
Monika et al. World Journal of Engineering Research and Technology

www.wjert.org

218

PREDICTING TEST EFFORT ESTIMATION: A MODEL BASED

UPON SOFTWARE TESTING MANAGEMENT STRUCTURE

Monika Grover*
1
and Pradeep Kumar Bhatia

2

CSE Department, G. J. University of Science & Technology, Hisar, Haryana, India.

Article Received on 18/05/2017 Article Revised on 04/06/2017 Article Accepted on 19/06/2017

ABSTRACT

Software testing is the most important phase of the Software

Development Life Cycle. On most software projects testing activities

consume at least 40 percent of the project effort. Software testing is

essential to ensure software quality. Schedule is always running tight

during the software system development, thereafter reducing efforts of

Performing software testing management. In such a situation, improving software quality

becomes an impossible mission. It is our belief that software industry needs new approaches

to promote software testing management. This paper discussed the V-model that already

existed, further proposes a improved V model that consider together test stages and

maintenance test stages. This model makes the software testing pass through the each stage of

software development cycle. Test Effort Estimation is an important activity in software

development because on the basis of effort cost and time required for testing can be

calculated. Another feature of present paper to the Estimation of Testing Effort using estimate

the effort required to test a software project, based on the number of use cases and the other

features of object-orientation used in software development.

KEYWORDS: Software testing, SDLC, STLC, UCP, Software quality, Effort estimation.

INTRODUCTION

Ever since the invention of computer, it has proved to be a vital part of our life while being

used in various aspects like agriculture, industry, medicine, commerce and education.

Considering the importance of computer, its demand is also ever increasing and hence

different types of software used for different types of work as in banks, research laboratory,

*Corresponding Author

Monika Grover

CSE Department, G. J.

University of Science &

Technology, Hisar,

Haryana, India.

wjert, 2017, Vol. 3, Issue 4, 218 -229

World Journal of Engineering Research and Technology

WJERT

www.wjert.org

ISSN 2454-695X Original Article

SJIF Impact Factor: 4.326

Monika et al. World Journal of Engineering Research and Technology

www.wjert.org

219

corporate offices etc. Software development requires understanding the requirements of the

customers, designing the software, testing the software for any possible errors, removal of

bugs, and finally delivery of product satisfactory to customarily needs. Software development

life cycle (SDLC) involves various stages in the development of software.
[4-8]

 First of all, an

overall planning of various stages and method to implement them is necessary. The software

architecture is the key towards efficient software and this task is done by various Software

Development Models. Software development models are the various processes or

methodologies that are being selected for the development of the project depending on the

project’s aims and goals. There are many development life cycle models that have been

developed in order to achieve different required objectives. The models specify the various

stages of the process and the order in which they are carried out.

There are various types of software process models which have been used by various

industries. Some of them are following:

1. Waterfall model

2. Iteration model

3. V-shaped model

4. Spiral model

5. Extreme model

The selection of model has very high impact on the testing that is carried out. It will define

the what, where and when of our planned testing, influence regression testing and largely

determines which testing techniques to use.
[3]

 Here in this paper we will mainly focus on V-

model. In this paper section 2 contains overview of existing V - Model. Section 3 introduces

the proposed modified V - Model. Section 4 describes on historical data.

Existing V-models

Traditional V-model

Figure 1 shows the traditional V-model. Horizontal axes represent time or project

completeness whereas vertical axes represents level of abstraction. Left -side of the model is

Software Development Life Cycle (SDLC). Right side of model is Software test life cycle

(STLC). Software is designed on the left hand (downhill) part of the model and built and

tested on right hand (uphill) part of the model. Entire figure shows V-like structure. Hence

the name V-model is given.

Monika et al. World Journal of Engineering Research and Technology

www.wjert.org

220

Fig 1: V–Model of software development process.

Modified V-Model

Fig 2: Modified V–Model.

It is an expansion of waterfall model where each level of developmental life cycle is verified

before moving on to next level. The only difference is that instead of going down the

waterfall in a linear way.

Following approach is used for test effort estimation in Use Case Point.
[6,12]

1. First of all number of actors in the system are determined and categorized into 3 levels

simple, average and complex, based on their complexities. Then weights are assigned to

each type of these actors. From this Unadjusted Actor Weight (UAW) is calculated.

2. A similar procedure is applied to use cases in the system and Unadjusted Use Case

Weights (UUCW) is determined.

3. Unadjusted Use Case Points is calculated using the formula UUCP=UUCW+UAW.

4. Technical and Environmental Factors (TEF) are computed.

5. Adjusted UCP is calculated as: AUCP = UUCP*[0.65+0.01*TEF].

Monika et al. World Journal of Engineering Research and Technology

www.wjert.org

221

6. Final effort is computed as: Final effort = AUCP* ratio of development man-hours

needed per use case point.

Advanced V-Model

Though test effort based on UCP only gives good result, there is still a lot of gap between the

actual and predicted values. The results from this method can be further refined. To find final

effort, two additional factors are considered.

1. expertise of development team

2. expertise of testing team

The values for these parameters are given in Tables 1 and 2.

Advanced V-model differs from traditional model by addition of deployment and

maintenance phases which includes deployment testing, security testing, regression testing

and test cases. Figure 3 shows the advanced V-model.

Fig 3: Advanced V–Model.

Expertise of Development Team can be.

 Experienced design and development team.

 A mixture of experienced and non-experienced design and development team.

 Non-experienced design and development team.

We have to do more Re testing and more Bug reporting for non experienced design and

development team. That means more time to test. Refer table 1.

Monika et al. World Journal of Engineering Research and Technology

www.wjert.org

222

Experienced Testing team can able to prepare better test cases and time taken to execute the

test cases will be minimal than the non- experience testing team. Refer table 2.

Table 1: Weights for development team expertise.

Expertise of Testing Team Factor

Experience Testing Team 5

A mixture of experienced and non-experienced Testing team 10

Non-experienced Testing team 15

Table 2: Weights for testing team expertise.

Expertise of Development Team Factor

Experienced design and development team 2

A mixture of experienced and non-experienced design and development team. 4

Non-experienced design and development team 8

1. First of all the number of actors in the system are determined and categorized into 3 levels

simple, average and complex, based on their complexities, from this Unadjusted Actor

Weight (UAW) is calculated.

2. A similar procedure is applied to use cases in the system and Unadjusted Use Case

Weights (UUCW) is determined.

3. Unadjusted Use Case Points is calculated using the formula UUCP=UUCW+UAW.

4. Technical and Environmental Factors (TEF) are computed.

5. Test Case Point is calculated as: TCP = UUCP*[0.65+0.01*TEF].

6. Values of DTF and TTF are selected from the table 2 and table 3 respectively for a given

project.

7. Final effort is computed as: Final effort = TCP (DTF+TTF).

Proposed V - Model

Proposed V-model, a model defines structural details of its components and thus helping us

better comprehension of the regarding model. Architecture gives the structural description of

the components and thereby helping us to understand the components in a modified and

better way. In this improved model, a software test management structure of component from

a structural point of view. The structure of the components of software testing management

and software maintenance tests are the basic elements, and they compose of software testing

management structure. The necessary and beneficial structural components are analyzed from

software development, testing and maintenance point of view.

Further, to find final effort, one more factor is considered i.e. QTF (Quality Team Factor)

Monika et al. World Journal of Engineering Research and Technology

www.wjert.org

223

together with Development Team Factor (DTF) and Testing Team Factor (TTF). The values

for these parameters are given in Tables 3, 4 and 5.

Component Structural Diagram of Proposed V-Model

Figure 4 depicts component structure diagram and corresponding component structure

services diagram respectively.

Fig 4: Component Structure.

A brief introduction of some essential and beneficial components is analyzed and is given

below:

 Project Management Plan

1. Business Case Manager maintains business case and provides the essential environment

regarding the project.

2. Project manager makes a balance between risk and uncertainty and processing while

planning decisively regarding benefitting project

3. Software development manager is the leader of programmers. His main task is

maintenance of SDLC in progressive direction. He supervised and guides his team in

technical errors, preparing code of software etc.

4. Software designer manages the interaction between different components of software

either at same time or different times irrespective of the language in which their code is

written.

5. Software developer builds the main design of project with greater scope than coding and

designing.

Monika et al. World Journal of Engineering Research and Technology

www.wjert.org

224

 Test management plan

1. Testing head maintains project and provide the project management plan.

2. Test manager serves to satisfy both testers and corporate. He builds test planning and

provides to tester that checks project quality to satisfy the demand required. He provides

updates regarding project development to corporate time to time so that they can decide

right time for implementation of project.

3. Testing leader is the live connection between testing manager and testing team. His

function is to complete the testing process within the assigned time.

4. Test designer develops testing strategy and testing plans. He provides the final assessment

of the whole testing process.

5. Software tester performs software tests and builds test cases.

 Quality management plan

1. Quality head releases the project in the last stages of software development.

2. Quality manager helps to customize the process of software development. He creates the

entire quality management plan.

3. Quality assurance engineer finds the position of defects in software and functions to

prevent and remove defects.

4. Quality control engineer supervises all the activities which maintain software quality.

5. Quality guarantee engineer solves and tackles all the problems regarding software.

Effort Estimation using Proposed V- Model

We have three different teams’ project development team, testing team and quality

management team. According to R. T. Sundari [13], a factor can be determined for each team

based on the expertise of team members. This factor determines respective team influence of

effort estimation i.e. DTF (Development Team Factor), TTF (Testing Team Effort), and QTF

(Quality Team Factor).

Table 3, 4, 5 give you an idea about calculation of DTF (Development Team Factor), TTF

(Testing Team Effort), QTF (Quality Team Factor) respectively.

Table 3: Expertise of Development Team and Factor.

Expertise of development team factor

Experienced planning and design 1.5

Experienced design and development team 2

A mixture of experienced and non-experienced design and development team 4

Non-experienced design and development team 8

Monika et al. World Journal of Engineering Research and Technology

www.wjert.org

225

Table 4: Expertise of Testing Team and Factor.

Expertise of testing team factor

Experience testing plan as well as team 2

Experienced testing team 5

A mixture of experienced and non-experienced testing team 10

Non-experienced testing 15

Table 5: Expertise of Quality Team and Factor.

Expertise of quality testing team factor

Experienced quality planner 1.5

Experienced quality testing team 2

A mixture of experienced and non-experienced quality testing team 3

Non-experienced quality testing team 6

Experienced quality planner can supervise all the activities which maintain software quality

and able to produce good quality than the non-experience quality-testing team.

1. First of all number of actors in the system are determined and categorized into 4 levels

simple, average, complex and very complex based on their complexities, from this

Unadjusted Actor Weight (UAW) is calculated.

2. A similar procedure is applied to use cases in the system and Unadjusted Use Case

Weights (UUCW) is determined.

3. Unadjusted Use Case Points is calculated using the formula UUCP=UUCW+UAW.

4. Technical and Environmental Factors (TEF) are computed.

5. Test Case Point is calculated as: TCP = UUCP*[0.65+0.01*TEF].

6. Values of DTF, TTF and QTF are selected from the tables 3, 4, 5 respectively.

7. Final effort is computed as: Final effort = TCP (DTF+TTF+QTF).

EXPERIMENTS AND RESULTS

The project under study is a product support web site for a large North American software

company. The estimation was done from the business level use cases made available at the

time of signing the requirements. The actors at this time were the different types of users

identified in those use cases.

Monika et al. World Journal of Engineering Research and Technology

www.wjert.org

226

Effort Estimation with Nageswan method

1. Calculation of Unadjusted Actor Weight (UAW).

A: Average

Actor Type No of Use Cases Factor UAW

B2C User A 15 2 30

Subscribers A 13 2 26

Admin User A 3 2 8

Total UAW 64

2. Calculation of Unadjusted Use Case Weight (UUCW).

Use case Type Factor UUCW

Login Complex 15 15

Support Request VC 20 Very Complex 20 20

Support Resource Mgt. Simple 5 5

User Creation Average 10 10

Fix Notifications Simple 5 5

Total UUCW 55

3. Calculation of the UUCP

Unadjusted Use Case Points (UUCP) = UAW + UCW = 64 + 55 = 119.

4. Technical factor (TEF) computation

Factor Description Assigned Value Weight Extended Value

T1 Test Tools 5 3 15

T2 Documented inputs 5 5 25

T3 Development Environment 2 1 2

T4 Test Environment 3 1 3

T5 Test-ware reuse 3 2 6

T6 Distributed system 4 4 16

T7 Performance objectives 2 1 2

T8 Security Features 4 2 8

T9 Complex interfacing 5 2 10

Total TEF 87

5. Adjusted UCP Calculation

(AUCP) =UUCP *[0.65+(0.01*TEF)] = 119 *[0.65+0.01*87] = 180.88.

6. Final Effort

Effort = AUCP * Conversion Factor

Effort = 180.88 * 13 = 2351.44.

Project Complexity needs 15% of the estimated effort to be added. 10% is spent in co-

ordination and management activity.

Total Effort = 2351.44 + 352.72 + 235.144 = 2939.304 man-hours = 367 man-days

Monika et al. World Journal of Engineering Research and Technology

www.wjert.org

227

Actual Effort = 390 man-days [Project End]

Magnitude of Relative Error (MRE) =

| Actual Effort-Predicted effort |/Actual Effort * 100

=|390-367|/390*100 = 5.8%

Effort Estimation with Advanced V- Model

Total Effort =AUCP * (DTF+TTF)

For the given project for which test effort is to be estimated, taking the values of DTF and

TTF to be 8 and 10 respectively.

Total Effort = 180.88*(10+8) = 3255.84 man hours.

 = 406.98 man days

Magnitude of Relative Error (MRE) =

 | Actual Effort - Predicted effort |/Actual Effort * 100

=|390-406.98/390*100 = 4.36%

Effort Estimation with Proposed V-Model

Total Effort =AUCP * (DTF+TTF+QTF)

=180.88*17= 3074.96 man hours

= 384.37 man days

Magnitude of Relative Error (MRE) =

| Actual Effort - Predicted effort |/Actual Effort * 100

=|390-384.37|/390*100 = 1.44%

The obtained results can be summarized as given in Table 6 and Figure 6.

Table 6: Comparison of results obtained from different approaches.

Approach Predicted Value MRE

Nageswaran 367 5.8

Advanced V-Model 406.98 4.36

Proposed V-Model 384.37 1.44

Monika et al. World Journal of Engineering Research and Technology

www.wjert.org

228

Figure 5: MRE of various approaches.

CONCLUSION

This paper presents an improved-V model describing that for efficient software testing

management along with the development and testing process improved the maintenance

process is also equally important. Thus we have integrated these processes for efficient

software testing management. In this paper use case points (UCP) is used for computation of

test effort estimation and the results led us to the conclusion that test effort estimation

obtained is more accurate than exiting V-models. The results were compared with those

obtained from existing V-models, and were found to be closer to the actual effort

REFERENCES

1. Ian Sommerville, "Software Engineering", Addison Wesley, 7th edition, 2004.

2. CTG. MFA – 003, a Survey of System Development Process Models, Models for Action

Project: Developing Practical Approaches to Electronic Records Management and

Preservation, Center for Technology in Government University, Albany / Suny, 1998.

3. Nabil M. Ali and A. Govardhan, 2010, a Comparison between Five Models of Software

Engineering. IJCSI International Journal of Computer Science Issues, 1998; 7(5): ISSN

(Online): 1694-0814, 94 – 101.

4. Steve Easterbrook, Software Lifecycles, University of Toronto Department of Computer

Science, 2001.

5. National Instruments Corporation, Lifecycle Models, http://zone.ni.com, 2006.

6. J J Kuhl, Project Lifecycle Models: How They Differ and When to Use Them.

www.businessesolutions.com, 2002.

7. Karlm, Software Lifecycle Models, KTH, 2006.

http://zone.ni.com/
http://www.businessesolutions.com/

Monika et al. World Journal of Engineering Research and Technology

www.wjert.org

229

8. Rlewallen, Software Development Life Cycle Models, http://www.codebeter.com, 2005

9. Rook, Paul, E. Rook, 1986, controlling software projects, IEEE Software Engineering

Journal, 2005; 1(1): 7-16.

10. S. Mathur, S. Malik, Advancements in the V-Model International Journal of Computer

Applications (0975 – 8887), 2010; 1(12): 29-34.

11. R. S. Yadav, Improvement in the V-Model. International Journal of Scientific &

Engineering Research, Volume 3, Issue 2, ISSN 2229-5518 IJSER, 2012; 1-8.

12. S. Kumar, Capability Determination of Software Design using V- Model. International

Journal of Advances in Engineering Research (IJAER), 2012; 4(II): August ISSN: 2231-

5152.

13. Sundari, R.T., TCPA - Tool to Test Effort Estimation. available at, 2011.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.6132

14. A. F. Sheta, A. A. Afeel, Software Effort Estimation for NASA Projects Using Genetic

Programming, Journal of Intelligent Computing, 2010; (1): 146-156.

15. B. Anda, H.C. Benestad, and S.E. Hove, "A Multiple-Case Study of Software Effort

Estimation Based on Use Case Points," Proc. Int'l Symposium Empirical Software Eng,

2010; 407-416.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.6132

