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ABSTRACT 

Compressive sensing is a technique of image acquisition and 

reconstruction from a relatively fewer measurements than what the 

Nyquist theorem suggests; the sampling rate must be greater than twice 

the highest frequency in the signal for fidelity of image reconstruction. 

Compressive sensing is applicable when the signals under 

consideration are sparse. Two-dimensional discrete wavelet transform 

is applied for sparse representation of an image in this thesis. When  

sparsity is more, the performance of compressive sensing image reconstruction algorithm will 

be better. The sparse level of low frequency sub bands and high frequency sub bands are 

different. Two different compressive sensing measurement matrixes and recovery algorithms 

are used for the low-frequency sub bands and high-frequency sub bands for better results. 

Medical field especially in MRI scanning, compressive sensing can be utilized for less 

scanning time, thus benefits patients. The reconstructed image will be better in both PSNR 

and visual quality. 

 

KEYWORDS: Compressive Sensing, Wavelet Transform, Discrete Cosine Transform, 

Sparsity, MRI. 

 

INTRODUCTION  

We are in the midst of a digital revolution that is driving the development and deployment of 

new kinds of sensing systems with ever-increasing fidelity and resolution. Signals, images, 
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videos, and other data can be exactly recovered from a set of uniformly spaced samples taken 

at the so-called Nyquist rate. Unfortunately, in many important and emerging applications, 

the resulting Nyquist rate is so high that will end up with far too many samples. Alternatively, 

it may simply be too costly, or even physically impossible, to build devices capable of 

acquiring samples. 

 

A new technology is required in this world where we are using HD videos, video 

conferencing, online games, etc. much more than ever. Now we have a solution, Compressive 

Sensing. The signal having a sparse representation can be recovered exactly from a small set 

of linear, non-adaptive measurements. It means it‟s possible to sense sparse signals by taking 

far fewer measurements, lower sampling rate, hence the name compressed sensing. 

 

CS differs from classical sampling in three important respects. First, CS is a mathematical 

theory focused on measuring finite-dimensional vectors in R
N
. Second, CS systems typically 

acquire measurements in the form of inner products between the signal and more general test 

functions. Thirdly, the signal recovery is typically achieved using highly nonlinear methods. 

In short, CS enables a potentially large reduction in the sampling and computation costs for 

sensing signals that have a sparse or compressible representation.  

 

Nomenclature   

CS Compressive Sensing  

WT Wavelet Transform  

DCT Discrete Cosine Transform  

OMP Orthogonal Matching Pursuit  

DWT Discrete Wavelet Transform  

HD High Definition  

i.i.d identically and independent dependent  

MRI Magnetic Resonance Imaging  

MSE Mean Square Error  

PSNR Pseudo SNR  

 

In this paper we applied CS in the medical images and analyzed using different sparsity 

domain, measurement matrix and reconstruction algorithm. WT and DCT are used as sparsity 

domain. Hadamard matrix and Gaussian matrix are considered as measurement matrix. L1 

minimization, Orthogonal Matching Pursuit and pseudo inverse multiplication method are 

used as recovery algorithm. 

 

Applications 

CS has already had notable impact on several applications. One example is medical imaging, 
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where it has enabled speedups by a factor of seven in paediatric MRI while preserving 

diagnostic quality.  

 

Basic Concept of Medical Imaging 

CS is being actively pursued for medical imaging, particularly in MRI. Most MR images, like 

angiograms, have sparsity properties, in domains such as Fourier or wavelet basis. Generally, 

MRI is a costly and time consuming process because of its data collection process which is 

dependent upon physical and physiological constraints. In addition, high gradient amplitudes 

and rapid switching can produce peripheral nerve stimulation. However, the introduction of 

CS based techniques has improved the image quality through reduction in the number of 

collected measurements and by taking advantage of their sparsity, thus benefits patients. 

 

 

Figure 1: MRI image reconstructed using various techniques.
[6]

 

 

Compressive Sensing – Basic Introduction 

Basic Block Diagram of CS based system 

The recent theory of Compressive Sensing introduced by Candes, Romberg, and Tao and 

Donoho demonstrates that a signal that is K-sparse in one basis (call it the sparsity basis) can 

be recovered from cK non-adaptive linear projections onto a second basis (call it the 

measurement basis) that is incoherent with the first, where c is a small over-measuring 

constant. While the measurement process is linear, the reconstruction process is decidedly 

nonlinear. 

 

Let x is a real valued, finite length, one dimensional, discrete time signal which is an Nx1 

vector in R
N
. Thus by x Ԑ R

N
 can also represent in orthonormal basis Ψ ∈ R

NxN
. 
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Figure 2: Block diagram of compressive sensing.
[1]

 

 

Thus signal x can be written as 

x = Ψ f         

 f is Nx1 column vector of weighting coefficients f=  = Ψ
T 

x 

 f is the sparse representation of signal x in the orthonormal basis Ψ. 

 

The signal x is K-sparse if it is a linear combination of only K nonzero basis vectors. When K 

<< N, the signal x is compressible, means it has just a few large coefficients and many small 

coefficients. 

 

We measure the signal x by sampling it with respect to a measurement matrix Φ ∈ R
MxN

. The 

measurement MxN matrix Ф must allow the reconstruction of the length-N signal x from M < 

N measurements. The measurement process is not adaptive, meaning that Ф is fixed and 

independent of signal x. Thus measurements M×1 vector y can be represented: 

y = ФΨf = Acsf = Фx       

 Acs = ФΨ is the sensing matrix of M x N.  

 Ф is the measurement matrix. 

 Ψ and Ф should be incoherent.
[1]

 

 

x 

y 

X 
~ 
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Figure 3: Sparsity and incoherence in wavelet transform enables the megapixel image to 

its approximation obtained by throwing away 97.5% of the coefficients with negligible 

perceptual loss. (a) Original Image (b) Wavelet transform coefficients (c) Reconstructed 

image.
[10]

 

 

Reconstruction Algorithms 

Linear Optimisation 

To recover the signal by L1-norm minimization; the reconstruction x* is given by x* = Ψf*, 

where f* is the solution to the convex optimization program  

(||f|| l1 := )  l1 subject to   yk =  , ∀ k ∈ M 

That is, among all objects  = Ψ  consistent with the data, pick only whose coefficient 

sequence has minimal L1 norm. The CS theory uses L1 norm characteristics which are linear 

in nature and can be easily computed, thus offering a far simpler and faster way of estimating 

sparse signals from very limited number of measurements. 

 

Greedy algorithm uses an iterative approach of the coefficient signal to the signal 

convergence is reached, or get an approximate increase of sparse signal in each of iteration by 

calculating the measured data mismatch. OMP is one of greedy algorithms.
[7]

 

 

Proposed Algorithm 

The proposed algorithm is given in fig 4. The image is undergone two - dimensional wavelet 

transform for more sparsity. In the image reconstruction based on the traditional compressive 

sensing algorithm, the same measurement matrix is used to measure the whole wavelet 

coefficients. However, since the high-frequency coefficients are sparse while the low 

frequency coefficients are not sparse,
[2]

 when putting the low frequency coefficients together 

with the high-frequency coefficients to multiply with the measurement matrix, the coherences 

among the low-frequency coefficients will be disrupted, which leads to a degraded 
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performance of the reconstructed image.
[3]

 The scaling coefficients of low-frequency 

component contain most of the image energy. 

  

Due to these DWT features, two random CS sensing matrices are separately used for re-

sampling the low-band and high-bands, which can be expressed as follows: 

 

where YL and YH denote CS samples measured from low-bands and high-bands, while XL 

and XH represent the scaling and wavelet coefficients, respectively. At the decoder side, two 

different CS recovery algorithms are developed for the low-frequency subband and high-

frequency subbands, respectively. 

 

The required number of CS measurements is much smaller than that of the DWT coefficients, 

and therefore, CS sampling. The challenge is to get the reconstructed image in better quality 

by adding more sparsity with maintaining incoherence. For this, we need to choose 

measurement matrix and recovery algorithm wisely. 

 
Figure 4: Proposed block diagram for implementation. 
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Implementation 

Algorithm Steps For Implemenation 

The steps of the algorithms are as follows: 

(1) Perform the wavelet transform of the N*N image, and get the four wavelet sub-band 

coefficients {LH1, HL1, HH1, LL1}. 

(2) Use the measurement matrix to measure the three high-frequency sub-band coefficients 

LH1, HL1, HH1 to get the matrices of the measured coefficients while use another 

measurement matrix for the low-frequency sub-band coefficients LL1. 

(3) Use the reconstruction algorithms to reconstruct the three high-frequency coefficients 

matrices 1, 1, 1, and low-frequency coefficients matrix LL1. Then together 

reconstruct the image. 

(4) The image reconstructed will be verified by its PSNR value. 

 

Simulation setup 

The scaling coefficients XL are re-sampled by an i.i.d. random Hadamard matrix ΦL. The 

scaling coefficients XH are re-sampled by an i.i.d. random Gaussian matrix ΦH. L1 

minimization technique, OMP and Pseudo Inverse multiplication method reconstruction 

techniques are used as reconstruction algorithms. 

 

We have used different size of images like 32x32, 64x64, 128x128 and 512x512. The 

transform method DCT is also compared with wavelet transform. 

 

Results of implementation of proposed block diagram. 

 
Figure 5: Wavelet Transform Output of 128x128 image. 

 

The low frequency sub band LL has coarse information and details information in high 

frequency sub bands HL, LH, HH. 
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Figure 6: Wavelet coefficients of 128x128 image before measurements taken. 

 

 
Figure 7: Wavelet coefficients of 128x128 image after measurements taken. 

 

CS makes the signal sparser, which is clear by comparing the Fig.6 and Fig.7. This sparsity 

leads to the efficient lossless compression. Due to more sparsity, the reconstructed image 

quality will be more. 

 

The outputs of different images are compared based on PSNR and MSE values with iteration 

value 50. The images are undergone WT. 

   

   
Figure 8: Different medical images.

[17] 
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Table 1: MSE and PSNR values comparison for different medical images for 50 

iteration. 

 
Medical 

image 1 

Medical 

image 2 

Medical 

image 3 

Medical 

image 4 

PSNR 

L1 

and 

PINV 

43.83 54.85 31.76 30.11 

OMP 15.28 18.21 19.77 14.23 

MSE 

L1 

and 

PINV 

2.699 .212 43.27 63.36 

OMP 1971.3 981 684.86 2455 

 

The outputs of different image sizes are compared based on PSNR and MSE values with 

iteration value 50. The image has undergone WT. 

 

Table 2: MSE and PSNR values using L1 minimization or OMP with different sizes of 

images. 

 32x32 64x64 128x128 256x256 512x512 

PSNR 

L1 

and 

PINV 

- 50.08 42.74 33.31 31.46 

L1 - 50.08 42.74 - - 

OMP - - 32.38 20.77 16.99 

MSE 

L1 

and 

PINV 

0 0.638 3.45 30.28 46.35 

L1 0 0.638 3.45 - - 

OMP 0 0 610 542.17 1991.4 

 

 
Figure 9: Output of 128x128 image using various techniques. 
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Table 3: PSNR comparison for various number of iterations. 

Iterations 

PSNR 

using 

32x32 

PSNR 

using 

64x64 

PSNR 

using 

128x128 

PSNR 

using 

256x256 

PSNR 

using 

512x512 

5 17.87 15.76 14.53 13.5 12.96 

10 23.37 18.57 15.86 14.6 13.66 

15 36.67 21.08 17.25 15.34 14.14 

25 - 30.39 20.25 16.84 15.1 

50 - - 30.39 20.77 16.99 

100 - - - 33.88 21.12 

 

The PSNR is compared with different number of iterations using OMP reconstruction 

algorithm. 

 
Figure 10: Output of 128x128 image using different iterations of OMP. 

 

 
Figure 11: PSNR plot with different size of images. 
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PSNR values for different size of images respectively are plotted in fig 10. As size increases 

the PSNR values is getting decreased. But as size decreases the details of the image will get 

lost. As numbers of iterations are increasing, the image quality is also increasing as shown in 

fig 11. From table II we can conclude that less size and more iteration will result in better 

image. 

 
Figure 12: PSNR for different iterations in OMP reconstruction algorithm. 

 

The wavelet transform is compared with DCT. The image undergone DCT, and 

measurements are taken using Hadamard matrix and without packet loss in the channel. 

When size increases, the quality will be reducing. OMP with 50 iterations is used. 

 

Table 4: MSE and PSNR comparison using DCT with Hadamard Matrix. 

 32x32 64x64 128x128 256x256 512x512 

PSNR OMP - 50.18 38.59 28.55 27.14 

MSE OMP 0 0.546 9.1443 90.73 122.4 

  

Table 5: MSE and PSNR comparison using DCT with Gaussian Matrix. 

 32x32 64x64 128x128 256x256 512x512 

PSNR 

PINV 19.9 19.45 19.06 18.04 18.02 

L1 36.13 28.45 26.02 22.24 20.35 

OMP - 36.14 32.5 25.94 25.37 

MSE 

PINV 665.4 774.4 805.9 1013.5 1023.5 

L1 15.84 98.85 163.45 388.9 520.3 

OMP 0 15.16 36.56 165.4 188.6 

 

OMP is better than L1 and PINV methods when Gaussian matrix is used as measurement 

matrix. Gaussian matrix represents random values. 
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Inferences  

 When size of image increases, the PSNR value decreases. 

 For small size images, OMP reconstruction is better. And for large size images, L1 

minimization output is better. 

 PSNR will increase when number of iterations is increased for OMP reconstruction 

algorithm.  

 Hadamard matrix is better than Gaussian matrix when use after DCT. 

 Wavelet transform is better when OMP reconstruction algorithm is used. 

 Due to the sparsity in the signal, the required compression is achieved. 

 

CONCLUSION 

The Compressive sensing measures a relatively small number of “random” linear 

combinations of the signal value. Sparsity, incoherence and nonlinear reconstruction are three 

main components of CS. The sparse nature of signals in a particular basis by taking 

measurements in an „incoherent‟ basis is utilized in CS. 

 

Wavelet transform is proven sparsity domain for many signals. The high-frequency 

coefficients are sparse while the low frequency coefficients are not sparse. So, both should be 

processed separately for better results. But in DCT transform, we cannot separate the 

components on basis of frequency. Hadamard measurement matrix is better. L1 minimisation 

is better with wavelet transform and OMP will be better with DCT. 

 

In Medical field, CS will help in less number of samples, less radiation for patients. The 

medical images are inherently sparse and incoherence. 

 

Future works possible 

 Reduce the processing time using Block-based CS method. 

 Add enough sparsity by sparsity tuning and intra-prediction methods. 
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