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ABSTRACT 

Signal denoising is the process of removing noise from a signal for 

efficiency of getting information. The Signal denoising is implemented 

in software using MATLAB’s Wavelet Toolbox. The study is carried 

out on 1-D bump signal. First of all we select the optimal base wavelet 

for the given signal. Thereafter Shannon Entropy cost function  

thresholding is applied. This paper includes the discussion on the basics of wavelet, discrete 

wavelet transforms, selection of optimal wavelet, Shannon entropy cost function 

thresholding, signal denoising with results and conclusion. 
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INTRODUCTION 

Wavelet is a new development in the emerging field of data analysis for Physicists, 

Engineers, and Environmentalists.
[1,2]

 It represents an efficient computational algorithm under 

the interest of a broad community. Fourier sine‟s extracts only frequency information from a 

time signal, thus losing time information.
[7]

 while wavelet extracts both time evolution and 

frequency composition of a signal. Wavelet is a special kind of the functions which exhibits 

oscillatory behaviour for a short time interval and then dies out. In wavelet we use a single 

function and its dilation and translation to generate a set of orthonormal basis functions to 

represent a signal. Number of such functions is infinite and we choose one that suits to our 

application. The range of interval over which scaling function and wavelet function are 

defined is known as support of wavelet. Beyond this interval (support) the functions should 
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be idenically zero. There is an interesting relation between length of support and number of 

coefficients in the refinement relation. For orthogonal wavelet system, the length of support 

is always less than no. of coefficients in the refinement relation. It is also very helpful to 

require that the mother function have a certain number of zero moments, according to: 

                                                                                                  

The mother function can be used to generate a whole family of wavelets by translating and 

scaling the mother wavelet. 

 

 

Here  is the translation parameter and  is the dilation or scaling parameter.  Provided that 

ψ(t) is real-valued, this collection of wavelets can be used as an orthonormal basis.  A critical 

sampling of the continuous wavelet transform is  

 

is obtained via , where and are integers representing the set of discrete 

translations and discrete dilations. Upon this substitution, we can write discrete wavelet 

transform as; 

 
 

Wavelet coefficients for every (a, b) combination whereas in discrete wavelet transform, we 

find wavelet coefficients only at very few points by the dots and the wavelets that follow 

these values are given by: 

 
 

These wavelet coefficient for all and produce an orthonormal basis. We call 

as mother wavelet. Other wavelets are produced by translation and dilation of 

mothere wavelet. The wavelet transform of a signal captures the localized time frequency 

information of the signal. Suppose we are given a signal or sequences of data   

sampled at regular time interval t .  is split into a “blurred” version a1 at the coarser 

interval t 2and “detail” d1 at scale t . This process is repeated and gives a sequence 

 , , , , ,…..of more and more blurred versions together with the details , , , 

, …….removed at every scale (  in  and ). Here s are 
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approximation and details of original signal. After N iteration the original signal  can be 

reconstructed as. 

                               

 

Multiresolution Analysis and Discrete Wavelet Transforms 

The discrete wavelet transform (DWT) provides a frequency band-wise decomposition of the 

signal, which is, called multiresolution analysis (MRA). A multiresolution analysis (MRA) 

for   introduced by Mallat.
[9,10]

 and extended by several researchers consists of a 

Sequence  of closed subspaces of  satisfying following properties; 

 

(i) ,                                                                                                              (2.1)  

(ii)  ,   ;                                                                                  (2.2) 

(iii) For every , ,  j                                     (2.3) 

(iv) There exists a function   such that  is orthonormal basis of      

.                                                                                                                                        (2.4) 

 

The function whose existence is asserted in (3.7.4) is called a scaling function of the given 

MRA. The condition (3.7.4) is sometime relaxed by assuming that    is a 

Riesz basis for . That is, for every    there exists a unique sequences  

such that, 

                                                                                                   (2.5)                                                               

with convergence in  . 

 

To find an orthonormal wavelet, we need to do is to find a function  such that 

 is an orthonormal basis of . In fact, if this is the case, then                                      

   is an orthonormal basis for  for all . We can express 

function φ  in terms of basis,  

                                                                                            (2.6) 

where, 

                                  and . 

 



Anil.                                                World Journal of Engineering Research and Technology 

 

 
 

www.wjert.org  

 

409 

The wavelet is a new analytical tool for turbulent or chaotic data to the physics community. It 

allows detection and characterization of short-lived structures in turbulence. 

 

Optimal Base Wavelet and Denoising of Signal 

The primary and most important work in the spectral analysis of any signal using wavelet 

transforms is the selection of suitable wavelet according to the signal.
[3,4]

 Suitable wavelet is 

selected on the basis of compatibility with signal characteristics. Accurate wavelet selection 

retains the original signal and also enhances the frequency spectrum of denoised signal. 

 

Noise is the unwanted, problematic and unavoidable part of signal. A signal is represented as, 

.f f σ ρ                                                      (3.1) 

where f  is the noise corrupted version of  signal f  and σ is the noise level and ρ  is unit 

energy noise process. Here f  is coherent and ρ  is non-coherent with respect to optimal base 

wavelet.  

 

Thresholding 3.2: A coherent signal is one that exhibits a concentration of energy in the 

representation domain and an incoherent signal is one whose energy is diffusely spread 

throughout the representation domain. A signal is coherent with respect to wavelet if the 

energy in the inner product representation is concentrated, that is, well localized in the 

representation domain. Thresholding is a technique performing to zero out small magnitude 

wavelet coefficients and retain the large magnitude wavelet.
[5,6]

 Signal noise ratio is the 

measurement of signal relative to noise and is described in terms of Shannon Entropy. 

 

Shannon Entropy Cost function thresholding 3.3: Shannon Entropy is used to measure the 

amount of uncertainty in a probability distribution. Shannon Entropy Cost function is defined 

as, 

M   
2 2

1

, , log ,
M

j j j

j

c b c b c b


   

where 2N
M  , 1 j N  , . A best basis relative to M for c  is a system Β

B  for 

which  M  , Βc
  is minimum. 
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Is a direct measure of mean square error encountered when the small (meaning below 

threshold) coefficients are discarded and the signal is reconstructed using the large (above 

threshold) coefficients. 

 

The signal noise ratio (SNRAT) is measured in decibels and given by. 

SNRAT= 1010 log  (M   , jc c b )                           (3.4) 

For a given threshold value 0 λ , we define,  

M     , : ,j jc b n c b λ 
         

 

                              

In the context of signal processing cost function M measures how many coefficients are 

negligible (that is below threshold) in a transformed signal and how many are important. 

 

The basis that concentrate the signal energy over a few coefficients, also reveals its time 

frequency structures, is called best basis. A best wavelet packet basis divides the time 

frequency plane into elementary atoms that are best adapted to approximate a particular 

signal. The best basis associated to a signal minimizes the Shannon Entropy function or Cost 

function M. Finding the minimum M, we require more than 
22N

 operations, which is 

computationally prohibitive. The fast dynamic programming algorithm of Coifman & 

Wickerhauser.
[8]

 find best basis with  2O N Nlog  operations by taking advantage of the 

tree structure. 

 

 

Figure 3.5 A block diagram for noise suppression and reconstruction algorithms. 

 

RESULTS AND DISCUSSION 

Let us consider a bumps signal for 8N  , so that the length of signal is  82 256 .     
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Figure 4.1: Bumps signal. 

 

We add the noise to the above signal with signal noise ratio 1.5412. 
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Figure 4.2: Noised signal. 

 

We compute the discrete wavelet transform of the above noisy bumps signal using wavelet of 

Daubechies 4 wavelet, level  
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Figure 4.3: Wavelet coefficients for noised bumps signal. 

 

Obviously, Most of the wavelet packet coefficients are nearly zero. Taking threshold value 

λ= 0.7 and using optimal base Daubechies 4 wavelet, level 4, we suppress noise and 

reconstruct the signal.     
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Figure 4.4: Denoised signal. 

 

CONCLUSION 

The discrete wavelet transforms provides a natural tool for denoising. Daubechies4 wavelet is 

the optimal base wavelet for given bump signal. Our approach of signal denoising is helpful 

for data compression as well as modulation and demodulation. Quantized coefficients below 
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threshold value are neglected and denoised signal is obtained as a version of input via an 

appropriate reconstruction algorithm.  
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