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Annotation 

1. This paper deals with fluctuations oscillations of a curved 

polymer pipeline and an incompressible fluid enclosed in it relative to 

the longitudinal axis passing through the supports. When the flow of 

fluid in the pipeline is taken into account, in addition to the internal  

forces of the inertial force of the pipeline and fluid, as well as the buoyancy force of 

Archimedes, the force of resistance to movement of the pipe element, which is determined by 

the Stokes formula. When calculating the velocity, the motion of the fluid is neglected. The 

obtained numerical results of stresses and permixes taking into account the influence of the 

above parameters. 
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Annotation 

Gas, water, and oil pipelines, containers and columns, submarine hulls, rocket engines, and 

aircraft fuselages are an incomplete list of structures where pipelines with a flowing fluid are 

a supporting element.
[1-5]

 

 

The use of pipelines from a fluid in seismic hazardous zones is associated with the need to 

address the issues of strength and durability of their elements. Such diverse designs, as well 

as the types of operating operational loads in the types of materials used, led to the creation of 

numerous theories describing the behavior of pipelines using differential equations and the 

development of methods for solving these equations. Analysis of the existing main theories of 
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seismic resistance of structures makes it possible to note that, when calculating structures for 

seismic resistance depending on soil conditions and design features of a structure, the static 

theory of seismic resistance of structures can be applied with small (up to 15%) errors, only 

in cases where the physical and mechanical properties structures and soil are close 

enough.
[7,8]

 

 

All these factors, as a rule, are not taken into account when designing pipeline systems. For 

example, when designing trunk pipelines,
[9]

 all loads acting on the pipeline are taken into 

account - temperature change, backfill weight, wind and snow loads, etc., except for the 

dynamic nature, the pipeline walls are loaded during operation. Regulatory documents of 

various industries mainly regulate permissible vibration levels of pipelines. Thus, according 

to the norms, the emergency vibration level is estimated by the value of vibration velocity Ve 

= 18 mm / s, and the warning level - by exceeding Ve = 41 mm / s. It should be noted that in 

many industry regulations there are not only restrictions on pressure pulsations, but also 

restrictions on vibrations. 

 

 

Picture 1: Design scheme. 
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At the same time, in recent years, the replacement of worn-out pipelines has been proceeding 

at extremely low rates. In the absence of regulatory restrictions on permissible dynamic 

loads, this leads to an annual increase in the number of accidents on pipelines by 7-10% 

(according to annual reports on the state of the environment in the Russian Federation). To 

determine the stresses in the walls of the pipeline, we will rely on that in addition to the 

constant working pressure. 

 

In this paper, we study the dynamic behavior of a curved pipeline during fluid flow. A 

solution technique and algorithm for obtaining numerical results are proposed. Discussed 

received numerical results based on the proposed techniques and algorithms. 

 

2. Statement of the problem and methods of solution 

The spatial oscillations of a curved pipeline and the incompressible fluid enclosed in it are 

considered relative to the 0z axis (Figure 1) passing through the supports. It is assumed that 

the pipeline is under the action of variable internal pressure. The velocity of the fluid 

movement is neglected. The length of the pipeline is - l , its wall thickness is h, and the total 

mass of the homogeneous pipeline and liquid 21 mmm  . In this formulation of the 

problem, we neglect the longitudinal inertia forces as compared with the transverse ones. 

Element of the pipeline dz  and weight dzlmdm )/( . The lateral distributed load on the 

pipeline is expressed by the formula 
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)sin(, 0

2   tpppRF viii , w - deflection of the pipeline element, vpp ,,, 0 - 

values of the circular frequency, initial phase, static and amplitude of the dynamic 

components of variable internal pressure ip  in the pipeline ii FR ,  internal radius and cross-

sectional area of the pipeline, is time t . The magnitude of the buoyancy force of Archimedes 

acting AdF  on a pipe element in length dz  is equal to ,,2 hRRgdzRdF ikkcA    where is 

the density с  of the liquid, 
2/8.9 сmg  , the resistance force 

cFd


 of the movement of the 

pipe element is determined by the Stokes formula.
[9]

 

dzVFd ac




 

where is the absolute velocity of the element, and are drag coefficients depending on the 

viscosity of the fluid and the shape of the inner surface of the pipe. According to the addition 
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speed theorem, where and are the relative and portable velocities of the pipe element. In this 

case, the latter is determined by the formula: 

t
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 . 

 

Thus, the resistance 
cFd


 can be represented as: 
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 , 

Where is the angle of rotation of the pipe as a solid with respect to Oz. 

 

The total moment zM  of recovery forces (or visco-elasticity) in the supports is directly 

proportional to the angle of rotation of the pipe as a solid relative to the axis Oz:  
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where is )(
c

rtR   the core of relaxation; c0  - instantaneous modulus of elasticity. 

 

Tangent ar  to the trajectory, normal an  and Coriolis ak acceleration of the selected element 

of the pipeline are equal: 
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Thus, the inertial forces kn dFdFdF ,,  of the selected element of the pipeline will be recorded 
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Equilibrium equation of the pipeline as the sum of the moments of all applied forces and 

forces of inertia about the axis Oz 

0sin)(
)()()(

   z

m

k

mm

A MwdFwdFwdFdmg      (2) 

Where g  - is gravitational acceleration. 

 

Equation (2) after some transformations and taking into account 
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takes on 
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Where hRJFpTT iiii

3,   - the axial moment of inertia of the mercy of the cross-section 

of the pipeline, mFgg k /1  . Pipe bending displacements satisfying boundary conditions 
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where 0W  and )(twk  are the amplitudes of the static and dynamic components of bending 

displacements. 

 

Substituting solution (5) into equations (3) and (4) and applying to the Bubnov – Galerkin 

procedure,
[10]

 after simple transformations we obtain (k = 0) 
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The system of equations (6) is solved under the following initial conditions 
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There is 00 , the initial angle of rotation and the angular velocity of the deviation of the 

pipeline from the vertical plane. In the case 0,0)(,0)( 0  vptwt , then we obtain the 

following nonlinear integral equation for determining the quasistatic component of the 

deflection of the pipeline 0W  
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If i 0)( tRE  threw the results of calculations are obtained.
[11]
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the system of integro-differential equations (8) is solved by the perturbation method. 

Generally, the system of integro-differential equations (6) in the elastic 
formulation 

( 0)( tR ) is given in.
[12]

 

 

3. Consider the free vibrations of the pipeline. To this end, it is assumed. 

0,0,0 р  Linearize the system of differential equations (6), then we obtain the 

following system of equations: 

,0)()()()(

,0)()()()(

0

0

1021
0

2

0

2
0

1212

2
















dwtRdtwdd
dt

dw

m

l

dt

wd

dtRСtСС
dt

d

mdt

d

t

E

t

с

 
Where 

ml
pFdW

l

FE

l

JE

ml
d

W

g
C

mW

c
С i

i

2

02

2

02

0

2

2

0

2

1

0

1
22

0

0
1

4

3
,

42 










 






  

This formula is consistent with the results obtained in.
[13]

 

 

In the case, 0)( tR  then the frequency 1  and 2 natural oscillations of the pipeline will 

be determined by the formulas:
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Figure 2: Dependencies of the angle of rotation and deflection of the midpoint of the 

pipe’s span over time with
3

00 /800,25,50 мкгПасбарp 
. 

 

When the viscoelastic properties of pipelines are taken into account, then (9) is expressed 

using the transcendental equation for pipeline angular and flexural vibrations. 
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Where IR i  - complex frequency, 
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Respectively, the cosine and sine Fourier images of the relaxation core of the material. 

 

We study the influence of the Archimedes pushing force, Coriolis inertia forces, resistance 

force and the magnitude of the static component of the internal pressure in a fluid, as well as 

the geometric and physico-mechanical parameters of the pipe on its free oscillatory 

movements.
[14,15]

   

4. Numerical results. The numerical solution of problem (2.16) was determined by the 

Runge – Kutt method.
[16,17]

 

 

The results of calculations for the following values of the main parameters: 
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Figure 2.3 shows the graphs of the angle of rotation and dynamic deflection of the middle 

point of the tube’s span from time t, respectively. 
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Figure 3: Dependencies of the angle of rotation and deflection of the midpoint of the 

tube's span of the pipe on time at. 
3

00 /25.1,025.0,50 мкгПасбарp 
.
 

 

5. Flexural vibrations of polymer pipes of variable cross-section with a fluid flowing 

inside 

),(),()(),(
0

2

2

02

2

txqdxwtRtxw
х

JЕ
х

t




































       (10) 

In the study of bending vibrations of a pipe with a fluid flowing inside, we use the model in 

the form of a non-prismatic beam and the hypothesis of flat sections. In this case, for the 

analysis of oscillations, the following differential equations are valid.
[18]

 

 

Where ),( txw  is the equation of the elastic axis of the beam relative to its undeformed state 

under the action of a transverse specified load ),( txq ). Let the flexural rigidity EJ, the mass 

per unit length of the pipe 1m  and the mass of the fluid 2m  volume filling the unit length of 

the pipe be unchanged along the pipe axis. In accordance with the principle of the 

d'Alembert, the inertia forces arising from the oscillations (Fig. 4) can be considered as a 

transverse load for a beam: 
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where 1 is the absolute velocity of the element of the pipe, and is the absolute velocity of the 

element of the flowing fluid. 
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Figure 4: Design scheme. 

 

For a stationary flow, the pressure along the pipe axis does not change, and the velocity of the 

fluid V  does not depend on the pipe oscillations. Then the inertial load can be written as: 
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Here, the first term is the inertia force of a pipe element arising from its transverse vibrations; 

since the fluid element makes a complex movement (portable movement i  with the speed of 

the pipe element, relative - with speed V ), the remaining terms in (11) reflect its inertial 

forces - the inertial force of the portable movement, the normal component of the inertial 

force of relative motion and Coriolis inertia, respectively. When calculating the components 

of the acceleration of the fluid element, it is taken into account that the curvature of the beam 

2

21

x

w
k







 , the angle of rotation of the element 

x

w




 1 , and its angular velocity 

tx

w






2

 . 

Substituting (11) into (10), we obtain the differential equation of transverse oscillations of the 

axis of the pipeline with respect to the initial straight-line position: 
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The solution of equation (12) can be obtained by one of the approximate analytical methods. 

We use the Bubnov – Galerkin method, presenting the solution of the equation as a product 

of two functions: 

tiexXtxw  )(),( .           (13) 
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Solution (12) should satisfy four boundary conditions corresponding to the variants of fixing 

the ends of the pipeline. 

 

Substituting (13) into (12) will allow for the function )(xX  to obtain an ordinary differential 

equation: 
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The solution of equation (14) will be sought in the form 
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substitution of which into equations (14) with subsequent multiplication  
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 and integration under boundary conditions from 0x  to 1x  

 

Leads to a system of linear homogeneous equations with respect to the unknown constants 

A1, A2, A3..... Equating the determinant of the system to zero, we obtain an equation for 

determining the e frequency of the pipeline oscillations. In the study of emerging oscillations, 

it is of interest to answer the question about the value of the critical flow rate of a fluid (the 

flow rate at which the pipeline may lose static stability). This value can be found from the 

condition that the first oscillation frequency is zero (which, in turn, takes place when the term 

that does not contain a frequency in the equation for determining frequencies is equal to 

zero). 

 

As an example, consider a section of a viscoelastic pipeline with hinged supports at the ends; 

an ideal incompressible fluid секмV /10  flows at a constant speed. The average diameter 

of the cross section of the pipeline мD 09.0 , the wall thickness of the pipeline м025.0 , 

the length of the section мl 1 , the density of the material 
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1 /2700 мкг , the modulus of 
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2 /64.15 мкг . Determine the first two frequencies of 

transverse oscillations of a pipeline with fluid at rest and flowing without taking into account 

the effect of static weight forces. We use the differential equation (12), where is 

 Dm 11 the mass of a unit of length of the pipe, 
2

22 )(  Dm  and is the mass of a unit 

of length of the liquid. To obtain a solution, we use the Bubnov-Galerkin method. Assuming 
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that, after 
tiexXtxw  )(),(  substituting the proposed solution in (14) and performing fairly 

simple transformations, for equation (14) we obtain the values of the 

coefficients
2004.0,08.0,014.0 VcVba  . The solution of equation (14) must satisfy the 

boundary conditions: 

0x ; ,0;0)0(
2


dx

Xd
X  0;0)(;

2


dx

Xd
lXix  . 

We are looking for a solution to equation (14) in the form 

 

)/2sin()/sin( 21 lxAlxAX  . 

 

We substitute this solution in (14) and successively multiply the resulting expression by 

)/sin( lx  and )/2sin( lx . We integrate the obtained relations in the interval from 0x  to 

lx   with allowance for the boundary conditions. As a result of the actions performed, we 

arrive at an algebraic system of two linear homogeneous equations with respect to the 

unknowns 21,АА : 

 
    0)/(4)/(16)3/8(

;0)3/8()/()/(
224

21

2

224

1





lcalAlbiA

lbiAlcalA

 

 

Equating to zero the determinant of this system, we obtain the equation of the form 

0221

4  aa  for determining two frequencies of transverse vibrations of the pipeline.
[20]

 

 

6. Numerical results. When 0V , секрадсекрад /9.98,/9.24 21  . At 

,/10 секмV  секрадсекрад /7.101,/2.24 21  . The critical velocity of a fluid flow 

occurs when one of the oscillation frequencies is zero, which takes place at 

   0)/(4)/( 22

2  clcla , where 
22
крV

JE

m
c  . Hence the value of the minimum critical 

speed (Vcr) will be 
2m

JE

l
Vкр


 . The results of calculations of bending oscillations along 

the z axis and time t are shown in Fig.5. 
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Figure 5: Moving the cross-sectional point of a pipeline as a function of distance and 

time.  

 

 

Figure 6: Moving the cross-sectional point of the cantilever pipeline as a function of 

distance. 

 

7. CONCLUSIONS 

On the basis of the developed approximate mathematical model of flexural-rotational 

oscillatory movements of the pipeline, its free vibrations were investigated. It has been 

established that with an increase in the static component of the internal pressure, an increase 

in the amplitude of free bending vibrations and an increase in the frequency of free rotational 

vibrations of the pipe occur simultaneously.  
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