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INTRODUCTION

Imai and Iseki introduced two new classes of abstract algebras: BCK algebras and BCI
algebras (Imai and Iseki, 1966; Iseki, 1980). It is known that the class of BCK-algebras is a
proper subclass of the class of BCl-algebras. In 2017, (Chandramouleeswaran et al., 2017)
introduced the concept of Z-algebras as a new structure of algebra based on propositional
calculus. By Propositions 3.7 and 3.8 of (Chandramouleeswaran et al., 2017), the Z-algebra is

not a generalization of BCK/BCl-algebras.

In 1965, (Zadeh, 1965) introduced the fundamental concept of a fuzzy set which is a
generalization of an ordinary set. In 1971, (Rosenfeld , 1971) introduced the notion of fuzzy

groups. Following the idea of fuzzy groups, in 1991 (Xi, 1991) introduced the notion of fuzzy
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BCK-algebras. In 2015, (Christopher Jefferson and Chandramouleeswaran, 2015) applied
fuzzy algebraic structures in BP-algebras. In this paper, we study the fuzzy subalgebraic

structures in Z-algebras and investigate some of their properties.

Preliminaries

In this section we recall some basic definitions.

Definition 2.1: (Iseki and Tanaka, 1978) A BCK- algebra (X,*,O) IS a nonempty set X with
constant 0 and a binary operation * satisfying the following conditions:

() x*y)*(x*2)<(z*Y)

(i) x = (x xy) <y

(i) x < x

(iv) x<yandy < x=x=y

(V) 0 < x=x=0,wherex < yisdefinedbyx * y=0 (forall x,y,z e X.

Definition 2.2: (Iseki ,1980)A BCl-algebra (X,*,O) is a nonempty set X with constant 0 and
a binary operation * satisfying the following conditions:

() (x*y)* (x*2) < (z*y)

(i) x* (x xy) <y

(i) x <x

(ivyx<yandy <X = x=y

(V)X <0 = x=0,wherex < yisdefinedbyx * y=0, forall x,y,z e X.

Definition 2.3: (Chandramouleeswaran et al., 2017) A Z-algebra (X,*,O)is a nonempty set X
with constant 0 and a binary operation * satisfying the following conditions:

(Z1) x*0=0

(Z2) 0xx=x

(Z3) x=x=x

(Z4) x+*y=y=*x when Xx=0and y=0 V x,y € X.

Definition 2.4: (Chandramouleeswaran et al., 2017) Let S be a nonempty subset of a

Z-algebra X. Then, S is called Z-Subalgebra of X if x*yeS forall x,y € S.
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Definition 2.5: (Chandramouleeswaran et al., 2017) Let (X,x,0) and (Y,¥,0")be two
Z-algebras. A mapping h:(X*0) —(Y,¥,0) is said to be a Z-homomorphism of
Z-algebras if h(x*y)=h(x)* h(y) forallx,y e X.

Definition 2.6: Let h be a Z-homomorphism from the Z-algebra (X,*0) to the
Z-algebra (Y,*,0"). Then

1. his called

1) aZ-monomorphism of Z-algebras if his 1-1.

i) an Z-epimorphism of Z-algebras if h is onto.

2. his called an Z-endomorphism of Z-algebras if h is a mapping from (X,*,0) into itself.

Note: If h:(X*0)— (Y,*,0) isaZ-homomorphism then h(0)=0".

Definition 2.7: (Zadeh, 1965) Let X be a nonempty set. A fuzzy set A in X is characterized
by a membership function pA(x) which associates with each point x in X, a real number in
the interval [0,1] with the value of p, (X) at x representing the “grade of membership” of x

in A.

That is, a fuzzy set A in X is characterized by a membership functionp, : X —[0,1] .
Definition 2.8: (Zadeh, 1965) The intersection of two fuzzy sets A and B with respective
membership functions p,(x) and pg(x) is a fuzzy set C , written as C=ANB, whose
membership function is related to those of A and B defined by,

tins(X)= 11 (X)=min{z, (), 125 (x)}, forall xe X or, in abbreviated form
He = Ha A lg.
Definition 2.9: (Das P S, 1981) Let A be a fuzzy set of X. For a fixedt[0,1], the set

UA;)= {XxeX]|p,(X) >t} is called an upper level subset ( upper level cut, upper t-level
subset) of A.

Definition 2.10: (Das P S, 1981) Let A be a fuzzy set of X. For a fixedt e[0,1], the set
L(A;t)={x e X|u,(x)<t} is called a lower level subset (lower level cut, lower t-level

subset) of A.

Note: (i) If t,<t, , UA;t,)c U(At,) and L(At,) = L(AL,).
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(i) UAt)UL(At)=X forall te[0]].
Definition 2.11: (Rosenfeld A, 1971) A fuzzy set A in X with a membership function p, is

said to have the sup property if for any subset T < X there exists x, e X such that
HA(XO):StUP “A(t)'
Definition 2.12: (Rosenfeld A, 1971) Let h be a mapping from X into Y.

1) Let A be a fuzzy set in X with a membership function i, . Then the image of A under

h, denoted by h(A) is the fuzzy set in Y with a membership function p, ,, defined by

sup a(z) if h™(y)={xIh(x)=y}=¢
Mn(A)(y)z zeh™(y) .
0 , otherwise
i) Let B be a fuzzy set in Y with a membership function p,. The inverse image (or pre-
image) of B under h, denoted by h™*(B) is the fuzzy set in X with a membership function

My (s defined by p (B)(x) =pg(h(x)) forallxeX.

Definition 2.13: (Bhattacharya P and Mukherjee N P, 1985) Let A and B be the fuzzy sets of

X and Y with a membership functions p, and p, respectively. Then, the Cartesian product

AxB with ~ membership  function Hag  XxY —[0]] is  defined as

ta s (X, y)=min{u, (x),ug(y)f forall xeX and yeY.

Definition 2.14: (Bhattacharya P and Mukherjee N P, 1985) Let A and B be the fuzzy sets of

aset X with a membership functions p, and pg respectively. Then, the Cartesian product

AxB with ~ membership  function Hag  XxX—>[0]1] is  defined as

HAXB(X’y): min{uA(x), MB(Y)} forall x,yeX )

Definition 2.15: (Bhattacharya P and Mukherjee N P, 1985) A fuzzy relation A on a

nonempty set X is a fuzzy set A with a membership function p, : XxX —[01].

Definition 2.16: (Bhattacharya P and Mukherjee N P, 1985) If A is a fuzzy relation with a

membership function p, onaset X and B is a fuzzy set of X with a membership function p,

then A is a fuzzy relation on B if for all x,y € X, p,(x,y)< min{ug(x),ug(y)}-
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Definition 2.17(Bhattacharya P and Mukherjee N P , 1985) Let B be a fuzzy set on a set X

with a membership function p; then the strongest fuzzy relation A; on X, that is, a fuzzy

relation A on B whose membership function p, :XxX-—>[0]1] is given by

Ha, (X’ y) =min {HB(X)’ HB(y)}'

Theorem 2.18: Let (X,%0) and (Y,,0') be two Z-algebras. Then (XxY,*,0") is a
Z-algebra where (x,,y;)*" (X,,¥,)=(X,*X,,y, ¥y,) for all (x,,y,)(X,y,)eXxY, with

0" =(0,0') as constant element.

1. Fuzzy Z-Subalgebras in Z-algebras
In this section, we define the notion of Fuzzy Z-Subalgebra of a Z-algebra and prove some

simple but elegant results.

Definition 3.1: Let (X,*,O) be a Z-algebra. A fuzzy set A in X with a membership function
L, is said to be a fuzzy Z- Subalgebra of a Z-algebra X if, for all x , y € X the following

condition is satisfied : p, (X *y) > min{u, (), ug ()} .

Example 3.2: Let X= {0, 1, 2, 3} be a set with the following Cayley table:

* 0 1 2 3
0 0 1 2 3
1 0 1 3 2
2 0 3 2 1
3 0 2 1 3

Then (X,%,0) is a Z-algebra.
Define a fuzzy set A in X with a membership function p, is given by

06 if x=0
ua(x)=404 if x=1
03 if x= 2,3

Then A is a fuzzy Z-Subalgebra of X.

Theorem 3.3: Intersection of any two fuzzy Z-Subalgebras of a Z-algebra X is again a fuzzy
Z- Subalgebra.

Proof: Let A, and A, be fuzzy Z-Subalgebras of X. Let X,yeA, NA,.
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Then x, y € A; and A,. Since A; and A; are fuzzy Z-Subalgebras of X,
Ha,ra, (X*Y) =min{u, (X*y),pa, (X*Y)}
= min{min{p, (X), 1a, ()} mindu,, (X), 14, (V)33
= min{min{u, (X),ua, )} min{u, (¥),ua, ()3}

= min{uAlmAz (X)’ Ha,na, (y)}

Thatis py a, (X*y) 2min{u, (o, (X),1a a, (V)T
Hence A, NA, isafuzzy Z— Subalgebras of X.

The above result can be generalized for a family of fuzzy Z-Subalgebras.

Corollary 3.4: Let {A|i e Q} be a family of fuzzy Z-Subalgebras of X. Then N A, is also

ieQ

a fuzzy Z-Subalgebra of X.

Theorem 3.5: A fuzzy set A of a Z-algebra X is a fuzzy Z-Subalgebra if and only if
everyt[01], U(A;t) is either empty or Z-Subalgebra of X.

Proof: Assume that A is a fuzzy Z-Subalgebra of a Z-algebra X and U(A;t) = ¢
To prove: U(A;t) is a Z-subalgebra of X.
Forany x,ye U(A;t),we have p,(X)>t and p,(y)>t.
Then p, (x*Y) 2 minu, (), 1 ()}
> min{t, t}
=t

This implies x*y e U(A;t)

That is, U(A;t)is a Z-subalgebra of X.

Conversely, assume that U(A;t) is a Z-Subalgebra of X.

To prove: A is a fuzzy Z-subalgebra of a Z-algebra X.

Let x,ye X and let n,(x)=t, and p,(y)=t,. Then xe U(A;t,) and ye U(A;t,).
If t,<t,,then U(A;t,)cU(A;t) andso ye U(A;t,)).

Since U(A;t,) is a Z-Subalgebra of X, x*y e U(A;t,)).

Thus p,(X*y) >t =min{u,(X), 1, (Y)}, proving that A is a fuzzy Z-Subalgebra of X.
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Definition 3.6: Let A be a fuzzy Z-Subalgebra of X. For any te<[01], Z-Subalgebras
U(A;t) are called Upper level Z-Subalgebras of A.

Remark 3.7: Henceforth, the Upper level Z-Subalgebras will be referred as level
Z-Subalgebras.

Theorem 3.8: Any Z-Subalgebra of a Z-algebra X can be realized as a level Z-Subalgebra of
some fuzzy Z-Subalgebra of X.

Proof: Let S be a Z-Subalgebra of a Z-algebra X and A be a fuzzy set in X defined by

tif xeS
0if xe$S

Ha(X) ={
where te[0,1] is fixed. Clearly U(A; t)=S.
To prove: A is a fuzzy Z- Subalgebra of a Z-algebra X.
We consider the following cases:
Case (i): If x,yeSthen x*yeS.
Hence p,(X)=pa(y) =pa(x*y)=t and

Ha (<) = minfyu, (x), pa ()}
Case (ii): If X,y &S then p,(X) = p(y) =, (x*y)=0.
Then p, (x#y) > ming, (%), 1, (¥)} =0.

Case (iii): If at most one of X, y € S then atleast one of p, (X) and p, (y) is equal to 0.

Hence p, (x*y) =min{u, (X), pa(y)}=0.

This shows that S is a level Z-Subalgebra of X corresponding to the fuzzy Z-Subalgebra A of
X.

Theorem 3.9: Let X be a Z-algebra. Then given any chain of Z-Subalgebras
S,cS,c---cS, =X, there exists a fuzzy Z-Subalgebra A of X whose upper t-level
Z-Subalgebras are exactly the Z-Subalgebras of the chain.

Proof: Consider a set of numbers t, >t, >t, >--->t_, where each t. €[01].

Let A:X —[0]] be a fuzzy set defined by u,(S,)=t, and p,(S;,—S.,)=t, , i=12,...r.

Claim: A is a fuzzy Z-Subalgebra of X.

Let x,y e X. Then we classify it into two cases as follows:

Case (1): Let x,y €S, —S, ,. Then by the definition of A, p,(x)=t, =, (y).
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Since S, is a Z-Subalgebra of X, it follows that x*yeS, and so either x*yeS, —-S, , or
x*yeS, . Inany case, we conclude that p,(x*y)>t, =min{u,(x),u,(y)}

Case (2): Fori>j, Let xe§ -5, ; and yeS;-S;,.

Then pa(x)=t;; pua(y)=t; and x*yeS, since S, is a Z-Subalgebra of X and S, =S, .
Hence y(x+) = £, = minfu, (Xa ()

Thus A is a fuzzy Z-Subalgebra of X.
From the definition of A, it follows that Im(A)= {t,,t,,---t,}.

Hence the upper t-level Z-Subalgebras of A are given by the chain of Z-Subalgebras.
U(At,)c UAL)c U(A L) - c U(AL, )= X.

Now U(Ajt,)={xeX|pu (X,)=1t,}=S,-

Finally , we prove that U(A;t,)=S, for i=12,...,r.

Clearly S, < U(Ast,).

If xeU(At;), then p,(x)=t, whichimplies that x ¢S, for j > i.

Hence u,(x)e it t,,---t,} andso x €S, forsome k <i.

As S, S, it follows that x €S, = U(A;t,)=S, for i=12,...,r.

This completes the proof.

Note: If X is a finite Z —algebra, then the number of Z-Subalgebras of X is finite whereas the
number of level Z- Subalgebras of a fuzzy Z-Subalgebra A appears to be infinite. But since
every level Z-Subalgebra is indeed Z-Subalgebra of X, not all these Z-Subalgebras are

distinct. The next theorem characterizes this aspect.

Theorem 3.10: Let A be a fuzzy Z-Subalgebra of a Z-algebra X. Two level Z-Subalgebras
U(A;t) and U(A;s) (witht<s) of A are equal if and only if there is no xeX,

t<p,(x)<s.

Proof: Let A be a fuzzy Z-Subalgebra of a Z-algebra X.
Assume that U(A;t) =U(A;s) for somet <s and there exists x € X such that t<p,(x) <s.
Then U(A;s) is a proper subset of U(A;t) which is a contradiction.

Hence there is no x € Xsuch that t <p, (X) <s.
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Conversely, Suppose that there is no xe X such that t<p,(x)<s. Since t<s, we get
U(A;s) c U(AT) 1)

If xe U(A;t) then p,(x)>t and so p,(X) >s, because p,(x) does not lie between t and s.
Hence x € U(A;S).

Hence U(A;t) c U(A;s) (2)

From (1) and (2) we get U(A;t) = U(A;s).

Remark 3.11: As a consequence of Theorem 3.10, the level Z-Subalgebras of a fuzzy
Z-Subalgebra A of a finite Z-algebra X form a chain and so we have the chain

UAt)c UAL)c---c U(At, )= X, where t, >t, >t, >...>t,.

Corollary 3.12: Let X be a finite Z-algebra and A be a fuzzy Z-Subalgebra of X. If
Im(A)={t,,---,t, }, then the family of Z-Subalgebras U(A;t,),i=12,...,n, constitutes all the
level Z-Subalgebra of A.

Proof: Let t e[0,1] and t & Im(A). Suppose t, <t, <---<t, without loss of generality.
If t<t, ,then U(A;t,)=X=U(At).
If t>t,,then U(A;t)=¢ obviously.

If t_, <t<t, ,then U(A;t)=U(A;t,) by Theorem 3.10. Thus for any te[01], the level
Z-Subalgebra is one of {U(A;t,)|i=12,---,n}.

Lemma 3.13: Let X be a Z-algebra and A be a fuzzy Z-Subalgebra of X. If Im(A) is finite,
say {t1,t2,...,ta} then for any t;, t; € Im(A), U(A;ti)) = U(A;t;) implies ti=t; .

Proof: Assume that t; #t; and t; <t,.
If xe U(At;)then p,(X) >t; > t;.
Hence x € U(At;)

Let xe X suchthat t <up,(X)<t;.
Then x e U(A;t;) but x ¢ U(A;t.)
Hence U(A;t;) c U(A;t;) and

U(A;t.) = U(A;t,) acontradiction.
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Then, U(A;t;)=U(AL)

Therefore  t;=t;.

Theorem 3.14: Let A and B be two fuzzy Z-Subalgebras of a Z-algebra X with identical
family of level Z-Subalgebras. If Im(A)={t,t,...t} and Im(B)={q,,q,,...q,} Where
t,>t,>..>t and q,>q, >...2q,. Then

i) k=r

i) UA; t) = UB;q,), i=12,...r

i) If xeX such that p,(X)=t, thenpy(x)=q, i=12,...,r.

Proof: Let A and B be two fuzzy Z-Subalgebras of X with identical family of level
Z-Subalgebras with F(A)=F(B) where F(A)= {U(A;ti)|i :1,2,...,r} and

F(B) = {U(B;q,)[i =12,...k}.

Let Im(A) = {t,to,...,t} where t, >t,>...>t, 1)
and let Im(B) = {q,,9,,...,q, | Where g, >0, >...>q, )
From (1) we get U(Ajt)) cU(At,) c...c UAt, ) =X (3)
From (2) we get U(B;q,) c U(B;q,) =...c U(B;q,) =X (4)

Toprove (i):k=r

Suppose k = r, then consider the following cases:
Case (i): k>r

Let k>r then U(A; t)= U(B; qi) i=1,2,....,r

This shows that both tjand ¢; € Im (A)

For i >r we observe that t; ¢ Im (A) and hence,
U(A; t) #U(B; qp), i=r+l, r+2,... k.

Case (ii): r>k

Let r >k then U(A; t) = U(B; q) i=1,2,....k
This shows that both tjand gi € Im (B).

For i > k we observe that g; ¢ Im (B) and hence
U(A; t) #U(B; qi), i=k+1,k+2,....r.

From (3) and (4) we get t; = q; for all i=1,2,.....
Hence we can find some i such that U(A; t;)) = U(B; qi).
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This contradicts that F(A)=F(B).

Hence we conclude that k =r.

To prove (ii): By part (i), we have proved that k = r. Since A and B have identical family of
level Z-Subalgebras, we have

U(A; t) = U(B; gi) , iI=1,2,....I.

To prove (iii): Let x e X such that p,(x)=t; and pg(x)=q;
From (ii) follows that x € U(B;q;) , thus

ns(x)=0q; and q; >q;

Therefore U(B;q;) < U(B;q;)

Since x € U(B;q;) = U(At;), we get t; =p,(X) > t;, this

gives U(B;q,) = U(A;t,) < U(A;t) = U(B;q,)

Thus U(B;q;) =U(B;q;) and by above lemma:3.13 we get q; = ;.
Hence pg(x)=gq;.

Hence the proof.

Corollary 3.15: Let A and B be two fuzzy Z-Subalgebras of X with identical family of level
Z-Subalgebras. Then Im(A)=Im(B) implies A = B.

Proof: Let Im(A) = Im(B)=1{g,.d,.....q, } where g, >q, >...>q,.

By Theorem 3.14, for any X e X there exists gisuch that p, (X) =q; = pg(X).

Thus p, (X) =pg(x) forall xeX.

This implies A=B.

4. Z -Homomorphism on Fuzzy Z-Subalgebras of Z-algebras:
In this section, we prove some simple theorems on fuzzy Z-Subalgebras under

Z-homomorphisms in Z-algebras.

Theorem 4.1: Let h be a Z-homomorphism from a Z-algebra (X,*,O) onto a Z-algebra
(Y,#,0') and let A be a fuzzy Z-Subalgebra of X with the supremum property. Then the
image of A denoted by h(A) is a fuzzy Z-Subalgebra of .
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Proof: Let a,beY with x,eh™@) and y,eh™(b) such thatp,(x,)= sup p,(t);

tehfl(a)

a(Yo)= sup p,(t).

teh(b)

Ha(@¥ D)= sup p,(t)

teh™(ax'b)
2 HA(XO * yo)

> min{, (X ) a (Yo )}

=min{ sup p,(t), sup uA(t)}

teh™(a) teh™(b)

=min {Hh(A)(a)1 uh(A)(b)}
Hence h(A) is a fuzzy Z-Subalgebra of Y.

Theorem 4.2: Let h:(X,*,0) — (Y,#,0) be a Z-homomorphism of Z-algebras. If A is a

fuzzy Z-Subalgebra of Y then the pre-image of A denoted by h™*(A) is a fuzzy

Z-Subalgebra of X. Converse is true if h is an Z-epimorphism.

Proof: Let h:(X,%0)— (Y,*,0) be a Z-homomorphism of a Z-algebra (X,%0) into a
Z-algebra (Y,,0) and let A be a fuzzy Z-Subalgebra of Y.

To prove: h™'(A) is a fuzzy Z-Subalgebra of X.
Let X, ye X. Then,

My a) (X *Y) = a (h(X*Y))
=, (h(x) * h(y))
> min{p, (N(X)), na(h(y))}
=min {uh,l(A)(X), thl(A)(y)}
Hence uh,l(A)(X *y) > min {“h’l(A)(X)’ “h*l(A)(y)}

Therefore, h™'(A) is a fuzzy Z-Subalgebra of X.

On the other hand, assume that h is an Z-epimorphism and h™(A) is a fuzzy Z-Subalgebra of

X.

Let y1, ¥ € Y. Since h is an Z-epimorphism, there exists X;, X, € X such that h(x;) = y; and

h(x2) = Y.
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This implies x;=h (y1) and o= h ™(y2).
Now, pa(Y; ¥ Y,) =pa(h(X) * h(X,))
=pa(h(x, *X5))
= Hys) (X0 ¥,
2 min s (%0 ) 060
=min{u, (h(x,)), pa (h(x,))}
=min{p, (Y1) 1a(Y2)}

Hence A is a fuzzy Z-Subalgebra of Y.

Definition 4.3: Let h be an Z-endomorphism of Z-algebras and A be a fuzzy set in X. We
define a new fuzzy set A" in X as B (X)=pa(h(x)) forall xeX.

Theorem 4.4: Let h be an Z-endomorphism of Z-algebra(X,*0). If A be a fuzzy

Z-Subalgebra of X. Then A"is also a fuzzy Z-Subalgebra of X.

Proof: Let h be an Z-endomorphism of Z-algebra (X,*,0). Let A be a fuzzy Z-Subalgebra of
X.

To prove: A"is also a fuzzy Z-Subalgebra of X.
Let X, ye X. Then

M (X% Y) = pp (N(X*Y))

=pa (h(x) *h(y))

= min{p, (N(X)), na (N(Y))}
= (xxy)=min{u,, (X),1,, (V)}

Hence A" is a fuzzy Z-Subalgebra of X.

5. Cartesian Product of Fuzzy Z-Subalgebras of Z-algebras

In this section, we discuss the concept of Cartesian product of fuzzy Z-Subalgebras in
Z-algebras.

Theorem 5.1: If A and B be fuzzy Z-subalgebras of a Z-algebra X then AxB is also a fuzzy
Z-Subalgebra of Xx X.

Proof: Let A and B be fuzzy Z-subalgebras of a Z-algebra X.
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To prove: AxB isalso a fuzzy Z-Subalgebra of Xx X.
For any (X1,X2), (Y1,y2) € Xx X, we have

Hag ((X1X2)*(Y1Y2)) = e (Xe* Y1, X2*Yo2)
=min {p, (Xe* Y1), pg (X2*y2)}
zmin {min{u, (x1), pa (Yo} min{pg (x2), pg (v2)3}
=min {min{p, (x2), ug (X2)} min{p, (v1), g (v2)3}

=min {pae (Xu, X2) s Bas (Y1Y2)}
Hence AxB is also a fuzzy Z-Subalgebra of X x X.
We can generalize the above theorem as follows.

Theorem 5.2: Let {X;|i=12,...,n} be a finite collection of Z-algebras and X :lﬂ[ X;. Let

i=1

A, , i=12...,n be fuzzy Z-Subalgebras of X, respectively. Then A=][]A, is also a

i=1

fuzzy Z-Subalgebra of X.

Theorem 5.3: If B is a fuzzy Z-subalgebra of a Z-algebra X then the strongest fuzzy relation

A; is afuzzy Z-Subalgebra of XxX.

Proof: Let B be a fuzzy Z-Subalgebra of a Z-algebra X .Then for all (x,,y,),(X,,Y,)e XxX,
Then pa (%, ¥2)* (X, ¥,)) =pa, (X, %X, Y, *Y,)

= min{ug (X, *X, ) g (Y, * Y, )}

> min {imin {ug (%, ), g (%, )} min {ug (v, ) e (v,

= min{min {uig (%, ) g (v )} min{ug (%, ), e (v}

= min{uAB( oY) Ha, (Xz’Y2)}
Therefore Ag is a fuzzy Z-subalgebra of X x X.

CONCLUSION
In this article, we have introduced fuzzy Z-Subalgebras in Z-algebras and discussed their

properties. In future, we will study fuzzy ideals on Z-algebras and related results.
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