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ABSTRACT 

Model-based segmentation and recognition can be invaluable if a prior 

knowledge about the object’s shape is available. It enables a model 

description that may even override data information in case of 

inaccurate and missing information. However, achieving proper model 

description and its in-class variation is not a trivial task. In literature  

there exist several approaches. Some require enough representative samples, some fails in 

case of large size and shape variation etc. In our work, we propose a template combining 

deformable templates and physically based models together. Using the proposed template we 

study i) whether object’s shape-only-template is sufficient or information about the space 

surrounding the object should be incorporated, iii) whether there exist a useful quality 

measure for matching templates. We found that the proposed dynamic deformable template 

works successfully. Incorporation of the surrounding space information in the template 

significantly improves the recognition rate which also enables a better template matching 

criteria. 
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I. INTRODUCTION 

To extract and recognize an object from an image of medical data or similar application areas 

where shape and structure of the region of interest such as organs, bones, tissues etc. are 

available or known a priori, efficient use of model-based image segmentation and recognition 

is very common. However, in such case, main obstacles to overcome is to obtain an efficient 

model description and its shape variation in the object class. 

 

In free-form models, no global structure is used where the model is constrained only by local 

continuity and smoothness constraints.
[1–3]

 On the other hand, in,
[4–7]

 contour or skeleton of the 

object is utilized to obtain the model description. To obtain the shape and shape variation of a 

class different approaches are used, such as in
[4] 

statistical distribution of shape and its 

variation is learned from training on enough representative samples. However, the success of 

the approach severely depends on the availability of enough samples that truly represent the 

object variation. 

 

Along with the shape description, it is also essential to incorporate the in-class shape variation 

in the model. Deformable templates that incorporate prior geometric shape information and 

shape variation in terms of non-parameterized bitmap images,
[8]

 or parameterized curves,
[9–11]

 

can be useful. In the first type, separate deformation mechanism is needed and in the second 

type, setting a large number of parameters is not trivial.  

 

Another solution can be the use of physically based deformable models
[5,12]

 that also 

incorporate prior shape information in the model. The model deformation is achieved by 

changing the physical properties of the model itself. Being intuitive in nature, physically based 

models provide the advantage of not requiring any prior training and incorporation of the 

shape variation into model parameters. Therefore, combining a template-based and a 

physically-based strategy seems to be reasonable. A template could be modeled using a 

physically based model (PBM) and utilize the inherent quality of PBM for model deformation 

instead of using a separate deformation mechanism. 

 

Therefore, in this paper, we propose a Dynamic Deformable Template (DDT) using a Stable 

Mass-Spring Model (SMSM). DDT is a template whose deformation is governed by its 

physical properties. Unlike the state of the art approaches, our approach incorporates object’s 

neighborhood information as a part of shape information. Our model description also enables 

better measure for template matching. We use two different strategies for generating DDTs. 
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 Handcrafted DDTs are specific to the shape of the object class and vary among the 

classes. A different object class is represented by a different number of masses and 

springs. Thus, the inter-class comparison is possible only in terms of global energy (total 

energy experienced by all of the masses of a class model). 

 Rectangular grid DDTs are structurally equal for all the shape classes and capable of 

sampling space around the object. Object-specific shape information is introduced into the 

templates as model forces. In this model inter-class comparison is possible both in terms of 

global energy and local energy (energy experienced by mass, m of the model, x can be 

compared with mass, m of the model, y).  

 

We also experimented with two different matching quality measures: global and local 

measures.  

 The first one measures the quality of global fitting of the templates. It compares total 

energy required for a template of class, x and a template for class, y to fit in to object, m. If 

the class, x template requires less energy to fit into an object, m, then the object will be 

classified as a class, x, and vice versa. It can be applied to both types of templates.  

 The second one measures the quality of fitting of the templates at the local level. In this 

measure, we compare two templates in terms of energy experienced by corresponding 

mass points of the templates. It can only be applied to the rectangular grid DDTs as it 

requires a comparison between corresponding parts of templates.  

 

We investigate the capability of proposed DDTs of capturing shape variations using 

handwritten digits because of their high shape variation. 

 

II. THE STABLE MASS-SPRING MODEL (SMSM) 

The mass-spring model is a geometric entity that receives its shape from physical constraints. 

It is usually represented by a graph where nodes are mass points and edges are springs 

connecting two mass points. Using a prior knowledge of the object shape, mass positions and 

springs rest lengths are estimated. The model dynamics are governed by internal forces, which 

are defined within the model graph, and external forces that are computed from the image 

data. The model deforms only under external force. The external force acts as some kind of 

attraction force that attracts the model towards the features in the image. The magnitude of the 

attraction force increases with decreasing distance to the attraction point. The model 

deformation continues until internal and external force balance. 
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Consider a mass-spring model consisting of mass points with masses mi and initial position 

vector, pi and connected with springs of spring constant, kij. The rest length, Rlij that are 

spatially associated with two mass points i and j can be calculated using equation 1. 

(1)                      jiij ppRl   

 

The dynamics of such a system can be described by Newtonian mechanics. The movement of 

the model is influenced by the forces acting on the mass points. 

 

A. Internal Forces 

1) Spring Force: The elastically deformed springs exert spring forces,
iSF


 on the mass points 

as they deviate from their rest lengths i.e. mass points gets new position vector, inewp
. 

The spring force, 
iSF


  acting on mass point i can be calculated using equation 2.  

(2)                    
)).(.(







j

newnew

newnewijnewnewij

S

ji

jiji

i

pp

ppRlppk
F


 

 

2) Torsion Force: For model stability, another internal force called torsion force is included 

in the model dynamics.
[12]

 To introduce torsion force in the model, rest directions rdij of 

the springs starting from one mass point i to all adjacent mass point j along the lines of 

the spring rest length is calculated. 

 

 

Springs deviations from their rest direction exert a torsion force to the mass points in the 

direction of their rest directions to restore the original position. The torsion force, iTF


, 

exerts on mass point i can be calculated using equation 3.  

Figure 1: Torsion Force: rest directions of the 

springs are shown in dotted lines; springs 

deviated from their rest direction under the 

influence of the external force (shown in solid 

line).Thus the torsion force is exerted on the 

nodes in the direction of their rest direction. 
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Where, 
ji newnewji ppp    and tj = torsion constant of the mass point j 

 

The working direction of the torsion forces, nji is calculated using equation 4.  
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B. External Force 

Image-Force The model is constrained to lie on the image allowing it to deform according to 

the image topography. Image feature collected by each mass point act as a force on that mass 

and the image force, 
iIF


 exerted on mass point i can be calculated using equation 5.

[7]
 

(5)                        ))(( ilocimageF
iI 


 

Where loc(i) gives the coordinates of the current location of the sensor i in the image and 

image( ) gives the image information at that position. 

 

1) Damping Force: Damping force is used to prevent oscillatory behavior of the model. It 

can be defined as a function of velocity as in
[5]

 or the speed of motion of the model can be 

damped by a factor, d as in.
[12]

 

 

2) Discrete Equations of Motion 

Given the forces discussed above, applying Newton’s second law of motion can be simulated 

in a discrete time step of distance t . According to Newton’s second law of motion, 

acceleration ai of mass point i can be calculated using equation 6. 

(6)                                                     
i

i
i

m

F
a



  

 

Where 
iF


 is a total force acting on mass point i and can be calculated using equation 7. 
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(7)                                       ...
iiiiii IITTSSi FwFwFwF


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Where, 

iSw = weight for the spring force acting on mass point i, 

iTw = weight for the torsion force acting on mass point i, 

iIw  = weight for the image force acting on mass point i. 

 

Following the calculation of the mass point forces we can compute the new velocity, vi and 

position, pi of each mass point given the old velocity,
old

iv and old position values, 
old

ip  as 

follows: 

(8)                                    )1).(.( dtavv i

old

ii 

  (9)                                                  . tvpp t

old

ii   

 

The model adaptation to the image will continue until equilibrium when external forces cancel 

out internal forces i.e., 
externalernal FF


int
. 

 

III. APPLICATION OF SMSM AS DDT 

A. Handcrafted DDTs (hcDDTs) 

The hcDDTs are generated by placing the mass points along the medial axis of the digit as we 

are interested in the actual shape of the digits. In some of the hcDDTs, for example in the 

templates for digit 0, 6, 8 or 9, we include some mass points that have dark intensity sensors 

associated with them for a better description of their shape (see fig. 2a). 

 

B. Rectangular Grid DDTs (rgDDTs) 

This template has similarity with the 2D planar rubber sheet used by Jain et al.
[6]

 for 

deformation transformation of the bit map image templates. However, in Jain’s approach, a 

parametric statistical mapping is needed to generate random variations in the template. In 

rectangular grid DDT deformation is guided by forces, which can be determined by features in 

the image to be segmented and by geometric constraints within the model. Therefore, 

statistical mapping of template deformation can be avoided in our proposed rectangular 

template. The template used by Jain et al. is a bit map image of the object to be found. On the 

other hand, the template used in this paper is based on a mass-spring model that can be 

considered as a discretization of a bit map image.  
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IV. MNIST DATABASE 

All of our investigations related to DDTs are based on the handwritten digits from the MNIST 

database.
[17]

 The digits are size-normalized and centered in a 28x28 grey level image. We are 

interested in the template’s ability to catch essential aspects of a digit’s shape and not so much 

in improving the quite impressive recognition rates of trained classification on all the samples. 

Therefore, in our experiments we took a subset of 18 samples for each digit for training, 

considering their morphological similarity in shape, so that the variation among the samples 

can be learned with a single template. For the test data set, we selected 850 digit images from 

the first 1000 images of MNIST test data set. In our work, we super-sampled the image into 

112x112 pixels with the resolution of 600 dpi using the nearest neighbor method. 

 

In order to allow the deformation process some room for adjusting the template, a 32-pixel-

wide border was placed around each image. This increased the actual image size to 144x144 

pixels. 

 

V. SENSORS 

Each mass point in the model can be made sensitive to different sensors. Sensors are defined 

application-specific and may be sensitive, e.g., to corners, edges, or specific intensities. In our 

work we used (dark/bright) intensity sensor convolved with distance kernel (fig. 3). 

 

Fig. 2: (a) Handcrafted DDTs (b) Rectangular grid DDTs. Masses in grey are 

associated with bright intensity sensors, masses in white are associated with dark 

intensity sensors. 
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Figure 3: Image seen as 3D surface. In (a) is shown a convoluted image of intensities of 

digit 4. In (b) is shown its representation as a 3D surface. This representation 

corresponds to the graph of the function -I(x,y). 

 

VI. TEMPLATE MATCHING MEASURES FOR CLASSIFICATION 

A. Global Energy Measure (GEM) 

In GEM classification, we use the adapted model energy normalized by the expected model 

energy, as the decision measure. The expected model energy, Eexpected of template i is obtained 

from the training data according to the equation 10, where Ek is the energy of the template on 

the k
th

 sample. 

(10)                                      
1
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1exp  
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All the 10 templates for 10 digits are applied to the image of the digit to be classified one after 

another. After adaptation, the rest energy, Eadapted of template i is normalized by its expected 

energy, Eexpected that yields global decision measure, Edecision (as in equation 12). 

(12)                                          
)(

)(
)(

exp iE

iE
iE

ected

adapted

decision   

 

http://www.wjert.org/


Ferdosi et al.                                   World Journal of Engineering Research and Technology 

www.wjert.org  

 

44 

 

 

It is likely that the template on wrong digit image will have higher Edecision measure than the 

template on the correct digit. Therefore, the template that will have the lowest Edecision  

measure should be declared as a winner (equation 13). 

(13)                                    ))(min(arg iEWinner decision  

 

B. Local Energy Measure (LEM)  

LEM bears some similarity to correlation measures used in rigid template matching and 

requires templates for every class that have the same number of elements (springs and 

masses). LEM is calculated using equation 14. 

 

(14)                       ))()(()( exp,, 1
jEjEiE ectedISD
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VII. RESULTS AND DISCUSSION 

A. hcDDTs vs. rgDDTs using Global Measure 

Using global measures hcDDTs achieved 69:44% success rate on the training set and 31.84% 

success rate on the test data set. On the other hand, rgDDT achieved 72.78% success rate on 

training data which is 3.34% improvement over hcDDTs. On test dataset rgDDT achieved 

49.82% success rate which is 17.98% improvement compared to the performance of hcDDTs. 

It indicates the capability of rgDDT in generalizing training results to unknown samples of the 

same type. 

 

Figure 4: (a) Digit 2 is adapted with the rectangular grid DDT for 2 (b) Digit 2 is 

adapted with the template for 7 (c) Digit 7 is adapted with the template for 7. 
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B. hcDDTs vs. rgDDTs using Local Measure 

In hcDDT different models are represented by different numbers of masses and springs, thus it 

is not possible to use local measures for hcDDT. Using correlation measure for classification, 

rgDDTs gained 96.67% success rate on the training data set which is 23.89% improvement if 

compared to its own performance using global measure and 27.23% improvement if compared 

to the performance of hcDDTs. For the test data set rgDDT obtained 74.69% success rate 

using a local measure which is 24.87% improvement compared to global measure, and 

42.85% if compared to hcDDTs. 

 

The success of rgDDT using local measure may lie in the fact that the rgDDT incorporates 

more information about the object and it enables comparison of the templates at the local 

level. For example, in fig. 4a digit 2 is adapted with the template for digit 2 that results in 

global decision measure Edecision (2) = 1.13415 and in fig. 4b digit 2 is adapted with the 

template for digit 7 that results in global normalized Edecision (7) = 1.09002. Thus the digit 2 is 

wrongly classified as digit 7. If the local node by node energy measure is considered then it 

would not be the case. As indicated in figure 4b the nodes in the region encircled have higher 

variation than the region in fig. 4c.  

 

However, the performance of such models severely depends on the initial placement. If the 

model is not placed sufficiently close to the target, finding shapes cannot be ensured. In most 

of the cases, user interaction and expert knowledge are needed for the placement of the model. 

 

VIII. CONCLUSION 

Deformable models are used in different application areas such medical imaging
[15,16]

 where 

achieving proper model definition is crucial. In our experiments, we used handwritten digits of 

MNIST database for investigating the potential of DDTs. The success rate of using match 

quality for classification is far from results of state-of-the-art statistical methods for classifying 

digits, where error rates of less than 1% can be obtained. Jain et al.
[13]

 achieved similar results 

using deformable templates on a 2000 character training set. Using syntactic pattern 

recognition Lopez et al.
[14]

 obtained 83.83% recognition rate on a 300 character training set. 

On the other hand, using our rgDDTs we achieved 96.67% recognition rate using only 18 

character training set. The power of DDTs is their ability to provide a meaningful match 

quality based on very few samples and little apriori information by directly incorporating 

shape information into representation and matching measure. The proposed DDTs has huge 

potential in the application areas where large training data sets are not available. The results 

http://www.wjert.org/


Ferdosi et al.                                   World Journal of Engineering Research and Technology 

www.wjert.org  

 

46 

obtained from our experiments are sufficient to support our hypothesis of “better 

representation of a template that incorporates additional scope for template matching is 

necessary to improve the object recognition”. Therefore, our proposed DDTs qualify for 

further investigation to find out more about its use for recognizing objects. In future, we will 

investigate its potential for general object recognition. 
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