to EN,(f: -1+¢, 1+ ¢),

Let F(2) = f(y(w), 2) =i y, (W)Y, (2)(1.36)

k=0
where y (w) denotes the random vector (yo(w), yi(w),.....yn(W).
N n
Now T (Y(W).1) =Dy, (W)'¥, (1),
k=0
is a random variable with mean zero and

variance o® = > W¥?, (1) =Wo° (1) =0,
k=0

and hence has the distribution function

1 ' v? g
Tame 0P T 257 SV

Now
Y5 e2f 2
2 V
PIf@D|<e™)= exp| —
r@ise)=(2 ) Ten[- o)
(1.37)
2 %
-2ne —-ne
:[ j e < e
o
Let

.= max(Y.(w)) (1.38)

0<k<n
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P(1, ) =P max (v, (w)|

0<k<n

n
_p kgo‘yk(w)‘ <n
= kTZIO‘P(Yk(W)‘S”

=| T =Py, (W)}>r

o]

> [1— (n +1)\/£J'e"2’2va 1-e™"  (n>n,). (1.39)
n n
Let T,=max lI’k(1+2€e‘°)‘

For the Gegenbauer polynomials, h, is determined

277 (N + 2))
TG T O %

Hence
-1/2 1/2
b.=h"" <a,n

where a; IS a constant.

For the integral representation of Gegenbauer polynomial, we have

21721-(

D (1) = W T (t+i1-t2 cos @)n(sin 6)%d6(1.40)

Remembering that e=n"*** we have
212 1 (n + 2.1)
(ni(T(2)°

<an?(1+2e)

®,(1+2ee”| < L+2e)"

3+0

<an“?exp(2n4), (1.41)
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where o, and o3 are constants involving A only.

3+0

Hence from (1.40), we get T, < An“@ 2 exp(2n49),  (1.42)

where A is a constant
Also

iyk(w)\Pk(H 2¢e”)

k=0

fL+2e’|=

n

Yy WY, 1+2ee”)

k=0

<

AYT=nlT, (143

nk=0

Hence from (1.39), it follows that

Pl(1+2cel®

anTn)21—e‘”2/2 (L44))

This together with (1.42), gives

3+5

PIf(L+2€”| < An”exp(2n*) 2 1-e ™" (1.45)

where o= a,+5/2.

So from (1.37) and (1.45), we obtain

fa+2ee”| kI
P— < An“exp(2n*? +2n €)
f (1)
3+

> P|f (L+2 €| < An exp(2n+)
—P|f (D) <e™™

-n2/2 _ -ne

>1-e

s1-2 (1.46)
n

e

Let n(e) denote the number of zeros of f(y(w),z)=0 inside the circle [z—1| <e.

It is easy to see that the number of zeros of (3.1.1) inside the interval 1-e<t<1 does not exceed

n(e).

By Jensen’s theorem, we have

www.wjert.orq 211




Mishra. World Journal of Engineering Research and Technology

, _
folf+2ee)
n(e) < 27l0g2 ! Iog‘ o ‘de for f(1) £ 0

3+

2z 3+5
1 Ilog An“exp| 2n*? |+2ne;dd, (1.47)
2rlog2 v,

except for a set of measure at most 2/n, as evident from (1.46).

Thus from (1.47) and remarks made earlier, we obtain that the number of zeros of (1.1) in (1-

3+d

e,1) is at most O[n4+5 j with probability at least 1-2/n.

An identical result is obtainable for the number of zeros of (1.1) in (-1, -1+e), so that ENp(f:-
3+
1+e, 1-e)= O(n MJ :

The above derivation together with the estimate of EN,(f:-1+e, 1-e) in section 1.3. proves that

n 3+
ENy(f:-1,1)=—=+ O| n4*3 |,
voats U
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