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ABSTRACT 

The fuzzy logic and fuzzy numbers have been applied in many fields 

such as operation research, differential equations, fuzzy system 

reliability, control theory and management sciences etc. The fuzzy 

logic and fuzzy numbers are widely used in engineering applications 

also. In this paper we first describe Triangular Fuzzy Number (TFN)  

with arithmetic operations and solve a linear programming problem by Triangular Fuzzy 

Number (TFN) using Dual-simplex algorithm. 
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INTRODUCTION 

A fuzzy set in a universe X is defined by its membership function which maps X to the 

interval
[1]

 and therefore implies a linear, i.e. total ordering of the
[27]

 elements of X, one could 

argue that this makes them inadequate to deal with incomparable information. A possible 

solution, however, was already implicit in Zadeh’s
[29-31]

 seminal paper in a footnote; he 

mentioned that “in a more general setting, the range of the membership function can be taken 

to be a suitable partially ordered set P.” In every sector of our life,
[1-3][21-22]

 there arise several 

problems which can be formulated mathematically as optimization problem with the goal to 

maximize the profit or to minimize the cost to formulate the problem mathematically, some 

constraints or restrictions are to be considered. Linear programming is a one of the most 
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important operational research technique and it is applied in many sector especially related to 

the optimization problem. Linear programming was first introduced by George Dantzig in 

1947. Linear programming is a technique that is to optimize the use of limited resources. 

Formulation of fuzzy linear programming was first introduced by Zimmermann. Deldago
[23]

 

makes a general model of fuzzy linear programming within the limits of technical 

coefficients fuzzy and fuzzy right side. Fung and Hu
[28]

 introduced the linear programming 

with the technique coefficients based on fuzzy numbers. Verdegay defined the dual problem 

through parametric linear program and shows that the problem of primal - dual fuzzy linear 

program has the same solution. In this paper we consider the linear programming problem in 

its standard form to find out it’s feasible and optimal solution. We use dual simplex algorithm 

by triangular fuzzy number
[12-16]

 to solve the linear programming problem. 

 

Definition 

Triangular fuzzy number A fuzzy number  1 2 3, ,
i

A a a a is called triangular fuzzy number if 

it’s membership function function is given by  
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1. Some arithmetic operations of Triangular Fuzzy Number 

 Properties 3.1 

 If  1 1 1, ,
i

A a b c and  2 2 2, ,
i

B a b c are two TFN then 
i i i

C A B  is also TFN. 

  1 2 1 2 1 2, ,
i i

A B a a b b c c    
 

 

 Properties 3.2 

If  1 1 1, ,
i

A a b c and  2 2 2, ,
i

B a b c
 

then 
i i

A B is a fuzzy number 

 1 2 1 2 1 2, ,
i i

A B a a b b c c    
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 Properties 3.3 

 
If  1 1 1, ,

i

A a b c and  2 2 2, ,
i

B a b c
 

then 
i i

A B is a fuzzy number 

 1 2 1 2 1 2/ , / , /
i i

A B a a b b c c 
. 

 

 Properties 3.4 

 If  1 1 1, ,
i

A a b c and  2 2 2, ,
i

B a b c are two TFN then 
i i i

P A B is an approximated TFN. 

  1 2 1 2 1 2, ,
i i

A B a a b b c c
. 

 

 Properties 3.5 

If TFN  1 1 1, ,
i

A a b c  and  0y ka k  , then 
i i

Y k A is a TFN  1 1 1, ,ka kb kc . 

If  0y ka k  , then 
i i

Y k A is a TFN  1 1 1, ,kc kb ka . 

 

Construction and solution procedure of a LPP by Trapezoidal Fuzzy Number (TrFN) 

using simplex algorithm
[7][8][9][10][11]

 

 

Consider the following steps 

Let us consider a LPP in the following form which will be called the primal problrm: 

Maximize 
1

n

jj

j

z c x


  

Subject to 
1

n

jij i

j

a x b


 , 1,2,3,...............,i m  

0, 1,2,3,....................,jx j n   

 

In which 1 2 3, , ,............, nx x x x are the primal variables and z is the primal objective function. 

The associated dual problem will be given by  

Minimize 
1

m

ii

i

w b v


  

Subject to 
1

m

iji j

i

a v c


 , 1,2,3,...............,j n  

0, 1,2,3,....................,iv i m   
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In which 1 2 3, , ,............, mv v v v are the dual variables and w is the dual objective function. 

 

To be more explicit, if the primal problem be  

Maximize 1 21 2 .............. nnz c x c x c x     

Subject to 

1 211 12 1 1

1 221 22 2 2

1 21 2

1 2

.............. ,

.............. ,

.......................................................

.............. ,

, ,..................,

nn

nn

nm m mn m

a x a x a x b

a x a x a x b

a x a x a x b

x x x

   

   

   

0n 

 

Then its dual is  

Minimize 1 21 2 .............. mmw b v b v b v     

Subject to 

1 211 21 1 1

1 211 22 2 2

1 21 2

1 2

.............. ,

.............. ,

.......................................................

.............. ,

, ,..................,

mm

mm

mn n mn n

a v a v a v c

a v a v a v c

a v a v a v c

v v v

   

   

   

0m 

 

 

General formulation of the dual of an LPP is done in two stages. Firstly the problem is put in 

the standard maximization form and then the following steps are followed: 

i. The maximization problem in the primal is transferred to a minimization problem in the 

dual. 

ii. For a primal with n variable and m constrains the dual will be have m variable and n 

constrains, 

iii. The less than signs of the primal constrains becomes greater than signs in the dual 

constrains. 

iv. The prices 1 2, ,......, nc c c with n variables in the objective function of the primal are 

replaced by the prices 1 2, ,......, mb b b  with m variables of the objective function in the dual. 
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v. The requirements 1 2, ,......, mb b b in the m primal constrains are replaced by the 

requirements 1 2, ,......, nc c c  of the n dual constrains. 

 

Application 

In this paper we are going to solve a linear programming problem by triangular fuzzy number 

using simplex algorithm. Our problem is described below:  

1 23Minz x x 

 
 

Subject to constraint  

1 22 3 2x x  , 

1 2 1x x  , 

1 2, 0x x   

 

Dual of the above problem is  

1 22Maxw v v 

 
Subject to constraint  

1 22 3v v  , 

1 23 1v v  , 

1 2, 0v v 
  

 

We use triangular fuzzy number to solve the dual problem by simplex method and put it in 

standard form by adding slack variables v3 and v4 .thus the problem becomes  

       1 2 3 42,3,4 1,2,3 0,0,0 0,0,0Maxw v v v v   

 
Subject to constraint  

 

     1 2 32,3,4 1,2,3 1,1,1 3,v v v  

 

 

     1 2 43,4,5 1,2,3 1,1,1 1,v v v  

 

 
1 2 3 4, , , 0v v v v 
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TABLE AU 

CB B vB b 1a  2a  3a  4a  

0 3a  3v  3 (2,3,4) (1,2,3) (1,1,1) (0,0,0) 

0 4a  4v  1 (3,4,5) (1,2,3) (0,0,0) (1,1,1) 

   Zj-Cj (-2,-3,-4) (-1,-2,-3) (0,0,0) (0,0,0) 

0 3a  3v  (7/3,9/4,11/5) (0,0,0) (1/3,1/2,3/5) (1,1,1) (-2/3,-3/4,-4/5) 

(2,3,4) 1a  1v  (1/3,1/4,1/5) (1,1,1) (1/3,1/2,3/5) (0,0,0) (1/3,1/4,1/5) 

   Zj-Cj (0,0,0) (-1/3,-1/2,-3/5) (0,0,0) (2/3,3/4,4/5) 

0 3a  3v  (2,2,2) (-1,-1,-1) (0,0,0) (1,1,1) (-1,-1,-1) 

(1,2,3) 2a  2v  (1,1/2,1/3) (3,2,5/3) (1,1,1) (0,0,0) (1,1/2,1/3) 

   Zj-Cj (1,1,1) (0,0,0) (0,0,0) (1,1,1) 

 

Here 
j jZ C 0  for all j .hence the last table gives the optimal solution of the problem. Since 

the slack variable V3 added to the first constraint of the dual is present in the optimal solution 

of the dual, the optimal solution of the dual is    3 20,0,0 , 1,1,1v v   and max 1w  . The 

optimal solution to the primal can be read from the (Zj-Cj) row below the vectors 3a and 4a  

corresponding to the slack variables and hence  1 0,0,0x 
 

and  2 1,1,1x  . Also 

min max 1z w  . Note that this is a feasible solution of the given primal.  

 

CONCLUSION 

In this paper TFN and their arithmetic operations are described,
[7,8,17,18,19]

 we have also solved 

a Dual-simplex problem using TFN. The procedure of solving Dual-simplex problem using 

TFN may help us to solve many optimization problems. Our approaches and computational 

procedures may be efficient and simple to implement for calculation in a Triangular fuzzy 

environment for all fields of engineering and science where impreciseness occur. 
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