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INTRODUCTION

The binary quadratic Diophantine equations (both homogeneous and non-homogeneous) are
rich in variety.® In®®*2  the binary quadratic non-homogeneous equations representing
hyperbolas respectively are studied for their non-zero integral solutions. These results have
motivated us to search for infinitely many non-zero integral solutions of another interesting
binary quadratic equation given by ax*—(a+1)y® =a. The recurrence relations satisfied by

the solutions x and y are given. Also a few interesting properties among the solutions are

exhibited.

METHOD OF ANALYSIS
The Diophantine equation representing the binary quadratic equation to be solved for its non-

zero distinct integral solution is
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ax’ —(a+1)y’*=a (1)
Substituting the linear transformations

x=X+@+D)T , y=X=aT )
in (1) , we have

X?=a@+yT?-a (3)
The least positive integer solution is

T,=1,X, =2 (4)
Now , to find the other solutions of (3) , consider the pellian equation
X?=a(@a+n)T?+1 (5)
whose fundamental solution is

(. X, )=(2.2a+1)

The other solutions of (6) can be derived from the relations

where

n+1 n+1
f :(2a+1+2\/a2+a) +(2a+1—2\/a2+a)

n+1 n+1
g, :(2a+1+2\/a2+a) —(2a+1—2\/a2+a)

Applying the Brahmagupta lemma between (T,, X, ) and (‘Fn )Zn), the other solutions of (3)

can be obtained from the relation

(6)
_a «/a2+ag

By substituting equation (6) in (2), the non-zero distinct integer solutions of (1) are obtained

as follows

Xn+1=__11:n 1[2a+1 fn+\]a2+agn:|

2 2
_WJa*+a ot +(2a+1)\/a2+a
yn+1 - 2(a+1) gn ' n 2(a+1) gn

The recurrence relations for X, ,,Y,., are respectively
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X3 —(4a+2)X,., + X, =0
Yoz — (4a + 2) Yoo t Yna = 0.

From the above solutions we obtain some interesting relations, which are presented below:

K/
L X4

Relations among the solutions:

2X,.; = (Ba+4)X,,, —2X,,,

n+2

2(2a +1)X = Xn+1 + 2Xn+3

n+2

X = Xn+l - 2(a +l)yn+2

n+2

2(a +1) yn+2 = Xn+1 - (23. +1)X

n+2

(8a® +8a+1)x ., =(2a+1)x. ., —2(a+1)y
n+3

n+2 n+1

(23. +1) yn+1 = yn+2 + 2axn+1

4(a+1)(2a+1)y,,, = (8a* +8a+1)x,,, —2X

n+3

(8&2 + 8a + 1)yn+2 = 2aXn+l + (28. + 1) yn+3
4(3. +1)yn+2 = Xpa — 2Xn+3

2(@+1)y,., = (2a+1)x,,, —(8a* +8a+1)x

n+1 n+2

2(3. + l) Yo = (2a + 1)Xn+1 — X2
Xn+3 = Xn+1 - 4(8‘ + 1) yn+2

4(a+1)(2a+1)y,.; = X,., —2(8a° +8a+1)x

n+3

(832 +8a+ 1)yn+1 = 48.(23. + 1)Xn+l T Ynis
(2a+1)y,.; =(8a* +8a+1)y,,, —2ax,,

(8a® +8a+1)X,.5 = X,,, —4@a+1)(2a+1)y,,,

n+3
2aXn+l = (2a +1)yn+l ~ Yne2
Xy =2(2a+1D)X,,, — X, 5

2axn+2 =Ynu— (23. +1)yn+2

2(4a® +5a+1)(8a* +8a+1)y. ,, = (8a® +8a+1)x ,, — (2a+1)x
n+1

n+2 n+3

2yn+3 = 4(23. +1) Yni2o = 2yn+1

2axn+3 = (23. +l)yn+1 - (8&2 + 83. +1) yn+2

(8a2 +8a +1){(8a2 +10a+2)y,,, +(64a* +112a® +56a° + 6a —1)xn+2}
= (128a° + 288a* + 208a° + 48a® — 1)

n+3
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OBSERVATIONS

I. Employing linear combinations among the solutions of (1), one may generate integer
solutions for other choices of hyperbolas which are presented below.

Hyperbolas

> 4@ +a)x2, —1]-[(2a+1)x,, -, [} =0.

n+1

> 16(2a+1/(a’ +a)[x2, —1]-[(8a% +8a+1)x [ =o.

n+l n+l n+3

> 4(2&+1)2 (az +a)[x2 —1]— a+1)2 [2yn+2 +4axn+1]2 =0.

n+1

> 4(8a +8a +1) (a + a)[x 1]— (a+1)[Ba(2a+1)x,,, +2y,,,]* =0.

n+1

n+3 —4(23.+1) n+2] 22 }_
[(8a +8a+1)x —(2a+1)x

> [yn+2 - (28. + 1)yn+1 ]2 - 4a(a + 1)y§+1 =4a°.

> [yn+3 —(8a? +8a+1)y,, ]2 —16a(2a+ 1)[(a +1)y2, + a] =0.

(4a+1)*(a? +a)(8a? +8a+1f {[2x
[=o.

n+2 n+3

Il. Employing linear combinations among the solutions of (1), one may generate integer
solutions for other choices of parabolas which are presented below.
Parabolas

> 2a(a+1)[x,,., +1]+[(2a+1)x 0.

n+1 n+2]

> [y2n+3 - (2a + 1) Yonio 23.]— 4(a + 1) y§+1 =4a.

> 8a(a+1)(2a+1)[l+x,,,]+|8a +8a+1)x,, —2x, [ =0.

2n+3

2a(a+1)4a+1)(8a% +8a+1) [x,y,, —2(2a+1)x,,,, —1]-[Ba +8a+1)x, , — (2a+1)x, s | =0.

(
2a(a+1)8a? +8a+1) [L+x,,,, |+ (a+1 [Ba(2a+1)x,,, +2y,,, ] = 0.
(

> 2ala +1)(2a +1)2 [1+ x2n+2]+ (a +1)2 [2 Yoo +4aX, ., ]2 =0.

Generation of Solution

If x,=x,+h and y, =h-y, is any solution of (1) and we have the following x,,Y, also
satisfies (1).

Let X, =X, +h , y,=h—-y, and h=0 (7
Substituting (7) in (1) and performing a few calculations , we obtain

h=2ax, +2(a+1)y,
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and then

X, = (2a+1)x, +(2a+2)y,
y, = 2ax, +(2a+1)y,

which is written in the form of matrix as

b))

2a+1 2a+2]

where M =
( 2a 2a+l

replacing the above process, the general solution (x,,y, ) to (1) is given by

o))
yn yO
The eigen values of Mare o =(2a+1)+2va’+a and B=(2a+1)—-2va’+a , it is well

known that

n_ a _ B’ _
_a_ﬂ(M ﬂl)+a_ﬂ(M al)

Using the above formula, we have

M

U e S v A
pyror G
(xnj_(Yn (a+1)an(on
yn a‘Xn Yn yO
where
1
Yn=§fn f.o=a"+ "

1

n _mgnign =a - p

Remarkable observations

Let (a, B, 7) be the sides of the Pythagorean triangle
a=2pg,f=p°-q°,y=p"+0q°,p>q>0

where p and g are the generators of the Pythagorean triangle.

Let A and P be its area and perimeter respectively.
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Writepandqgas p=x,+Y, and q=1y,, where (X,,Y,) Is the solution of (1).

Then the corresponding Pythagorean triangle is such that
> y(a-1)-2aa+(a+l)p=2a.

> aP? +P[(a+1)(B-y)-2a(a +1)]=4aA

CONCLUSION

To conclude, one may search for other patterns of solutions and their corresponding

properties.
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