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ABSTRACT 

This article demonstrates the effective power of the Branch and Bound 

algorithm in terms of effectiveness in providing a near-optimal 

solution for a travelling Salesman Problem. The study covers the 

development of branch and bound algorithm, application of branch and 

bound algorithm and its improvement in solving routing problems. As 

part of the need to prove the effectiveness of this method, a real-life 

case was addressed for routing optimisation by solving the travelling 

salesman problem considering a bottling company in Nigeria, the 

shortest path was located and cost-optimized to the barest minimal. 

 

KEYWORDS: Branch and Bound Algorithm, Travelling Salesman, Optimisation. 

 

1.0 INTRODUCTION 

Optimization problems have always been an important issue in almost all facets of life from 

the beginning of history. Optimization, such as in creating better designs, improving process 

efficiency, effective scheduling, task allocation, and so on, is a basic requirement of 

humanity. Thus, this has given rise to people working out ways and techniques to solve 

optimization problems. The first time a significant progress was recorded in solving 

optimization problem was in 1756, where Lagrange and Euler jointly worked together to 

develop the Euler-Lagrange equation, which is applied on many optimization problems till 

this day. Later on, Lagrange added constraint to the optimization problem being considered 
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and successfully reduced the problem to a single equation to be solved by Euler-Lagrange 

equation using the method of Lagrange multipliers. (Kiranyaz, Ince, & Gabbaouj, 2014). 

 

Solving NP-hard problems to obtain optimal solutions is often a challenging task. Thus, it 

often requires very efficient tools. The Branch-and-Bound algorithm is one of the tools 

commonly used in obtaining optimal solutions in these kinds of problems. The Branch and 

bound algorithm is an algorithm design which is used in solving combinatorial optimization 

problems, as well as general real-valued problems. In the branch-and-bound algorithm, a 

systematic enumeration of candidate solutions is provided by means of state space search– in 

which successive configurations or states of an instance are considered, with the goal of 

finding a goal state with the desired property. In this process, the set of candidate solutions is 

thought of as forming a rooted tree with the full set at the root (Clausen, 1999). According to 

Clausen and Perregaard (1996), “A B&B algorithm searches the complete space of solutions 

for a given problem for the best solution. However, an explicite numeration is normally 

impossible due to the exponentially increasing number of potential solutions. The use of 

bounds for the function to be optimized combined with the value of the current best solution 

enables the algorithm to search parts of the solution space only implicitly.”  

 

The Branch and Bound Algorithm was first defined in 1960 by Ailsa Land and Alison Doig 

during their research on discrete programming (Land &Doig, 1960), and since then it has 

been a commonly used tool in solving NP-Hard optimisation problems(Clausen, 1999). Prior 

to the work of Ailsa and Alison, there was already a preliminary work done by Harry 

Markowitz and Alan Manne( Cook, 2012). In their paper titled “On the solution of discrete 

programming problems” (Markowitz &Manne, 1957), presented B&B algorithm as a very 

viable tool for integer programming, but they did not provide an algorithm in their work. An 

algorithm was later delivered by Ailsa Land and Alison Doig in 1960 in their paper titled “An 

automatic method of solving discrete programming problems” (Land &Doig, 1960). Between 

these two periods, Willard Eastman in his Havard PhD thesis titled “Linear Programming 

with Pattern Constraints”(Willard, 1958), designed a number of algorithms for different 

category of models, including the travelling salesman problem (TSP). In his work, we found 

the first detailed application of the B&B algorithm in solving a TSP. He defined the problem 

as concerned with finding the most optimum route that will generate the minimum cost 

associated with a travelling salesman visiting each city in his domain, that is, the bestroute 
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that will generate the minimum travel cost to move from cities i to j. All these methods sum 

up the early implementations of B&B which has set the precedent for its use today. 

 

1.1 Recent Applications 

The B&B algorithm finds its application in a number of NP-hard problems and we will 

briefly look at some of its application in recent times. 

 

Jens Clausen, in her work titled “Branch and Bound Algorithms - Principles and Example”, 

made use of B&B in solving the Symmetric Travelling Salesman Problem, the Graph 

Partitioning problem, and the Quadratic Assignment problem. In her research, she stated that 

her team was able to solve problems that were previously unsolved, along with problems 

which had been solved by other researchers initially. She ended up stating that it was 

important that the appropriate parallel system is chosen for the algorithm being considered. 

(Clausen, 1999). 

 

Juan Pablo Vielma, et. al (2007), (Vielma, Ahmed, & Nemhauser, 2007), in their paper, 

developed linear programming which was based on branch and bound algorithm for mixed 

integer conic programs. Their algorithm was different from other similar programming based 

on branch and bound algorithms because it did not rely on cuts from gradient inequalities, 

and it occasionally branched on integer feasible solutions. Their algorithm was tested on a 

couple of optimization problems and it was proven to significantly outperform other solvers 

which were based on both linear and nonlinear relaxations. Furthermore, Songyot (2011), in 

his review stated that when the occurrence of the space is large, it results in a long execution 

time for the B&B algorithm. However, if the optimality of the algorithm is effectively 

compromised, the search time will be immensely reduced when the look-ahead search 

strategy is adopted to eliminate suboptimal solutions early.  

 

Tobiaet.Al (2018) made use of the B&B algorithm to solve a time-dependent Rural Postman 

Problem with varying traversal times. In their work, they investigated the relationship that 

existed between the time-invariant counterparts and consequently developed a branch-and-

bound algorithm. From the computational results they obtained, it was concluded that the 

B&B algorithm is capable of solving much larger problems. Also, Anna et. al (2018) 

developed a branch and bound algorithm to solve the Time-Dependent Travelling Salesman 

Problem. The result of their research showed that B&B Algorithm can efficiently solve 

problems with about 50 vertices. When they compared their results with the Branch-and-cut,it 
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was made obvious from their result that the algorithm could solve problems with a larger 

number of occurrences. They concluded their research by proposing that in order to solve 

larger problems, there is a need to first define improved lower bounds which will be 

embedded into an exact algorithm. However, the optimal cost of product has been addressed 

by researchers using creative algorithms (Okwu et al. 2019; Okwu et al. 2018; Okwu and 

Olufemi, 2018). This research is centred on effective routing and cost optimization by 

defining the shortest path. 

 

2.0 PROBLEM DEFINITION AND MATHEMATICAL FORMULATION 

Given a number of depots, a manufacturing firm would maximize profit and improve the time 

efficiency associated with the distribution of finished goods (outbound process) if the shortest 

route between these depots is taken to deliver these products. This paper seeks to provide a 

solution for effective routing optimisation by solving the travelling salesman problem (TSP) 

associated with the supply chain cycle of a manufacturing firm. This is to allow for the 

determination of the shortest possible route through which the distributor or salesman will 

take to cover all the possible points once and only once. If an optimum model is developed it 

will go a long way to improve the efficiency of the firm and reduce the associated cost of 

moving to the different cities. Suppose a company has 1 number of depots and a single type 

of product is to be shipped from one of these depots to the various other depots. We are given 

a transportation cost of transporting these goods per carton from one depot to another, and 

these costs are assumed to be linear.  

 

MATHEMATICAL ASSUMPTIONS 

In solving this problem the assumptions that were made are as stated below: 

 The cost of sending one unit of this product from source depot  to destination depot  is 

equal to , where  and . 

 The quantity distributed within a depot is zero. That is,   

The problem of interest is to find an optimal route between these depots, subject to the 

specified constraints 

 

OBJECTIVE FUNCTION 

The Objective function of this model is to minimize the route taken to move from source 

depot to destination depots. This is represented in the equation below: 
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For a symmetric TSP,                                                                                   

 

CONSTRAINT EQUATIONS 

The above objective function is subject to the following constraints. 

Demand constraints: 

 

This means that if goods are to be transported from a city  to every city , only a unit of the 

product will be sent to one of the remaining cities in . 

 

 

This means that if goods are to be transported from a city  to every city , only a unit of the 

product will be sent to one of the remaining cities in . 

   

Non – negativity constraints 

 

 

Elimination of subtour constraints 

Let ui,j be an auxiliary cariable to eliminate subtours for i=1,2,…, N. 

 

 

 

3.0 CASE STUDY 

DATA PRESENTATION 

Dobtained from the study: 

Table 1: Transportation cost per carton depot to customers. 

Depots 

Customers 

Asejire 
Ado-

Ekiti 
Ore Akure 

Abeok

uta 

Ijebo

-Ode 
Ibadan Ondo Ife Ilesha 

Asejire 0 62 60 55 50 45 20 48 35 40 

Ibadan 20 85 70 70 35 30 0 46 40 46 
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Ife 35 47 55 47 55 62 40 62 0 42 

Ilesha 40 40 60 32 70 70 46 25 42 0 

Ore 60 46 0 48 65 20 70 45 55 60 

 

From table 1, the transportation cost per carton matrix between the depots was obtained as 

shown below. 

 

Table 2: Transportation cost per carton matrix of depots. 

Depots Asejire Ibadan Ife Ilesha Ore 

Asejire - 20 35 40 60 

Ibadan 20 - 40 46 70 

Ife 35 40 - 42 55 

Ilesha 40 46 42 - 60 

Ore 60 70 55 60 - 

 

SOLUTION PROCEDURE 

Depots Asejire (1) Ibadan (2) Ife (3) Ilesha (4) Ore (5) 

Asejire (1) - 20 35 40 60 

Ibadan (2) 20 - 40 46 70 

Ife (3) 35 40 - 42 55 

Ilesha (4) 40 46 42 - 60 

Ore (5) 60 70 55 60 - 

 

To find the first lower bound (LB) we obtain the first row minima of the above matrix: 

LB1=20+20+35+40+55 = 170          (1) 

From the first LB we create four branches labeled; X12, X13, X14, and X15. 

 

Branching at Node 2 (N2) 

The row matrix is reduced at the point where row 1 and column 2 to give the matrix below: 

Depots 1 2 3 4 5 

1 - 20 35 40 60 

2 - - 40 46 70 

3 35 40 - 42 55 

4 40 46 42 - 60 

5 60 70 55 60 - 

 

Sum of Row minima of the reduced matrix = 40+35+40+55+20 =190 

Lower Bound for X12, LB12 = 190        (2)  

 

 

 

 

 

A 

B 
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Branching at Node 3 (N3) 

The row matrix is reduced at row 1 and column 3 to give the matrix below: 

Depots 1 2 3 4 5 

1 - 20 35 40 60 

2 20 - 40 46 70 

3 - 40 - 42 55 

4 40 46 42 - 60 

5 60 70 55 60 - 

 

Sum of Row minima of the reduced matrix = 20+40+40+60+35 = 195 

Lower Bound for N3, LB13 = 195        (3) 

 

Branching at Node 4 (N4) 

The row matrix is reduced at row 1 and column 4 to give the matrix below: 

Depots 1 2 3 4 5 

1 - 20 35 40 60 

2 20 - 40 46 70 

3 35 40 - 42 55 

4 - 46 42 - 60 

5 60 70 55 60 - 

  

Sum of Row minima of the reduced matrix = 20+35+42+55+40 = 192 

Lower Bound for N4, LB14= 192         (4) 

 

Branching at Node 5 (N5): 

The row matrix is reduced at row 1 and column 5 to give the matrix below: 

Depots 1 2 3 4 5 

1 - 20 35 40 60 

2# 20 - 40 46 70 

3 35 40 - 42 55 

4 40 46 42 - 60 

5 - 70 55 60 - 

 

Sum of Row minima of the reduced matrix = 20+35+40+55+60 = 210 

Lower Bound for N5, LB15 = 210        

 (5) 

From branching at N2, N3, N4, and N5we obtained the following corresponding lower 

bounds: 

LB12 = 190, 

LB13 = 195, 

C 

D 

E 
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LB14 = 192, and 

LB15 = 210. 

We branch further at Node 2, since it has the least Lower Bound. 

As a result of this branching the following branches were obtained; X23, X24, andX25. 

 

AT NODE2 (X12) 

Branching at X23: 

Depots 1 2 3 4 5 

1 - 20 35 40 60 

2 -20 - 40 46 70 

3 - 40 - 42 55 

4 40 46 42 - 60 

5 60 70 55 60 - 

 

Sum of row minima of reduced matrix = 42+40+60+40+20 = 202    (6) 

Lower Bound LB23 = 202         (7) 

 

Branching at X24: 

Depots 1 2 3 4 5 

1 - 20 35 40 60 

2 -20 - 40 46 70 

3 35 40 - 42 55 

4 - 46 42 - 60 

5 60 70 55 60 - 

 

Sum of row minima of reduced matrix = 35+42+55+46+20 = 198     (8) 

Lower Bound LB24 = 198         (9) 

 

Branching at X25: 

 

 

Sum of row minima of reduced matrix = 35+40+55+70+20 = 220   (10) 

Lower Bound LB25 = 220         (11) 

 

AT NODE4 (X14) 

We branch further at Node 4, since it has the second least Lower Bound. 

Depots 1 2 3 4 5 

1 - 20 35 40 60 

2 -20 - 40 46 70 

3 35 40 - 42 55 

4 40 46 42 - 60 

5 - 70 55 60 - 

F 

G 

H 
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As a result of this branching the following branches were obtained; X21, X23, andX25. 

 

Branching at X21: 

Depots 1 2 3 4 5 

1 - 20 35 40 60 

2 20 - 40 46 70 

3 35 40 - 42 55 

4 - 46 42 - 60 

5 60 70 55 60 - 

 

Sum of row minima of reduced matrix = 40+42+55+20+40 = 197   (12) 

Lower Bound LB21 = 197         (13) 

 

Branching at X23: 

Depots 1 2 3 4 5 

1 - 20 35 40 60 

2 20 - 40 46 70 

3 35 40 - 42 55 

4 - 46 42 - 60 

5 60 70 55 60 - 

 

Sum of row minima of reduced matrix = 35+46+60+40+40 = 221    (14) 

Lower Bound LB21 = 221         (15) 

 

Branching at X25: 

Depots 1 2 3 4 5 

1 - 20 35 40 60 

2 20 - 40 46 70 

3 35 40 - 42 55 

4 - 46 42 - 60 

5 60 - 55 60 - 

 

Sum of row minima of reduced matrix = 35+46+60+46+60 = 247     (16) 

Lower Bound LB25 = 247        (17) 

 

AT NODE3 (X13) 

We branch further at Node 4, since it has the third least Lower Bound. 

As a result of this branching the following branches were obtained; X21, X24, andX25. 

 

 

 

 

 

I 

J 

K 
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Branching at X21: 

Depots 1 2 3 4 5 

1 - 20 35 40 60 

2 20 - 40 46 70 

3 35 40 - 42 55 

4 - 46 42 - 60 

5 60 70 55 60 - 

 

Sum of row minima of reduced matrix = 40+46+60+20+35 = 201   (18) 

Lower Bound LB21 = 201         (19) 

 

Branching at X24: 

Depots 1 2 3 4 5 

1 - 20 35 40 60 

2 20 - 40 46 70 

3 - 40 - 42 55 

4 40 - 42 - 60 

5 60 70 55 60 - 

 

Sum of row minima of reduced matrix = 40+40+60+46+35 = 221    (20) 

Lower Bound LB24 = 221         (21) 

 

Branching at X25:  

Depots 1 2 3 4 5 

1 - 20 35 40 60 

2 20 - 40 46 70 

3 - 40 - 42 55 

4 40 - 42 - 60 

5 60 70 55 60 - 

 

Sum of row minima of reduced matrix = 40+40+60+70+35 = 245   (22) 

Lower Bound LB24 = 245        (23) 

 

SEARCH FOR FEASIBLE RESULTS 

Branching at Node 12 

Feasible solution for X32= 1-4-3-5-2-1       (24) 

Upper Bound for X32, UB32 = 40+42+55+70+20 = 227     (25) 

Feasible solution for X35= 1-4-5-3-2-1      (26) 

Upper Bound for X35, UB35= 40+60+55+40+20 = 215     (27) 

Note: Due to the result for (25), we close Nodes 8, 10, 11, 13, and 14. Therefore, we are 

left with Nodes 6, 7, and 9 to test for feasibility. 

L 

M 

N 
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Branching at Node 7 

Feasible solution for X31= 1-2-3-5-4-1       (28) 

Upper Bound for X31, UB31 = 20+40+55+60+40 = 215     (29) 

Feasible solution for X35= 1-4-2-3-5-1       (30) 

Note: The Path 1-4-2-3-5-1 for X31 of Node 7 arises after the critical analysis of the path 

to avoid subtour 

Upper Bound for X32, UB32 = 40+46+40+55+60 = 241     (31) 

 

Branching at Node 9 

Feasible solution for X32= 1-3-2-5-4-1       (32) 

Upper Bound for X32, UB32= 35+40+70+60+40 = 245     (33) 

Feasible solution for X35= 1-3-5-4-2-1       (34) 

Upper Bound for X35, UB35 = 35+55+60+46+20 = 216      (35) 

 

Branching at Node 6 

Feasible solution for X31= 1-2-3-4-5-1       (36) 

Upper Bound for X32, UB32 = 20+40+42+60+60 = 222     (37) 

Feasible solution for X34= 1-2-3-5-4-1       (38) 

Upper Bound for X32, UB32 = 20+40+55+60+40 = 215     (39) 

 

OPTIMAL PATH FROM THE BRANCH AND BOUND ALGORITHM 

From our analysis, the best possible paths to take for the distribution of the goods are given in 

(28) and (37) which amount to a total of 216 Naira. The nearest optimal path is given in (33), 

which amounts to a total of 216. 

 

Hence,  

Best paths:   1-2-3-5-4-1 and 1-4-5-3-2-1 

Near Optimal path:  1-3-5-4-2-1 

  

From the objective function of the problem 

 

Therefore, = 215 
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4.3.2 SOLUTION FROM EXCEL SPREADSHEET SOLVER 

Using Excel solver the optimal transshipment path of the goods was calculated.  

From Excel solver, the optimal transshipment path = 1-4-5-3-2-1 

Total unit cost from the above path = 215 Naira. 

 

 

Optimal solution as obtained from Excel Solver. 

 

CONCLUSION 

The effectiveness of the branch and bound algorithm in routing optimisation problems has 

been demonstrated. The step further exploits the branch and bound method in solving the 

travelling salesman problem (TSP) of a bottling company in Nigeria. With the dataset 

obtained for the distribution channel of the company, the information was simplified in 

matrix form for TSP matrix showing the five distribution channels. The branch and bound 

method utilised the search space and provided two optimum routes with one near optimum 

route. The result was further tested using Excel Solver. The BB method has proven to be a 

very effective tool in solving routing optimisation problems.  
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