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ABSTRACT  

Copula approach is a Sampling-based dimensionality reduction 

technique. Removing linearly redundant combined dimensions, giving 

a convenient way to generate correlated multivariate random variables.  

Managing the integrity of the original information, deducting the dimension of data space 

without losing valuable information. The modern trends in collecting very large and diverse 

datasets have created a great challenge in data analysis. The recent trends in collecting very 

large and diverse datasets have created a great challenge in data analysis. One of the 

attributes of these gigantic datasets is that they often have significant amounts of 

redundancies. The use of very large multi-dimensional data will result in more noise, 

redundant data, and the possibility of unconnected data entities. To efficiently manage data 

represented in a high-dimensional space and to address the impact of redundant dimensions 

on the final results, a new technique has been proposed for the dimensionality reduction using 

Copulas and the LU-decomposition (Forward Substitution) method. The proposed method is 

compared favorably with existing approaches on real-world datasets: Diabetes, Waveform, 

two versions of Human Activity Recognition based on Smartphone, and Thyroid Datasets 

taken from machine learning repository in terms of dimensionality reduction and efficiency 

of the method, which are performed on statistical and classification measures. 
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INTRODUCTION 

Dimensionality reduction technique is based on probabilistic and sampling models; therefore, 

one needs to recall some fundamental concepts. These include the notions of a Probability 

Density Function (PDF), Cumulative Distribution Function (CDF), a random variable used to 

generate samples from a probability distribution, a Copula to model dependencies of data 

without imposing constraints to specific types of marginal probability density functions, and 

dependence and rank correlations of multivariate random variables to measure dependencies 

of the dimensions. 

 

The following table gives basic notations used throughout this paper 

Table 1: Basic notations. 

Primitive Definition 

X n × m data matrix (random variable). 

Xi i
th

 row of the matrix X. 

Xj j
th

 column of the matrix X. 

Fj(.) CDF of the j
th

 column. 

fj(.) PDF of the j
th

 column. 

C Gaussian Copula of the matrix X. 

c Density associated with C. 

Cij Empirical Copula of the matrix X. 

Σ Correlation matrix of C. 

Xt Transposed matrix of X. 

vij Value of the i
th

 row and j
th

 column. 

 

Let f be the Probability Density Function (PDF) of a random variable X. The probability 

distribution of X consists in calculating the probability P(X1 ≤ x1, X2 ≤ x2,……Xm ≤ xm), 

for all(X1,……,Xm) belongs to Rm. It is completely specified by the CDF F which is defined 

in (Rubinstein &Kroese, 2011) as follows: 

F(x1, x2,….., xm) = P(X1 ≤ x1,X2 ≤ x2,…., m ≤ xm) --------(1) 

 

1.1 Random Variable Generation 

The problem of generating a sample from a one-dimensional cumulative distribution function 

CDF by calculating the inverse transform sampling. To illustrate the problem, let X be a 

continuous random variable with a CDF F (x) = P [X≤ x], and U be a continuous uniform 

distribution over the interval [0, 1]. The transform X = F 
−1

(U ) denotes the inverse transform 

sampling function of a given continuous uniform variable U = F (X) in [0, 1], where F 
−1

(u) = 

{min x, F (x) ≥ u } (Rubinstein & Kroese, 2011). So the simple steps used for generating a 

sample X∼ F are given as follows (Rubinstein & Kroese, 2011): 
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1. Generate U ∼ U [0, 1]; 

2. Return X = F
−1 

(U). 

 

The usual problem is how to combine one- dimensional distribution functions to form 

multivariate distributions and how to estimate and simulate their density f (x1, x2, ..., xm) to 

obtain the required number of random samples of Xi, i=1,...,m, especially in high-dimensional 

spaces. This problem will be explained in the following section. 

 

1.2 Modeling with Copulas 

The first usage of Copulas is to provide a convenient way to generate correlated multivariate 

random variable distributions and to present a solution for the difficulties of transformation of 

the density estimation problem. 

 

To illustrate the problem of invertible transformations of m-dimensional continuous random 

variables X1,..., Xm according to their CDF, into m independently uniformly-distributed 

variables U1 = F1(X1), U2 = F2(X2),..., Um = Fm(Xm), let f (x1, x2, ..., xm) be the probability 

density function of X1, ..., Xm, and let c(u1, u2, ..., um) be the joint probability density function 

of U1, U2, ..., Um. In general, the estimation of the probability density function f (x1, x2,..., 

xm) can provide a nonparametric form (unknown families of distributions). In this case, the 

probability density function c(u1, u2, ..., um) of U1, U2, ..., Um has been estimated instead of that X1, ..., 

Xm to simplify the density estimation problem, and then simulated it to achieve the random 

samples X1, ..., Xm using the inverse transformations Xi = F 
−1

(Ui). 

 

Sklar's Theorem showed that there exists a unique m-dimensional Copula C in [0, 1]m with 

standard uniform marginal distributions U1,…..Um. (Nelsen, 2007) states that every 

distribution function F with margins F1... Fm can be wri t t en  as: 

 

F (X1, ..., Xm) = C(F1(X1), ..., Fm(Xm))., ∀(X1, ..., Xm) ∈ IR
m
 (2) 

 

To evaluate the suitability of a selected Copula with estimated parameter and to avoid the 

introduction of any assumptions on the distribution Fi(Xi), one can utilize an empirical CDF 

of a marginal Fi(Xi), to transform m samples of X into m samples of U . An empirical Copula 

is useful for examining the dependence structure of mult ivar ia te  random vectors. Formally, 

the empirical Copula is given by the following equation: 

 C = 1/m
 
( ) (3) 
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Where the function I(arg) is the indicator function, which equals 1 if arg is true and 0 otherwise. 

Here, m is used to keep the empirical CDF less than 1, where m is the number of 

observations. In the following, we will focus on the Copula those results from a standard 

multivariate Gaussian Copula. 

 

1.3 Gaussian Copula 

The difference between the Gaussian Copula and the joint normal CDF is that the Gaussian 

Copula allows having different marginal CDF types from the joint distribution (Nelsen, 

2007). However, in probability theory and statistics, the multivariate normal distribution is a 

generalization of the one-dimensional normal distribution. The Gaussian Copula is defined as 

follows:  

C(Ф(x1),….. Ф(xm)) = 1/ exp(-1/2 X
t
(Σ

−1
−I)X ) (4) 

 

Where Φ (xi) is the CDF standard Gaussian distribution of fi (xi), i.e., Xi ∼ N (0, 1), and Σ is the 

correlation matrix. The resulting Copula C(u1, ..., um) is called Gaussian Copula. The density 

associated with C(u1, ..., um) is obtained with the following equation: 

 

C (u1,…., um) =1/ exp[-1/2 ] (5) 

 

Where ui =Ф(xi), and ξ = (Φ
−1

(u1),………., Φ
−1

(um))
T
 . 

 

1.4 Dependence and Rank Correlation 

Since the Copula of a multivariate distribution describes its dependence structure, it might 

be appropriate to use measures of dependence which are Copula-based. The Pearson 

correlation measures the relationship Σ = cov(Xi, Xj)/(σXi σXj ) where cov(Xi, Xj) is the 

covariance of Xi and Xj while σXi , σXj are the standard deviations of Xi and Xj . Kendall 

rank correlation (also known as Kendall’s coefficient of concordance) is a non- parametric 

test that measures the strength of dependence between two random samples Xip ;Xip of n 

observations. The notion of concordance can be defined by the following equation: 

 

τ = P [(X
i
 − X

j
) (X

i
t − X

j
) > 0] –P [(X

i
 − X

j
) (X

i
t − X

j
) < 0] (6) 

 

For the Gaussian Copula, Kendall’s τ can be calculated as follows: 

τ = 2/ π arcsin ΣXiXj (7) 
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2. LITERATURE REVIEW 

2.1 Linear dimensionality reduction 

Principal Component Analysis (PCA) is a well established method for dimensionality 

reduction. It derives new variables (in decreasing order of importance) that are linked by 

linear combinations of the original variables and are uncorrelated. Several models and 

techniques for data reduction based on PCA have been proposed (Sasikala & Balamuru- gan, 

2013). (Zhai et al., 2014) proposed a maximum likelihood approach to the multi-size PCA 

problem. The covariance based approach was ex- tended to estimate errors within the 

resulting PCA decomposition. Instead of making all the vectors of fixed size and then 

computing a covariance matrix, they directly estimate the covariance matrix from the multi-

sized data using nonlinear optimization. (Kerdprasop et al., 2014) studied the recognition 

accuracy and the execution times of two different statistical dimensionality reduction methods 

applied to the biometric image data, which are: PCA and Linear Discriminat Aanalysis 

(LDA). The learning algorithm that has been used to train and recognize the images is a support 

vector machine with linear and polynomial kernel functions. The main drawback of reducing 

dimensionality with PCA is that it can only be used if the original variables are correlated, and 

homogeneous, if each component is guaranteed to be independent and if the dataset is 

normally distributed. If the original variables are not normalized, PCA is not effective. 

 

The Sparse Principal Component Analysis (SPCA) (Zou et al., 2006) is an improvement of the 

classical method of PCA to overcome the problem of correlated variables using the LASSO 

technique. LASSO is a promising variable selection technique, producing accurate and sparse 

models. SPCA is based on the fact that PCA can be written as a regression problem where the 

response is predicted by a linear combination of the predictors. There- fore, a large number of 

coefficients of principal components become zero, leading to a modified PCA with sparse 

loading. Many studies on data reduct- tion based on SPCA have been presented. (Shen & 

Huang, 2008) proposed an iterative algorithm named sparse PCA via regularized SVD 

(sPCA- rSVD) that uses the close connection between PCA and singular value decomposition 

(SVD) of the data matrix and extracts the PCs through solving a low rank matrix 

approximation problem. (Bai et al., 2015) proposed a method based on sparse principal 

component analysis for finding an effective sparse feature principal component (PC) of 

multiple physiological signals. This method identifies an active index set corresponding to the 

non-zero entries of the PC, and uses the power iteration method to find the best direction. 
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Singular Value Decomposition (SVD) is a powerful technique for dimensionality reduction. It 

is a particular case of the matrix factorization approach and it is therefore also related to PCA. 

The key is- sue of an SVD decomposition is to find a lower dimensional feature space by 

using the matrix product U S V , where U and V are two orthogonal matrices and S is a 

diagonal matrix with m × m, m ×n, and n× n dimensions, respectively. SVD retains only r× n 

positive singular values of low effect to reduce the data, and thus S becomes a diagonal 

matrix with only r non-zero positive en- tries, which reduces the dimensions of these three 

matrices to m × r, r× r, and r× n, respectively. Many studies on data reduction have been 

presented which are built upon SVD, such as the ones used in (Zhang et al., 2010) and 

(Watcharapinchai et al., 2009). (Lin et al., 2014) developed a dimensionality reduction 

approach by applying the sparsified singular value decomposition (SSVD). Their paper 

demonstrates how SSVD can be used to identify and remove nonessential features in order to 

facilitate the feature selection phase, to analyze the application limitations and the 

computational complexity. However, the application of SSVD on large datasets showed a loss 

of accuracy and makes it difficult to compute the eigenvalue decomposition of a matrix product 

A
T
 A, where A is the matrix of the original data. 

 

2.2 Nonlinear dimensionality reduction 

A vast literature devoted to nonlinear techniques has been proposed to resolve the problem of 

dimensionality reduction, such as manifold learning methods, e.g., Locally Linear Embedding 

(LLE), Isometric mapping (Isomap), Kernel PCA (KPCA), Laplacian Eigenmaps (LE), and a 

review of these methods is summarized in (Gisbrecht & Hammer, 2015; Wan et al., 2016). 

KPCA (Kuang et al., 2015) is a nonlinear generalization of PCA in a high-dimensional kernel 

space constructed using kernel functions. By comparing with PCA, KPCA computes the 

principal eigenvectors using the kernel matrix, rather than the covariance matrix. A kernel 

matrix is done by computing the inner product of the data points. LLE (Hettiarachchi & 

Peters, 2015) is a nonlinear dimensionality reduction technique based on simple geometric in- 

tuitions. This algebraic approach computes the low-dimensional neighborhood preserving 

embeddings. The neighborhood is preserved in the embedding based on a minimizing cost 

function in input space and output space, respectively. Isomap (Zhang et al., 2016) explores 

an underlying manifold structure of a dataset based on the computation of geodesic manifold 

distances between all pairs of data points. The geodesic distance is determined as the length of 

the shortest path along the surface of the manifold between two data points. It first constructs 

a neighborhood graph between all data points based on the connection of each point to all its 
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neighbors in the input space. Then, it estimates geodesic distances of all pairs of points by 

calculating the shortest path distances in the neighborhood graph. Finally, multidimensional 

scaling (MDS) is applied to the arising geodesic distance matrix to find a set of low-

dimensional points that greatly match such distances. 

 

2.3 Sampling dimensionality reduction 

Other widely used techniques are based on sampling. They are used for selecting a 

representative subset of relevant data from a large dataset. In many cases, sampling is very 

useful because processing the entire dataset is computationally too expensive. In general, the 

critical issue of these strategies is the selection of a limited but representative sample from 

the entire dataset. Various random, deterministic, density biased sampling, pseudo-random 

number generator and sampling from non-uniform distribution strategies exist in the literature 

(Rubinstein & Kroese, 2011). How- ever, very little work has been done on the Pseudo- 

random number generator and sampling from non- uniform distribution strategies, especially 

in the multi-dimensional case with heterogeneous data. Naive sampling methods are not 

suitable for noisy data which are part of real-world applications, since the performance of the 

algorithms may vary un- predictably and significantly. The random sampling approach 

effectively ignores all the information present in the samples which are not part of the reduced 

subset (Whelan et al., 2010). An advanced data reduction algorithm should be developed in 

multi-dimensional real-world datasets, taking into account the heterogeneous aspect of the 

data. Both approaches (Colomé et al., 2014)(Fakoor & Huber, 2012) are based on sampling and 

a probabilistic representation from uniform distribution strategies. The authors of (Fakoor & 

Huber, 2012) pro- posed a method to reduce the complexity of solving Partially Observable 

Markov Decision Processes (POMDP) in continuous state spaces. The paper uses sampling 

techniques to reduce the complexity of the POMDPs by reducing the number of state 

variables on the basis of samples drawn from these distributions by means of a Monte Carlo 

approach and conditional distributions. The authors in (Colomé et al., 2014) applied 

dimensionality reduction to a recent movement representation used in robotics, called 

Probabilistic Movement Primitives (ProMP), and they addressed the problem of fitting a low-

dimensional, probabilistic representation to a set of demonstrations of a task. The authors 

fitted the trajectory distributions and estimated the parameters with a model-based stochastic 

using the maximum likelihood method. This method assumes that the data follow a 

multivariate normal distribution which is different from the typical assumptions about the 

relationship between the empirical data. The best we can do is to examine the sensitivity of 
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results for different assumptions about the data distribution and estimate the optimal space 

dimension of the data. 

 

2.4 Similarity measure dimensionality reduction 

There are other widely used methods for data reduction based on similarity measures 

(Wencheng,2010)(Pirolla et al., 2012) (Zhang et al., 2010). Ac- cording to (Dash et al., 2015), 

the presence of redundant or noisy features degrades the classification performance, requires 

huge memory, and consumes more computational time. (Dash et al., 2015) proposes a three-

stage dimensionality reduction technique for microarray data classification using a comparative 

study of four different classifiers, multiple linear regression (MLR), artificial neural network 

(ANN), k-nearest neighbor (k-NN), and naive Bayesian classifier to observe the improvement 

in performance. In their experiments, the authors reduce the dimension without compromising 

the performance of such models. (Deegalla et al., 2012) proposed a dimensionality reduction 

method that employs s classification approaches based on the k-nearest neighbor rule. The 

effectiveness of the reduced set is measured in terms of the classification accuracy. This 

method attempts to derive a minimal consistent set, i.e., a minimal set which correctly 

classifies all the original samples (Whelan et al., 2010). (Venugopalan et al., 2014) discussed 

the ongoing work in the field of pattern analysis for bio-medical signals (cardio-synchronous 

waveform) using a Radio Frequency Impedance Interrogation (RFII) device for the purpose of 

user identification. They discussed the feasibility of reducing the dimensions of these signals 

by projecting them into various sub-spaces while still preserving inter-user discriminating 

information, and they compared the classification performance using traditional dimensionality 

reduction methods such as PCA, independent component analysis (ICA), random projections, 

or k-SVD-based dictionary learning. In the majority of cases, the authors see that the space 

obtained based on classification carries merit due the dual advantages of reduced dimension 

and high classification. 

 

Developing effective clustering methods for high- dimensional datasets is a challenging task 

(Whelan et al., 2010). (Boutsidis et al., 2015) studied the topic of dimensionality reduction 

for k-means clustering that encompasses the union of two approaches: 1) A feature selection-

based algorithm selects a small subset of the input features and then the k-means is applied on 

the selected features. 2) A feature extraction-based algorithm constructs a small set of new 

artificial features and then the k- means is applied on the constructed features. The first 

feature extraction method is based on random projections and the second is based on fast 
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approximate SVD factorization. (Sun et al., 2014) developed a tensor factorization based on a 

clustering algorithm (k-mean), referred to as Dimensionality Reduction Assisted Tensor 

Clustering (DRATC). In this algorithm, the tensor decomposition is used as a way to learn low-

dimensional representation of the given tensors and, simultaneously, clustering is con- ducted by 

coupling the approximation and learning constraints, leading to the PCA Tensor Clustering 

and Non-negative Tensor Clustering models. 

 

Problems identification and Objectives 

The most serious problem is the presence of missing values in datasets. Missing values can 

result in loss of efficiency of the dimensionality reduction approach, lead to complications in 

handling and analyzing the data, or distort the relationship between the data distribution. 

Also, it is interesting to investigate the possibility of using Meta heuristics or hybrid 

approaches to determine a solution of the proposed optimization problem in the Big Data 

setting. Objectives of the research work are to overcome several problems identified and strong 

efforts to improve the performance of the dimensionality reduction approach in very large 

datasets.  

 

Proposed Methodology 

The approach presented in this paper for dimensionality reduction in very large datasets is 

based on the theory of Copulas and the LU-decomposition method (Forward Substitution). The 

main goal of the method is to reduce the dimensional spaces of data without losing 

important/interesting information. On the other hand, the goal is to estimate the multivariate 

joint probability distribution without imposing constraints on specific types of marginal 

distributions of dimensions. Figure 1 shows an overview of the proposed reduction method 

which operates in two main steps. 

 

 

Figure 1: Overview of the proposed reduction method. 
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In the first step, large raw datasets are decomposed into smaller subsets when calculating the 

data dependencies using a Copula by taking into account heterogeneous data and removing the 

data which are strongly dependent. In the second step, we want to reduce the space 

dimensions by eliminating dimensions that are linear combinations of others. Then we will 

find the coefficients of the linear combination of dimensions by applying the LU-

decomposition method (Forward Substitution) to each subset to obtain an independent set of 

variables in order to improve the efficiency of data mining algorithms. The two different steps 

of the pro- posed method are as follows (See also Figure 1): 

 

Step 1: Construction of dependent sample subset Si, (i=1,...,kt) 

In order to decompose the real-world dataset into smaller dependent sample subsets, vectors 

are considered which are linearly dependent in the original data. 

 

Empirical Copula will be calculated first to better observe the dependencies between 

variables. According to the marginal distributions from the observed and approved empirical 

Copula, we can determine the theoretical. 

 

 

Figure 2: Construction of the subsets Si, (i=1,...,kt). 

 

Copula, that links univariate marginal distributions to their joint multivariate distribution 

function, and then we will regroup dimensions having the strong correlation relationship in 

each sample subset Si,(i=1,...,kt) by estimating the parameters of the Copula. In this paper, we 

have presented the Gaussian Copula that corresponds to our experimental results. An 

illustration of the Copula method is given in Figure 2. 

 

The dependence between two continuous random variables X1 and X2 is defined as follows: If 

the correlation parameter ρ is greater than 0.5, then X1 and X2 are positively correlated, 
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× 

meaning that the values of X1 increase as the values of X2 increase (i.e., the more each at- 

tribute implies the other). Hence, a higher value may indicate that X1 and X2 are positively 

dependent, and probably have a highly redundant attribute, then these two samples will be 

made as in the same subset Si,(i=1,...,kt). When the parameter of the Copula ρ of the two 

continuous random variables X1 and X2 is greater than 0.7, then X1 and X2 have a strong 

dependence. If the resulting value is equal or less than 0, then X1 and X2 are independent and 

there is no correlation between them. 

 

The output of the sample subset Si,(i=1,...,kt) represents a matrix that retains only dependent 

samples of the original matrix in order to detect, and remove a maximum of the redundant 

dimensions, which are linear combinations of others, in the second step. 

 

Step 2: LU-decomposition method 

The key idea behind the use of the Forward Substitution method is to solve the linear system 

equations as given by the samples Si,(i=1,...,kt) with an upper-triangular coefficient matrix in 

order to find the coefficients of linear sample combinations and to provide a low linear space 

(Xi;i=1,……k) of the original matrix as shown in Figure 3. 

 

 

Figure 3: Schema of dimensionality reduction. 

 

The LU decomposition method is an efficient procedure for solving a system of linear 

equations α χ Ś = C, and it can help accelerate the computation. When C is a column vector in 

the dependent sample subsets Si,(i=1,...,kt), and αj is an output vector representing the 

relationship between dimensions or the coefficients of the linear combination of dimensions, 
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SSi;(i=1,….k’-1) induces a lower triangular matrix without column C. We conclude that each 

matrix Śi,(i=1,...,kt−1) induces a lower triangular matrix of the following form: 

 

(‘S) {α1x11 = c1 

{α1x21 + α2x22 = c2 (8) 

{α1xn1 + α2xn2 + ... + αnxnn = cn 

 

From the above equations, we see that α1 = c1/x11. Thus, we compute α1 from the first 

equation and substitute it into the second to compute α2,..., etc. Repeating this process, we 

reach equation i, 2≤ i ≤n, using the following formula: 

αi = 1/xi[ci- ], i=2,,,n (9) 

 

Algorithm 1: Dimensionality linear combination reduction method 

Input: Vector C and a lower triangular matrix ‘S; 

Output: Vector α. 

Begin 

α1 = c1/x11 

for i := 2 to n do 

αi = ci 

for j := 1 to i -1 do 

αi= αi - xijαj  

end  

αi = αi /xii 

end  

 

The algorithm 1 used for this resolution makes (n × (n - 1))/2 additions and subtractions, (n× 

(n - 1))/2 multiplications and n divisions to calculate the solution, a global number of 

operations in the order of n
2
. 

 

CONCLUSIONS 

In this paper, we have proposed a new method for dimensionality reduction in the data pre-

processing phase of mining high-dimensional data. This ap proach is based on the theory of 

Copulas (sampling techniques) to estimate the multivariate joint probability distribution 

without constraints of specific types of marginal distributions of random variables that 

represent the dimensions of our datasets. A Copula based model provides a complete and 
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scale- free description of dependency that is thereafter used to detect the redundant values. A 

more extensive evaluation is made by eliminating dimensions that are linear combinations of 

others after having decomposed the data, and using the LU- decomposition method. We have 

reformulated the problem of data reduction as a constrained optimization problem. We have 

compared the proposed approach with well-known data mining methods using five real-world 

datasets taken from the machine learning repository in terms of the dimensionality reduction 

and the efficiency of the methods. The efficiency of the proposed method was improved by 

using the both statistical and classification methods. The different results obtained show the 

effectiveness of our approach which outperforms significantly the performance of 

dimensionality reduction comparing to other methods, i.e., it provided a smaller bias with 

more better standard deviations, a highest precision, and a lowest recall with all classifiers for 

all databases. 
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