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ABSTRACT 

In this paper full Full-Order and Reduced-Order Linear Systems with 

Unknown Inputs Implementations are test both full order and reduce 

order observer design and examination of the stability of any linear 

system. The system stability test by the coordinate system they system 

are used provided the all existence condition. The full order observer 

are observed in all state and reduce order observer is estimated by the 

state reduce order observer are more complex. The advantages of the 

reduce observer avoiding the reconstructing accessible states design.  

Drawback and advantage the examination technique is pointed andillustrated by the matlab 

simulation in numerical examples. The theoretical results have also been developed how to 

set up the reduced-order initial conditions using the least-squares method, derived  and an 

observation that the reduced-order observer output is identical to the original system’s actual 

output, the result established by matlab/simulink model. 

 

KEYWORDS: Matlab simulation, full order observer, reduce order observer, unknown 

input, linear system. 

 

1. INTRODUCTION  

The proposed system are Hopefully by understanding full- and reduced-order observer design 

and Matlab/Simulink implementation, students, instructors, engineers, and scientists will 
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appreciate the importance of observers and feel confident using observers and observer-based 

controllers in numerous engineering and scientific applications. In the  control systems, time 

invariant linear systems are represented, in state-space form, by, 

  =Ax(t)+Bu(t),    x (0) = x0                   (1) 

 

Where x(t) is the state-space vector of dimension n, u (t) is the system input vector (which 

may be used as a sys-tem control input) of dimension m, and matrices A and B are constant 

and of appropriate dimensions. In practice, the initial condition is often unknown, in which 

case an observer is designed. estimate or observe system state-space variables at all times.  

 

To take the advantage of the useful features of feedback (see, for example, it is often assumed 

that all state variables are available for feedback (full-state feedback), allowing that a 

feedback control input can be applied as,  

u(x(t))=-Fx(t),                         (2) 

 

Where F is a constant feedback matrix of dimension m # n. The fact that all state-space 

variables must be available for feed-back is a prevalent implementation difficulty of full-state 

feedback controllers. Moreover, large-scale systems with full-state feedback have many 

feedback loops, which might become very costly and/or impractical. Moreover, often not all 

state variables are available for feedback. Instead, an output signal that represents a linear 

combination of the state-space variables is available, 

y (t)= Cx(t)                                (3) 

 

Where  dim " y (t), = l < n = dim "x (t),.  It is assumed that 

l = c = rank=C, so there are no redundant measurements. In such a case, under certain 

conditions, an observer can be designed that is a dynamic system driven by the system input 

and output signals with the goal of reconstructing (observing, estimating) all system state-

space variables at all times. 

 

This article shows how to implement full- and reduced-order observers using the Matlab and 

Simulink software packages for computer-aided control system design. In fact, how to 

implement a linear system and its observer, represented by their state-space forms, using the 

Simulink state-space blocks is shown in below, 
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Fig. 1: A block diagram for the system observer configuration. 

 

2. FULL-ORDER OBSERVER DESIGN 

The theory of observers originated in the mid 1960s According to any system driven by the 

output of the given system can serve as an observer for that system. Consider a linear 

dynamic system, 

(t) =Ax(t) + Bu(t), x(t0)= x0  = unknown, 

y(t) = Cx(t).                           (4) 

 

The system output variables y(t) are available at all times, and that information can be used to 

construct an artificial dynamic system of the same order n
th

 as the system under consideration 

that can estimate the system state-space variables at all times. Since the matrices A, B, C are 

known, it is rational to postulate an observer for (4) as, 

(t) = A (t ) +Bu (t), 

(t0)= 0,                                (5) 

 

If the outputs y (t) and y (t) are compared, they will, in general, be different since, in the first 

case, the initial condition of (4) is unknown, and, in the second case, the initial condition of 

the proposed observer (5) is chosen arbitrarily by a control engineer (designed). The 

difference between these two outputs generates an error signal, 

y(t)- (t) = Cx(t)-C (t)=Ce (t),               (6) 
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Which can be used as the feedback signal to the observer such that the estimation 

(observation) error e (t) = x (t) -xt (t) is reduced. An observer that takes into account feedback 

information about the observation error, 

(t)  = A (t ) +Bu (t) + K (y(t) - (t))        

A (t ) +Bu (t) + KCe (t),                (7) 

 

Where the matrix K represents the observer gain, which must be selected such that the 

observation error tends to zero as time increases. From (4) and (7), comes an expression for 

dynamics of the observation error, 

 (t) =   (A - KC)+ e(t), 

e ( t0)  = unknown.      (8) 

 

If the observer gain K is chosen such that the feedback matrix A KC is asymptotically stable 

(has all eigenvalues with negative real parts), then the estimation error e (t) will decay to zero 

for any initial condition e (t0). This stabilization requirement can be achieved if the pair (A, 

C) is observable. It can be also noted that the error (and observer) stabilization can be 

achieved under a weaker condition that the pair (A, C) is detectable (not all, but at least the 

unstable modes of matrix A are observable). 

 

A standard rule of thumb is that an observer should be designed such that its response is 

much faster than the sys-tem. This is especially important when the observed state variables 

are used for the purpose of feedback control. This can be achieved theoretically by choosing 

the observer eigenvalues to be about ten times faster than the system eigenvalues. that is by 

setting the smallest real part of the observer eigenvalues to be ten times larger than the largest 

real part of the closed-loop system eigenvalues.  

 

Since the system changes in time, its estimated state variables must be as current as possible, 

otherwise the feedback signals represent considerably delayed estimates of the actual state 

variables, which can make the controller inaccurate and inefficient. 

│Re{λmin(A-KC)}│observer>10 

Re{λmmax(A-BF)}│system                      (9) 

 

Theoretically, an observer can be made arbitrarily fast by locating its closed-loop eigenvalues 

very far to the left in the complex plane, but very fast observers can generate noise, which is 

not desirable. 
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After the system eigenvalues λi (A -BF) are deter-mined, the observer eigenvalues λi (A - 

KC) are placed in the desired locations by selecting the corresponding ob-server gain K using 

the eigenvalue assignment technique. 

 

2.1 Separation Principle 

It is important to point out that the system-observer con-figuration preserves the closed-loop 

system eigenvalues that would have been obtained if the linear, perfect-state-feedback control 

had been used. This fact is shown below.  

 

The system (4) under perfect state-feedback control, that is, u(x(t)) Fx(t) has the closed-loop 

form, 

(t) = (A - BF)x(t),                       (10) 

 

So that the eigenvalues of the matrix A - BF are the closed-loop system eigenvalues under 

perfect state feedback. In the case of the system-observer configuration, the actual control 

signal applied to both the system and the observer is 

u( (t)) = -F (t) = -Fx(t) + Fe(t)         (11)   

From (8), (10), and (11), 

= =A   

 

Since the state matrix of this augmented system is upper block triangular, its eigenvalues are 

equal to the union of the eigenvalues of the matrices A - BF and A -KC. A very simple 

relation among x( t), e (t), and x ( t) can be written using the definition of the estimation error 

as 

  =      = T   

Note that the matrix T is nonsingular. To go from xe-coordinates to x -coordinates. 

 

3. Full-Order Observer Implementation in Simulink 

An observer, being an artificial dynamic system of the same order as the original system, can 

be built by a control engineer using either capacitors and resistors (what electrical engineers 

do) or using masses, springs, and frictional elements or simply using a simulink modal that 

simulates and solves the corresponding differential equation, which is something that 
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anybody with a basic knowledge of control systems and differential equations can do, 

especially those familiar with Matlab and Simulink.  

(t) = A (t) + Bu(t) + K(y(t) – (t))      

(t) = c (t)                      (12) 

 

In practice, the observer is implemented as a linear dynamic system driven by the original 

system input and output signals, that is, u (t) and y(t). Eliminating y (t) from the observer 

equation (12) yields the observer form used in practical implementations, 

 (t)=(A-KC) (t)+Bu(t)+ Ky(t).          (13) 

 

The corresponding block diagram of the system-observer configuration, also known as the 

observer-based controller configuration, is presented in Figure with the feedback loop closed 

using the feedback controller as defined in namely  u( (t )) = -F  (t). 

 

The state-space block of Simulink is used. That block allows only one input vector and one 

output vector. For that reason, the observer is represented as a system with one augmented 

unknown input, 

=(A-KC) (t)+[BK]          (14) 

 

Using the given dimensions of the state, input, and output variables (respectively n, m, and c), 

the system matrices for the state-space Simulink blocks are set as follows. For the system, the 

matrices are respectively: A, B, C, zeros(c,m), the last one meaning a zero matrix of 

dimensions cm. 

 

The results obtained for  y(t) and (t) and output observation error e(t)  may be presented 

using the Simulink block “scope,” or passed to the Matlab window, together with time, where 

they can be plotted using the Matlab plot function. For example, plot(t,error) plots the output 

observation error as a function of time. t Such a plot (or figure) can be further edited using 

numerous Matlab figure-editing functions. For the observer, the corresponding matrices 

should be set using information from, 

         Observer State Space 

         Block Setup 

      A – K * C, [B K], eye(n), 

   Zeros(n,  m+c), X0hat                    (15) 



Jivjendra et al.                               World Journal of Engineering Research and Technology 

 

 
 

www.wjert.org  

 

193 

The first matrix is the observer feedback matrix, the second is the augmented matrix of two 

inputs into the observer and the third matrix (set to the identity of n dimension) indicates that 

estimates of all n state variables are available on the observer output. Since the observer is a 

system either built by a designer or a computer program that simulates observer dynamics, 

the designer has full freedom to choose the observer output matrix and set it to an identity 

matrix so that all observed (estimated) state space variables appear on the observer output. 

The fourth matrix represents the matrix “D” in the observer block and, due to the fact that the 

input matrix into the observer is the augmented matrix [B K] of dimension n*(m+c) and the 

output matrix from the observer is of dimension n*n (identity matrix In), the dimension of the 

zero matrix must be n*(m+c) Finally, the last entry in denotes the observer initial condition 

vector that can be set arbitrarily. Later on in the article, a rational choice of the observer 

initial condition will be discussed. These matrices can be entered in the Simulink state-space 

block by double left clicking on the observer state-space block, which will open a new 

window as shown in Figure For details, see “Matlab Code: System State-Space Block Setup.” 

 

4. REDUCE-ORDER OBSERVER DESIGN 

Consider the linear dynamic system defined with the corresponding measurements. Assume 

that the output matrix C has full rank (equal to c) so that there are no redundant 

measurements. This means that the output equation y(t)= Cx(t)  represents, at any time, c 

linearly independent algebraic equations for n unknown state variables x(t).  Note that y(t), of 

dimension, c is the measured system output, and hence is known at all times. In this section, 

it is shown how to construct an observer of reduced order r = n - c for estimating the 

remaining r state-space variables [c state variables can be obtained directly from the system 

measurements y(t)= Cx(t)]. As indicated the reduced-order observer should be used when the 

system measurements have no noise. If noise is present, it is better to use the full-order 

observer, since it filters the system measurements and, in general, all state variables. 

 

It will be seen that the procedure for obtaining the reduced-order observer is not unique. An 

arbitrary matrix C1 of dimension r*n whose rank is equal to r = n - c can be found such that 

the augmented matrix, 

                 rank  = n, 

has full rank equal to . n Introduce a vector  p(t) of dimension r such that 

                    p(t) = C1x(t) 

then  
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x(t), 

which can be solved to obtain 

(t)=Ly(t)+L1 (t) 

 

Where y(t) are known system measurements and (t) has to be obtained using a reduced-

order observer of dimension. r<n As a preliminary result in the process of constructing a 

reduced-order observer for p(t) it can be noticed from that the following algebraic relations 

exist, 

In = [L L1] =  =                   (16) 

giving CL= IC, CL LI = Ir,  CL1=0, C1L=0, where In, Ic, Ir  are identity matrices of 

corresponding dimensions and n=c+r. 

  

Since from p(t) = C1x(t) the differential equation for p(t) can be easily constructed using the 

original system differential equation which leads to,  

 = (p(t)) =  (c1x(t)) = C1 (t)                      

= C1Ax(t)+C1Bu(t)  

= C1AL1p(t)+C1Bu(t)      (17) 

 

To design an observer for p(t) using the above established principal  

Y(t) = Cx(t) =CLy(t) + CL1p(t)  

= y(t)+0 =y(t)   (18) 

 

More information about y(t) can be obtained from the knowledge of (t), in which case  

(t) = C (t) = CAx(t)+CBu(t) 

= CAL1p(t)+CALy(t)+CBu(t).        (19) 

 

This indicates that (t) contains information about p(t), so that it can be used to construct an 

observer for p(t) 

(t)=C1AL1 (t)+C1ALy(t)+C1Bu(t)+ 

K1( (t)- (t)),                                 (20) 

 

Where K1 is the reduced-order observer gain, which has to be determined such that the 

reduced-order observer error p(t)- (t) goes to zero as time increases. The reduced-order 
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observer measurement is obtained from by replacing. p(t) by its estimate (observation) (t), 

that is, 

(t)=CAL1 (t)+CALy(t)+CBu(t).    (21)   

 

Signal differentiation is not a recommended operation since it is very sensitive to noise; 

signal differentiation amplifies noise so it should be avoided in all practical applications. 

Using an appropriate change of variables, it is possible to completely eliminate the need for 

information about the derivative of the system measurements (t). 

 

4.1 Setting Reduced-Order-Observer Eigenvalues in the Desired Locations 

As discussed in good performance typically requires placing the reduced-order observer 

eigen values such that the reduced-order observer is roughly ten times faster than the system 

whose speed is determined by the closed loop system eigen values given by λ(A-BF) Note 

that the reduced-order observer matrix can be written as, 

Aq=C1AL1-K1CAL1=(C1AL1) – K1(CAL1) 

 

To determine the reduced-order observer gain K1 such that it arbitrarily places the reduced-

order observer eigen values, the pair (C1AL1,CAL1) must be observable. The next subsection 

will show that this condition is satisfied if the original system is observable (the pair (A,C) is 

observable). See “Reduced-Order-Observer Design Process” for details on the steps involved 

in the design of this observer. 

 

4.2 Reduced-Order Observer Design with a Change of State Coordinates 

It is shown first in this subsection that a reduced-order observer can be also designed with a 

change of state coordinates. More importantly, with this change of state coordinates, it 

becomes easy to prove the result that if the original system is observable then the reduced-

order observer is also observable. 

 

Consider a linear system with the corresponding measurements defined in (4). The reduced-

order observer design can be simplified, and some important conclusions can easily be made 

using a nonsingular transformation p
n*n

 

                Px(t) =                 
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Such that 

Y(t) = Cx(t) = CP
-1

Px(t) = CP
-1

       

= [Ic 0]   = x1(t)                    (22) 

 

To map the system into new coordinates in which the system measurements provide complete 

information about a part of the state-space vector x1(t) of dimension. c In such a case, an 

observer is needed to estimate the remaining part of the state-space vector, that is, x2(t) of 

dimension r = n-c. This is possible since there exists a transformation P of the full-rank 

matrix, C obtained using elementary transformations, such that CP
-1

 = [Ic 0]. This procedure 

can be found in many standard linear algebra. Such a transformation is defined in so that. 

CP
-1

 = C[ L  L1] = [CL  CL1] = [I  0] 

 

5. Extension to Kalman Filtering 

By mastering the design of deterministic observers presented in this article, more complex 

linear dynamic estimation problems can also be considered, for example, the Kalman filtering 

and other optimal linear estimation problem In fact, the Kalman filter can also be 

implemented as a software program in Matlab/Simulink using the methodology presented in 

this article. For a linear dynamic system disturbed by a Gaussian white noise stochastic 

process w(t) and system measurements corrupted by a Gaussian white noise stochastic 

process v(t) 

(t) = AX(t) + Bu(t) + Gw(t), 

Y(t) = Cx(t) + v(t)                           (23) 

 

The kalman filter is given by  

KF (t) = (A-KC) KF (t) + Bu(t) + KKFy(t),  

                                                              (24) 

 

Which is exactly the same structure as the full-order observer structure is presented. The 

Kalman filter gain KKF and the Kalman filter initial conditions must be chosen using results 

from optimal Kalman filtering theory. 
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6. Full And Reduce Order Observer Designs For An Aircraft Model    


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D  

Matrix C1 needed for the reduce-order observer design is chosen  











0100

0010
1C  

 

See “Matlab Program for the Aircraft Simulation Example” for the corresponding Matlab 

program with all simulation data. The obtained differences between the actual and estimated 

state trajectories using the full- and reduced-order observers are presented in Figure 2 and 3. 

In both cases, the initial conditions for the observers are obtained using the least-squares 

formulas. It can be seen from Figures 4 to 7 that the reduced-order observer performs better 

than the full-order observer. Not only are there no observation errors for the two state 

variables directly measured, but the reduced-order observer is also more accurate than the 

full-order observer. Note that the eigenvalues for both observers are placed to be of the same 

speed.  

 

The reduced-order observer eigenvalues are placed at -10, -11 and the full-order observer 

eigenvalues are placed at -10, -11, -12, -13. Moreover, the reduced-order observer is simpler 

for implementation, since it is a dynamic system of lower order than the original system. An 

additional advantage of the reduced-order observer is that they require fewer sensors and 

fewer feedback loops for corresponding feedback control applications. 

 

The importance of Matlab/Simulink implementation of the full- and reduced-order observers 

has been demonstrated in the previous sections of this article. These results can be used in all 

areas of science and engineering.  
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7. SIMULATION AND RESULT 

The Full-Order and Reduce-Order observer is obtained by matlab simulink the system is 

work on the pole placement method it is find the system stability. On  the system stable then 

method is not work but the system are unstable then the find unstable pole location and pole 

is place by desired location in required characteristic equation on the system the simulink 

modal and simulink result in shown below.    
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Fig. 4: System error. 

 

 

Fig. 5: System output of reduce and full order observer. 
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Fig. 6: Full-order Output. 

 

 

Fig. 7: Reduce-order Output. 

 

8. CONCLUSION 

In this proposed system has been shown in detail how to implement Full-order and Reduce-

order observer in matlab/simulink. The fundamental method are conclude by the system 

stability.  
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The stability are find in the drown in the figure by given characteristic equation to check the 

stability of any system. In this method are implement by the required input and output are 

increase then the system are use in the more input and also more output in future work.  

 

The system are use in the closed loop system it main work to get required output in the 

system. The system are more useful in the find system stability it is very easy to implement in 

the personal and industrial uses to change the system input and output. 
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