Review Article

World Journal of Engineering Research and Technology

<u>WJERT</u>

www.wjert.org

SJIF Impact Factor: 5.218

REGULAR DOMATIC PARTITION IN FUZZY GRAPH

K. M. Dharmalingam* and K. Valli

Department of Mathematics The Madura College Madurai, Tamilnadu State, India.

Article Received on 04/07/2019

Article Revised on 25/07/2019 Article Accepted

Article Accepted on 15/08/2019

*Corresponding Author K. M. Dharmalingam Department of Mathematics The Madura College Madurai,Tamilnadu State, India.

ABSTRACT

Let $G = (V, E, \sigma, \mu)$ be a fuzzy graph. A partition of V(G) $\pi = \{V_1, V_2, ..., V_k\}$ is called regular fuzzy domatic partition of G if (i) for each $V_i, < V_i >$ is fuzzy regular and (ii) V_i is a fuzzy dominating set of G.The maximum cardinality of a regular fuzzy domatic partition of G is called the regular fuzzy domatic number of G and is denoted by

 $d_r^f(G)$. In this paper, regular domatic partition, regular anti-domatic partition of a fuzzy graph $G = (V, E, \sigma, \mu)$ are defined. Also these numbers are determined for various fuzzy graphs. Several results involving this new fuzzy regular domination parameters are established. AMS Subject classification :05C72.

KEYWORDS: Regular domatic partition in fuzzy graph;Regular anti-domatic partition in fuzzy graph.

1 INTRODUCTION

It is well known graphs are simply models of relations. A graph is a convenient way of representing informations involving relationship between objects. The objects are represented by vertices and relation by edges L. A. Zadeh (1965) introduced the concepts of a fuzzy subset of a set as a way for representing uncertainty. His idea have been applied to a wide range of scientific area. E.J.Cockayne,S.T.Hedetniemi,^[5] (1977) introduced the concepts of the domatic number of a graph.Bohdan Zelinka(1997),^[4] introduced the concepts of the antidomatic number of a graph.

The concepts of regular domination in graphs was introduced by Prof.E.Sampathkumar.The notation of domination in fuzzy graph was developed by A.Somasundaram and

S.Somasundaram.^[9] In this paper we introduce the new concepts of regular domatic partition in fuzzy graph and regular anti-domatic partition in fuzzy graph.

2. Preliminaries

Definition 2.1 A fuzzy graph $G = (V, E, \sigma, \mu)$ is a non empty set V together with a pair of fuctions $\sigma: V \to [0,1]$ and $\mu: V \times V \to [0,1]$ such that $\mu(uv) \leq \sigma(u) \wedge \sigma(v)$ for all $u, v \in V, \sigma$ is called the fuzzy vertex set of G and μ is called the fuzzy edge set of G where σ, μ are called membership functions.

Definition 2.2 Let $G = (V, E, \sigma, \mu)$ be a fuzzy graph.Let $u, v \in V$ and u dominates v in G if $\mu(uv) \leq \sigma(u) \wedge \sigma(v)$.A subset S of V is called a fuzzy dominating set in G if for every $v \in V - S$ there exists $u \in S$ such that u dominates v.

Definition 2.3 The degree of a vertex u is defined to the sum of the weights of the edges incident at u and is denoted by $d_G(u)$. The minimum degree $\delta^f(G) = \min\{d_G(u)/u \in V(G)\}$. The maximum degree $\Delta^f(G) = \max\{d_G(u)/u \in V(G)\}$.

Definition 2.4 Let $G = (V, E, \sigma, \mu)$ be a fuzzy graph. If each vertex has same degree k, then G is said to be a regular fuzzy graph of degree k or a k-regular fuzzy graph.

3 Regular Domatic Partition in Fuzzy Graphs

Definition 3.1 Let $G = (V, E, \sigma, \mu)$ be a fuzzy graph. A partition $\pi = \{V_1, V_2, ..., V_k\}$ of V(G) is called regular fuzzy domatic partition of G if (i) for each $V_i, < V_i >$ is fuzzy regular and (ii) V_i is a fuzzy dominating set of G. The maximum cardinality of a regular fuzzy domatic partition of G is called the regular fuzzy domatic number of G and is denoted by $d_r^f(G)$.

Example 3.2

Figure 1: $d_G(v_1) = d_G(v_2) = 1.3$. $V_1 = \{v_1, v_2\}$ is a dominating and fuzzy regular. $d_G(v_4) = d_G(v_5) = 1$. $V_2 = \{v_4, v_5\}$ is a dominating and fuzzy regular.

Therefore $\pi = \{V_1, V_2\}$ is a regular fuzzy domatic partition of G. Therefore $d_r^f(G) = 2$.

Remark 3.3 All fuzzy graphs have no regular fuzzy domatic partition.

Example 3.4 (i) $(K_1 \cup K_2)$ has no regular fuzzy domatic partition.(ii) Any fuzzy graph $G \neq \overline{K}_n$ of order ≥ 3 with an isolated vertex has no regular fuzzy domatic partition.

Note 3.5 A fuzzy graph G with an isolated vertex has a regular fuzzy domatic partition if and only if $G = \overline{K}_n$.

Definition 3.6*A* domatic partition of a fuzzy graph G is a partition of V(G) into dominating sets. The maximum cardinality of domatic partition of a fuzzy graph G is called fuzzy domatic number of G and is denoted by $d^{f}(G)$.

Note 3.7 (i) $1 \le d_r^f(G) \le n$. (ii) If $d_r^f(G) = 1$, then G is a fuzzy regular.(iii) For any fuzzy graph $G, d_r^f(G) \le \delta^f(G) + 1$.(iv) $d_r^f(G) \le d^f(G)$.

Definition 3.8 *A vertex in a fuzzy graph having only one neighbour is called a pendent vertex.* **Theorem 3.9** *Let G be a fuzzy graph with a pendent vertex.*

Then
$$d_r^f(G) = d^f(G) = \delta_r^f(G) + 1 = \delta^f(G) + 1$$
.

Proof. Suppose $\pi = \{V_1, V_2, ..., V_{d_r^f(G)}\}$ is a regular fuzzy domatic partition of G. Assume that u is a pendent vertex with support v. Without loss of generality, let $u \in V_1$. If $v \in V_1$, then V_2 can not dominate u. If $v \in V_2$ then any vertex in $V_i i \ge 3$ can not dominate u . Therefore, $|\pi| \le 2$. Case(i) If $|\pi| = 1$, then G is fuzzy regular. As G has a pendent vertex , $G = tK_2(t \ge 2)$. In this case $d_r^f(G) = 2 = \delta_r^f(G) + 1 = \delta^f(G) + 1$. Case(ii) If $|\pi| > 1$, then $|\pi| = 2$.

Therefore, $d_r^f(G) = d^f(G) = \delta_r^f(G) + 1 = \delta^f(G) + 1$.

Note 3.10 If G has no pendent vertex, then the result is not true.

Result 3.11 If G_1 and G_2 are two fuzzy graph for which $d_r^f(G_1)$ and $d_r^f(G_2)$ exist. Then

 $d_r^f(G_1 \cup G_2)$ exists iff there exists partition $\pi_1 = \{V_1, V_2, \dots, V_{d_r^f(G_1)}\}$ and $\pi_2 = \{U_1, U_2, \dots, U_{d_r^f(G_2)}\}$ such that (i) if the fuzzy regular domatic number $d_r^f(G_1) = d_r^f(G_2)$ then for each V_i there exists U_i such that V_i and U_i are having the same fuzzy regularity for each $i, 1 \le i \le d_r^f(G_1) = d_r^f(G_2)$ (ii) if $d_r^f(G_1) < d_r^f(G_2)$ then V_i and U_i are having the same fuzzy regularity for each $i, 1 \le i \le d_r^f(G_1)$ and $V_{d_r^f(G_1)} + 1, \dots, V_{d_r^f(G_2)}$ must have the same fuzzy regularity with any one $V_1, V_2, \dots, V_{d_r^f(G_1)}$.

4 Regular Anti-Domatic Partition Fuzzy Graphs

Definition 4.1 Let $G = (V, E, \sigma, \mu)$ be a fuzzy graph *.*A partition $\pi = \{V_1, V_2, ..., V_k\}$ of V(G) is called regular fuzzy anti-domatic partition of *G* if (*i*) for each $V_i, < V_i >$ is fuzzy regular and (*ii*) V_i is a non fuzzy dominating set of *G*. The minimum cardinality of regular fuzzy anti-domatic partition is called the regular fuzzy anti-domatic number of *G* and is denoted by $\overline{d_r^f}(G)$.

Example 4.2

Figure 2.

 $d_{G}(v_{1}) = d_{G}(v_{3}) = 0.9.$ $V_{1} = \{v_{1}, v_{3}\} \text{ is a non dominating and fuzzy regular.}$ $d_{G}(v_{2}) = d_{G}(v_{4}) = 1.$ $V_{2} = \{v_{2}, v_{4}\} \text{ is a non dominating and fuzzy regular .}$ $d_{G}(v_{5}) = d_{G}(v_{8}) = 0.2.$ $V_{3} = \{v_{5}, v_{8}\} \text{ is a non dominating and fuzzy regular .}$

Therefore $\pi = \{V_1, V_2, V_3\}$ is a regular fuzzy anti-domatic partition of G. Therefore $|\pi| = \overline{d_r^f}(G) = 3$. **Definition 4.3** Let G be a fuzzy graph. A vertex $u \in V$ is called fuzzy full degree vertex if u is adjacent to all other vertices in G such that $\mu(uv_i) \leq \sigma(u) \wedge \sigma(v_i)$, for all $v_i \in V - \{u\}$.

Definition 4.4 An anti-domatic partition of a fuzzy graph G is a partition of V(G) into non dominating sets. The minimum cardinality of an anti-domatic partition of a fuzzy graph G is called fuzzy anti-domatic number of G and is denoted by $\overline{d^f}(G)$.

Remark 4.5 Let $G = (V, E, \sigma, \mu)$ be a fuzzy graph.

(i) If G has a full degree vertex then G has no regular fuzzy anti-domatic partition. Therefore, assume that G has no full degree vertex. Here G has full degree vertex, all vertices dominates each other vertices of G and fuzzy regular. Therefore, G has no regular fuzzy anti -domatic partition.

(ii) Let $V(G) = \{v_1, v_2, ..., v_n\}$. Then $\pi = \{\{v_1\}, \{v_2\}, ..., \{v_n\}\}$ is a regular fuzzy anti-domatic partition of G.

(iii) $\overline{d^f}(G) \leq \overline{d_r^f}(G)$ where $\overline{d}(G)$ is minimum cardinality of anti-domatic partition of G.

Theorem 4.6 Let G be any fuzzy graph without full degree vertex, then $\overline{d_r^f}(G) \ge 2$.

Proof. Suppose $\overline{d_r^f}(G) = 1$. Then $\pi = \{V\}$ is a fuzzy regular and not dominating. Therefore, V(G) is a regular fuzzy anti-domatic partition ,a contradiction to our assumption Therefore, $\overline{d_r^f}(G) \ge 2$.

Definition 4.7 The distance d(u, v) between two vertices u and v in a fuzzy graph G is the length of a shortest u - v path in G. The diameter of a connected fuzzy graph G is the length of any shortest u - v path and it is denoted by $diam^{f}(G)$.

Example 4.8

Figure 3.

 $d_{G}(v_{1}) = d_{G}(v_{2}) = 0.7.$ $V_{1} = \{v_{1}, v_{2}\} \text{ is a non dominating and fuzzy regular }.$ $d_{G}(v_{5}) = d_{G}(v_{7}) = 0.4.$ $V_{2} = \{v_{5}, v_{7}\} \text{ is a non dominating and fuzzy regular.}$ Therefore $\pi = \{V_{1}, V_{2}\}$ is a regular fuzzy anti-domatic partition of G. Therefore $\overline{d_{r}^{f}}(G) = 2.$

Theorem 4.9 If $diam^{f}(G) \ge 3$ and $x, y \in V(G)$ such that $d(x, y) = diam^{f}(G)$ with N[x]and (V - N[x]) are fuzzy regular. Then $\overline{d_{r}^{f}}(G) = 2$.

Proof. Let $diam^{f}(G) \ge 3$.Let $x, y \in V(G)$ such that $d(x, y) = diam^{f}(G)$ and N[x] and (V - N[x]) are fuzzy regular.Clearly,N[x] and (V - N[x]) are not fuzzy dominating .Therefore $\overline{d_{r}^{f}}(G) = 2$.

Definition 4.10 A fuzzy graph is said to be connected if there exists at least one path between every pair of vertices. Otherwise it is called disconnected graph.

Theorem 4.11 If G is a disconnected fuzzy graph with k components $G_1, G_2, ..., G_k$. Then $\overline{d_r^f}(G) = 2$ if and only if for some $i, 1 \le i \le k - 1, G_1, G_2, ..., G_i$ are fuzzy r_1 -regular and $G_{i+1}, G_{i+2}, ..., G_k$ are fuzzy r_2 -regular.

Proof. Let G be disconnected fuzzy graph with components $G_1, G_2, ..., G_k$. Suppose $G_1, G_2, ..., G_i$ are fuzzy r_1 -regular and $G_{i+1}, G_{i+2}, ..., G_k$ are fuzzy r_2 -regular, for some $i, 1 \le i \le k - 1$.Let $\pi = \{V(G_1) \cup V(G_2) \cup ... \cup V(G_i), V(G_{i+1}) \cup V(G_{i+2}) \cup ... \cup V(G_k)\}$. Then π is a regular fuzzy anti-domatic partition of G. Therefore, $\overline{d_r^f}(G) = 2$. The converse is obvious.

Theorem 4.12 Let G be a fuzzy graph without full degree vertices. If u is a vertex of degree $\delta^f(G)$ such that V - N[u] is fuzzy regular. Then $\overline{d_r^f}(G) \leq \delta^f(G) + 2$.

Proof. Let u be a vertex of degree $\delta^f(G)$ and V - N[u] is fuzzy regular.Let $N[u] = \{u, v_1, v_2, \dots, v_{\delta f}\}$.Let $\pi = \{V - N[u], \{u\}, \{v_1\}, \dots, \{v_{\delta f}\}\}$.Then π is a regular fuzzy anti-domatic partition of G.Therefore, $\overline{d_r^f}(G) \le |\pi| = \delta^f + 2$.Therefore, $\overline{d_r^f}(G) \le \delta^f + 2$.

www.wjert.org

Theorem 4.13 If G is a fuzzy graph without full degree vertices. Then $\overline{d_r^f}(G) = n$ if and only if n is even and $G = \overline{K_2} \bigoplus \overline{K_2} \dots (\frac{n}{2})$ times.

Proof. Suppose n is even and $G = \overline{K_2} \bigoplus \overline{K_2} \dots (\frac{n}{2})$ times. Then $\overline{d_r^f}(G) = n$. Conversely, suppose $\overline{d_r^f}(G) = n$. Any single vertex is a fuzzy regular and non dominating set. If there exists 2-set which is not fuzzy dominating then $\overline{d_r^f}(G) = n - 1$. Therefore, every 2-element set of G is a fuzzy dominating set and it is obviously fuzzy regular. Therefore, $\gamma_r^f(G) = 2$ and any 2-set of G is a fuzzy dominating. Therefore, $G = \frac{\overline{n}}{2}K_2$. Therefore, n is even and $G = \overline{K_2} \bigoplus \overline{K_2} \dots (\frac{n}{2})$ times. Hence the theorem.

CONCLUSION

For graphical research, the regular fuzzy domatic number and regular fuzzy anti-domatic number are very useful for solving very wide range problems .We can impose additional restriction.This will lead us to a new notation for fuzzy graph.Also the regular fuzzy domatic partition the regular fuzzy anti-domatic partition and their numbers are useful to solve Transportation problems and Transshipment Model in more efficient way.

REFERENCES

- B.D.Acharya, The strong domination number of a graph and related concepts, *Journal of Math.Phy.Sci.*, 1980; 14(5): 471-475.
- 2. R.B.Allan and R.C.Laskar, On domination and independent domination numbers of a graph, *Discrete Math*, 1978; 23: 73-76.
- 3. C.Berge, Theory of graphs and its applications, Dunod, Paris, 1958.
- Bohdan Zelinka, Antidomatic number of a graph, Archivum Mathematicum (BRNO) Tomus, 1997; 33: 191-195.
- 5. E.J.Cockayne, S. T. Hedetniemi, Towards a theory of domination in Graphs, Networks, 1977; 7: 247-261.
- 6. Gerard J.Chang, The domatic number problem, Discrete Math, 1994; 125: 115-122.
- T. W. Haynes, S. T. Hedetneimi, P.J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., 1998.
- A.Nagoor Gani, V.T.Chandra Sekaran, Domination in Fuzzy Graphs, Advances in Fuzzy Sets and Systems, 2006; 1(1): 17-26.

Dharmalingam *et al*.

9. A.Somasundaram and S.Somasundaram, Domination in Fuzzy Graphs-I, *Elsevier Science*, 1998; 19: 787-791.