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ABSTRACT 

Copula Approach in Data Mining is Sampling-based dimensionality 

reduction technique eliminating linearly redundant combined 

dimensions, providing a convenient way to generate correlated  

multivariate random variables, maintaining the integrity of the original information, reducing 

the dimension of data space without losing important information. The recent trends in 

collecting huge and diverse datasets have created a great challenge in data analysis. One of 

the characteristics of these gigantic datasets is that they often have significant amounts of 

redundancies. The use of very large multi-dimensional data will result in more noise, 

redundant data, and the possibility of unconnected data entities. To efficiently manipulate 

data represented in a high-dimensional space and to address the impact of redundant 

dimensions on the final results, a new technique for the dimensionality reduction using 

Copulas and the LU-decomposition (Forward Substitution) method has been proposed. The 

proposed method is compared favorably with existing approaches on real-world datasets: 

Diabetes, Waveform, two versions of Human Activity Recognition based on Smartphone, and 

Thyroid Datasets taken from machine learning repository in terms of dimensionality 

reduction and efficiency of the method, which are performed on statistical and classification 

measures.  
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1. INTRODUCTION  

High-dimensionality reduction has emerged as one of the significant tasks in data mining 

applications and has been effective in removing duplicates, increasing learning accuracy, and 

improving decision making processes. High-dimensional data are inherently difficult to 

analyze, and computationally intensive for many learning algorithms and multi-dimensional 

data processing tasks. In this paper, a new approach has been proposed which reduces the 

size of the data by eliminating redundant attributes based on sampling methods. The proposed 

technique is based on the theory of Copulas and the LU-decomposition method (Forward 

Substitution). A Copula provides a suitable model of dependencies to compare well-known 

multivariate data distributions to better distinguish the relationship between the data. The 

detection of dependencies is thereafter used to determine and to eliminate the irrelevant 

and/or redundant attributes. The critical issues for the majority of dimensionality reduction 

studies based on sampling and probabilistic representation are how to provide a convenient 

way to generate correlated multivariate random variables without imposing constraints to 

specific types of marginal different assumptions about the data distribution; to specify the 

dependencies between the random variables; to reduce the redundant data and remove the 

variables which are linear combinations of others; and to maintain the integrity of the original 

information. For these reasons, the main goal of this paper is to propose a new method for 

dimensionality reduction based on sampling methods addressing the challenges mentioned 

before. The paper uses both statistical and classification methods to improve the efficiency of 

the method. In the statistical part, a standard deviation of the final dimensionality reduction 

results will be computed for all databases with each dimensionality reduction method studied 

(PCA, SVD, SPCA, and proposed approach). However, the effectiveness of dimensionality 

reduction in classification methods will be improved using from one side the full set of 

dimensions and from the other the reduced set of provided data in terms of precision and 

recall, for the three classifiers: Artificial Neural Network (ANN), k-nearest neighbors (k-

NN), naive Bayesian. 

 

Dimensionality reduction technique is based on probabilistic and sampling models; therefore, 

one needs to. 

 

The following table gives basic notations used throughout this paper 
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Table 1: Basic Notations. 

Primitive Definition 

X n × m data matrix (random variable). 

Xi i
th

 row of the matrix X. 

Xj j
th

 column of the matrix X. 

Fj(.) CDF of the j
th

 column. 

fj(.) PDF of the j
th

 column. 

 

Let f be the Probability Density Function (PDF) of a random variable X. The probability 

distribution of X consists in calculating the probability P(X1 _ x1;X2 _ x2; :::;Xm _ xm), for 

all(X1; :::;Xm) belongs to Rm. It is completely specified by the CDF F which is defined in 

(Rubinstein &Kroese, 2011) as follows: 

F(x1; x2; :::; xm) = P(X1 _ x1;X2 _ x2; :::;Xm _ 

xm) ---------------- (1) 

 

1.1 Random Variable Generation 

The problem of generating a sample from a one-dimensional cumulative distribution function 

CDF by calculating the inverse transform sampling. To illustrate the problem, let X be a 

continuous random variable  with  a CDF F (x) = P [X≤ x], and U be a continuous uniform 

distribution over the interval [0, 1]. The transform X = F  
−1

(U) denotes the inverse transform 

sampling function of a given continuous uniform variable  U  =  F (X)  in  [0,  1],  where F 

−1
(u) = {min x, F (x) ≥ u } (Rubinstein &   Kroese, 2011). So the simple steps used for 

generating a sample X∼ F are given as follows (Rubinstein & Kroese, 2011): 

1. Generate U ∼ U [0,1]; 

2. Return X = F 
−1 

(U). 

 

The usual problem is how to combine one- dimensional distribution funcmtions to form 

multivariate distributions and how to estimate and simulate their density f (x1, x2, xm) to 

obtain the required number of random samples of Xi,i=1,...,m, especially in high- dimensional 

spaces. This problem will be explained in the following section. 

 

1.2 Modeling with Copulas 

The first usage of Copulas is to provide a convenient way to generate correlated multivariate 

random variable distributions and to present a solution for the difficulties of transformation of 

the density estimation problem. 
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C Gaussian Copula of the matrix X.To illustrate 

c Density associated with C. transformations 

Cij Empirical Copula of the matrix X.random variabl 

Σ Correlation matrix of C. their CDF, in 

Xt Transposed matrix of X. Th distributed va 

vij Value of the ith row and j column. 

 

The problem of invertible of m-dimensional continuous es X1 ..., Xm according to to m 

independently uniformly- riables U1 = F1(X1), U2 = 

 

F2(X2), ..., Um = Fm(Xm), let f(x1, x2, ..., xm) be the probability density function of X1, ..., 

Xm, and let c(u1, u2, ..., um) be the joint probability density function of U1, U2, ..., Um. In 

general, the estimation of the probability density function f (x1, x2,..., xm) can provide a 

nonpara- metric form (unknown families of distributions). In this case, we estimate the 

probability density function c (u1, u2,..., um) of U1, U2, ..., Um instead of that X1, ..., Xm to 

simplify the density estimation problem, and then simulate it to achieve the ran- dom samples 

X1, ..., Xm by using the inverse transformations Xi = F 
−1

(Ui). 

 

Sklar's Theorem showed that there exists a unique m-dimensional  Cop≤ula  C  in  [0;  1]m  

with  standard uniform  marginal  distributions  U1,…..Um. (Nelsen, 

2007) states that every distribution func- tion F with margins F1, ..., Fm can be written 

∀(X1,..., Xm) ∈ IR
m

 as: 

F (X1,..., Xm) = C(F1(X1), ..., Fm(Xm)). (2) 

 

To evaluate the suitability of a selected Copula with estimated parameter and to avoid the 

introduction of any assumptions on the distribution Fi(Xi), one can utilize an empirical CDF 

of a marginal Fi(Xi), to transform m samples of X into m samples of U . An empirical Copula 

is useful for examining the dependence structure of multivariate random vectors. Formally, 

the empirical Copula is given by the following equation: 

C = 1/m (∑𝑛 I(𝑣𝑘𝑗 ≤ 𝑣𝑖𝑗) (6) 

 

Where the function I(arg) is the indicator function, which equals 1 if arg is true and 0 

otherwise. Here, m is used to keep the empirical CDF less than 1, where m is the number of 

observations. In the following, we will focus on the Copula that results from a standard 

multivariate Gaussian Copula. 
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1.3 Gaussian Copula 

The difference between the Gaussian Copula and the joint normal CDF is that the Gaussian 

Cop- ula allows to have different marginal CDF types from the joint distribution (Nelsen, 

2007). How- ever, in probability theory and statistics, the multi- variate normal distribution is 

a generalization of the one- dimensional normal distribution. The Gaus- sian Copula is 

defined as follows: 

C(Ф(x1),….. Ф(xm)) = 

 

1/√│∑│exp(-1/2 X
t
(Σ

−1
−I)X ) (4) 

 

Where Φ(xi) is the CDF standard Gaussian  distribution  of  fi(xi),  i.e., Xi ∼ N (0, 1), and Σ 

is the correlation matrix.  The resulting Copula C(u1,..., um) is called Gaussian Copula. The 

density associated with C(u1, ..., um) is obtained with the following equation: 

c(u1,…., um) =1/√│∑│exp[-1/2𝜉 𝑡(∑
−1

 −𝐼)𝜉]       (5) 

where ui =Ф(xi), and ξ = (Φ
−1

(u1), .................... , 

Φ
−1

(um))
T
 . 

 

1.4 Dependence and Rank Correlation 

Since the Copula of a multivariate distribution describes its dependence structure, it might 

be ap- propriate to use measures of dependence which are Copula-based. The Pearson 

correlation measures the   relationship    Σ = cov(Xi, Xj)/(σXi  σXj  ) where cov(Xi, Xj) is 

the covariance of Xi and Xj while σXi, σXj   are the standard deviations of Xi and Xj . 

Kendall rank correlation (also known as Kendall’s coefficient of concordance) is a non- 

parametric test that measures the strength of dependence between two random samples Xip 

;Xip of n observations. The notion of concordance can be defined by the following equation: 

τ = P [(X
i
 − X

j
)(X

i
t − X

j
 ) > 0]− P 

[(X
i
 − X

j
) (X

i
t − X

j
) < 0] (6) 

 

For the Gaussian Copula, Kendall’s τ can be calculated as follows: by linear combinations of 

the original variables and are uncorrelated. Several models and techniques for data reduction 

based on PCA have been proposed (Sasikala & Balamuru- gan, 2013). (Zhai et al., 2014) 

proposed a max- imum likelihood approach to the multi-size PCA problem. The covariance 

based approach was extended to estimate errors within the resulting PCA decomposition. 

Instead of making all the vectors of fixed size and then computing a covariance matrix, they 
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directly estimate the covariance matrix from the multi-sized data using nonlinear 

optimization. (Kerdprasop et al., 2014) studied the recognition accuracy and the execution 

times of two different statistical dimensionality reduction methods ap- plied to the biometric 

image data, which are: PCA and linear discriminant analysis (LDA). The learning algorithm 

that has been used to train and recognize the images is a support vector machine with linear 

and polynomial kernel functions. The main drawback of reducing dimensionality with PCA is 

that it can only be used if the original variables are correlated, and homogeneous, if each 

component is guaranteed to be independent and if the dataset is normally distributed. If the 

original variables are not normalized, PCA is not effective. 

τ   =   2/ π   arcsin ΣXiXj(7) 

 

2 LITERATURE REVIEW 

2.1 Linear dimensionality reduction 

Principal Component Analysis (PCA) is a well established method for dimensionality 

reduction. It derives new variables (in decreasing order of im- portance) that are linked. 

 

The Sparse Principal Component Analysis (SPCA) (Zou et al., 2006) is an improvement of 

the classical method of PCA to overcome the problem of correlated variables using the 

LASSO technique. LASSO is a promising variable selection technique, producing accurate 

and sparse models. SPCA is based on the fact that PCA can be written as a regression 

problem where the response is predicted by a linear combination of the predictors. There- 

fore, a large number of coefficients of principal components become zero, leading to a 

modified PCA with sparse loading. Many studies on data reduc tion based on SPCA have 

been presented. (Shen & Huang, 2008) proposed an iterative algorithm named sparse PCA 

via regularized SVD (sPCA- rSVD) that uses the close connection between PCA and singular 

value decomposition (SVD) of the data matrix and extracts the PCs through solving a low rank 

matrix approximation problem. (Bai et al., 2015) proposed a method based on sparse 

principal component analysis for finding an effective sparse feature principal component 

(PC) of multiple physiological signals. This method identifies an active index set 

corresponding to the non-zero entries of the PC, and uses the power iteration method to find 

the best direction. 

 

Singular Value Decomposition (SVD) is a powerful technique for dimensionality reduction. It 

is a particular case of the matrix factorization approach and it is therefore also related to PCA. 

The key is- sue of an SVD decomposition is to find a lower dimensional feature space by 
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using the matrix product U S V , where U and V are two orthogonal matrices and S is a 

diagonal matrix with m   m,   m n, and n n dimensions, respectively. SVD retains ×nly×r  n  

positive  singular  values  of  low  effect  to  reduce  the  data,  and  thus  S  becomes  a diagonal  

matrix  with  only  r  non-ze×ro  positive  en-  tries,  which  reduces  the  dimensions  of × these 

thr×ee matrices to m  r, r  r, and r  n,  respectively.  Many studies on data reduction have been 

presented which are built upon SVD, such as the ones used in (Zhang et al., 2010) and 

(Watcharapinchai et al., 2009). (Lin et al., 2014) developed a dimensionality reduction 

approach by applying the sparsified singular value decomposition (SSVD). Their paper 

demonstrates how SSVD can be used to identify and remove nonessential features in order to 

facilitate the feature selection phase, to analyze the application limitations and the 

computational complexity. However, the application of SSVD on large datasets showed a loss 

of accuracy and makes it difficult to compute the eigenvalue decomposition of a matrix 

product A
T
 A, where A is the matrix of the original data. 

 

2.2 Nonlinear dimensionality reduction 

A vast literature devoted to nonlinear techniques has been proposed to resolve the problem of 

dimensionality reduction, such as manifold learning methods, e.g., Locally Linear 

Embedding (LLE), Isometric mapping (Isomap), Kernel PCA (KPCA), Laplacian Eigenmaps 

(LE), and a review of these methods is summarized in (Gisbrecht & Hammer, 2015; Wan et 

al., 2016). KPCA (Kuang et al., 2015) is a nonlinear generalization of PCA in a high-

dimensional kernel space constructed by using kernel functions. By comparing with PCA, 

KPCA computes the principal eigenvectors using the kernel matrix, rather than the 

covariance matrix. A kernel matrix is done by computing the in- ner product of the data 

points. LLE (Hettiarachchi & Peters, 2015) is a nonlinear dimensionality reduction technique 

based on simple geometric in- tuitions. This algebraic approach computes the low- 

dimensional neighborhood preserving embed- dings. The neighborhood is preserved in the 

embedding based on a minimizing cost function in in- put space and output space, 

respectively. Isomap (Zhang et al., 2016) explores an underlying manifold structure of a 

dataset based on the computation of geodesic manifold distances between all pairs of data 

points. The geodesic distance is determined as the length of the shortest path along the 

surface of the manifold between two data points. It first constructs a neighborhood graph 

between all data points based on the connection of each point to all its neighbors in the input 

space. Then, it estimates geodesic distances of all pairs of points by calculating the shortest 
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path distances in the neighborhood graph. Finally, multidimensional scaling (MDS) is applied 

to the arising geodesic distance matrix to find a set of low-dimensional points that greatly 

match such distances. 

 

2.3 Sampling dimensionality reduction 

Other widely used techniques are based on sampling. They are used for selecting a 

representative subset of relevant data from a large dataset. In many cases, sampling is very 

useful because processing the entire dataset is computationally too expensive. In general, the 

critical issue of these strategies is the selection of a limited but representative sample from 

the entire dataset. Various random, deterministic, density biased sampling, pseudo-random 

number generator and sampling from non-uniform distribution strategies exist in the literature 

(Rubinstein & Kroese, 2011). How- ever, very little work has been done on the Pseudo- 

random number generator and sampling from non- uniform distribution strategies, especially 

in the multi-dimensional case with heterogeneous data. Naive sampling methods are not 

suitable for noisy data which are part of real-world applications, since the performance of the 

algorithms may vary un- predictably and significantly. The random sampling approach 

effectively ignores all the information present in the samples which are not part of the reduced 

subset (Whelan et al., 2010). An advanced data reduction algorithm should be developed in 

multi-dimensional real-world datasets, taking into account the heterogeneous aspect of the 

data. Both approaches (Colom´e et al., 2014)(Fakoor & Hu- ber, 2012) are based on sampling 

and a probabilistic representation from uniform distribution strategies. The authors of (Fakoor 

& Huber, 2012) pro- posed a method to reduce the complexity of solv- ing Partially 

Observable Markov Decision Processes (POMDP) in continuous state spaces. The paper uses 

sampling techniques to reduce the complex- ity of the POMDPs by reducing the number of 

state variables on the basis of samples drawn from these distributions by means of a Monte 

Carlo approach and conditional distributions. The authors in (Colom´e et al., 2014) applied 

dimensionality reduction to a recent movement representation used in robotics, called  

Probabilistic Movement Primitives (ProMP), and they addressed the problem of fitting a low- 

dimensional, probabilistic representation to a set of demonstrations of a task. The authors 

fitted the trajectory distributions and estimated the parameters with a model- based stochastic 

using the maximum likelihood method. This method assumes that the data follow a multivari- 

ate normal distribution which is different from the typical assumptions about the relationship 

between the empirical data. The best we can do is to exam- ine the sensitivity of results for 

different assumptions about the data distribution and estimate the optimal space dimension of 
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the data. 

 

2.4 Similarity measure dimensionality reduction 

There are other widely used methods for data reduction based on similarity measures 

(Wencheng, 2010) (Pirolla et al., 2012)(Zhang et al., 2010). Ac- cording to (Dash et al., 

2015), the presence of redundant or noisy features degrades the classification performance, 

requires huge memory, and consumes more computational time. (Dash et al., 2015) proposes a 

three- stage dimensionality reduction technique for microarray data classification using a 

comparative study of four different classifiers, multiple linear regression (MLR), artificial 

neural network (ANN), k-nearest neighbor (k-NN), and naive Bayesian classifier to observe 

the improvement in performance. In their experiments, the authors reduce the dimension 

without compromising the performance of such models. (Deegalla et al., 2012) proposed a 

dimensionality reduction method that employ s classification approaches based on the k- 

nearest neighbor rule. The effectiveness of the reduced set is measured in terms of the 

classification accuracy. This method attempts to derive a minimal consistent set, i.e., a 

minimal set which correctly classifies all the original samples (Whelan et al., 2010). 

(Venugopalan et al., 2014) discussed the ongoing work in the field of pattern analysis for bio- 

medical signals (cardio-synchronous waveform) using a Radio Frequency Impedance 

Interrogation (RFII) device for the purpose of user identification. They discussed the 

feasibility of reducing the dimensions of these signals by projecting them into various sub- 

spaces while still preserving inter-user discriminating information, and they compared the 

classification performance using traditional dimensionality reduction methods such as PCA, 

independent component analysis (ICA), random projections, or k-SVD-based dictionary 

learning. In the majority of cases, the authors see that the space obtained based on 

classification carries merit due the dual advantages of reduced dimension and high 

classification. 

 

Developing effective clustering methods for high- dimensional datasets is a challenging task 

(Whe- lan et al., 2010). (Boutsidis et al., 2015) studied the topic of dimensionality reduction 

for k-means clustering that encompasses the union of two approaches: 1) A feature selection-

based algorithm selects a small subset of the input features and then the k-means is applied on 

the selected features. 2) A feature extraction-based algorithm constructs a small set of new 

artificial features and then the k- means is applied on the constructed features. The first 

feature extraction method is based on random projections and the second is based on fast 
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approximate SVD factorization. (Sun et al., 2014) developed a tensor factorization based on a 

clustering algorithm (k-mean), referred to as Dimensionality Reduction Assisted Tensor 

Clustering (DRATC). In this algorithm, the tensor decomposition is used as a wayto learn low-

dimensional representation of the given tensors and, simultaneously, clustering is con- ducted 

by coupling the approximation and learning constraints, leading to the PCA Tensor 

Clustering and Non-negative Tensor Clustering models. 

 

3. METHODOLOGY 

The approach presented in this paper for dimensionality reduction in very large datasets is 

based on the theory of Copulas and the LU-decomposition method (Forward Substitution). 

The main goal of the method is to reduce the dimensional. 

 

 

Figure 1: Overview of the proposed reduction method. 

 

Spaces of data without losing important/interesting information. On the other hand, the goal 

is to estimate the multivariate joint probability distribution without imposing constraints on 

specific types of marginal distributions of dimensions. Figure 1 shows an overview of the 

proposed reduction method which operates in two main steps. 

 

In the first step, large raw datasets are decomposed into smaller subsets when calculating the 

data dependencies using a Copula by taking into account heterogeneous data and removing 

the data which are strongly dependent. In the second step, we want to reduce the space 

dimensions by eliminating dimensions that are linear combinations of others. Then we will 

find the coefficients of the linear combination of dimensions by applying the LU- 

decomposition method (Forward Substitution) to each subset to obtain an independent set of 

variables in order to improve the efficiency of data mining algorithms. The two different steps 

of the pro- posed method are as follows (See also Figure 1): 
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Step 1: Construction of dependent sample sub- sets Si,(i=1,...,kt) 

In order to decompose the real-world dataset into smaller dependent sample subsets, vectors 

are considered which are linearly dependent in the original data. 

 

Empirical Copula will be calculated first to better observe the dependencies between 

variables. According to the marginal distributions from the observed and approved empirical 

Copula, we can determine the theoretical 

 

 

Figure 2: Construction of the subsets Si,(i=1,...,kt). 

 

Copula, that links univariate marginal distributions to their joint multivariate distribution 

function, and then we will regroup dimensions having the strong correlation relationship in 

each sample subset Si,(i=1,...,kt) by estimating the parameters of the Copula. In this paper, we 

have presented the Gaussian Copula that corresponds to our experimental results. An 

illustration of the Copula method is given in Figure 2. The dependence between two 

continuous random variables X1 and X2 is defined as follows: If the correlation parameter ρ is 

greater than 0.5, then X1 and X2 are positively correlated, meaning that the values of X1 

increase as the values of X2 increase (i.e., the more each at- tribute implies the other). Hence, 

a higher value may indicate that X1 and X2 are positively dependent, and probably have a 

highly redundant attribute, then these two samples will be made as in the same subset 

Si,(i=1,...,kt). When the parameter of the Copula ρ of the two continuous random variables X1 

and X2 is greater than 0.7, then X1 and X2 have a strong dependence. If the resulting value is 

equal or less than 0, then X1 and X2 are independent and there is no correlation between them. 

 

The output of the sample subset Si,(i=1,...,kt) represents a matrix that retains only dependent 

samples of the original matrix in order to detect, and remove a maximum of the redundant 



www.wjert.org  

Sumaiya et al.                                 World Journal of Engineering Research and Technology 

 

 

 

308 

�=1 

dimensions, which are linear combinations of others, in the second step. 

 

Step 2: LU-decomposition method 

The key idea behind the use of the Forward Substitution method is to solve the lin- ear 

system equations as given by the samples Si,(i=1,...,kt) with an upper-triangular coefficient 

matrix in order to find the coefficients of linear sample combinations and to provide a low 

linear space (Xi;i=1,……k) of the original matrix as shown in Figure 3. 

 

 

Figure 3: LU-decomposition method. 

 

The LU decomposition method is an efficient procedure for solving a system of linear 

equations α χ Ś = C, and it can help accelerate the computation. When C is a column ve×ctor in 

the dependent sample subsets Si,(i=1,...,kt), and αj is an output vector representing the 

relationship between dimensions or the coefficients of the linear combination of dimensions, 

SSi;(i=1,….k’-1) induces a lower triangular matrix without column C. We conclude that each 

matrix Śi,(i=1,...,kt−1)  induces a lower triangular matrix of the following  form: 

(S)  {α1x11 = c1 

{α1x21 + α2x22 = c2                 (8) 

{α1xn1 + α2xn2 + ... + αnxnn = cn 

 

From the above equations, we see that α1 = c1/x11. Thus, we compute α1 from the first 

equation and substitute it into the second to compute α2,..., etc. Repeating this process, we 

reach equation i, 2≤ i ≤n, using the following formula: 

αi = 1/xi[ci-∑𝑖−1
 𝛼𝑖𝑥𝑖𝑗], i=2,,,n (9) 
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From the above equations, it has been observed that α1 =c1/x11. Thus, α1 is computed from 

the fist equation and substituted it into the second to compute α2,..., etc. Repeating this 

process, we reach equation i, 2 ≤ i ≤ n, using the following formula: 

αi =1/xii[ci -∑𝑖−1
 αjxij], i = 2, … n          (10) 

 

Algorithm 1: Dimensionality linear combination reduction method 

Input: Vector C and a lower triangular matrix S; Output: Vector α. Begin α 1 = c1=x11 for i 

:= 2 to n do α i = ci; for j := 1 to i - 1 do α i = α i - xij α j end α i = α i/xii end 

 

The algorithm 1 used for this resolution makes (n X (n - 1))/2 additions and subtractions, (n X 

(n 1))/2 multiplications and n divisions to calculate the solution, a global number of 

operations in the order of n
2
. 

 

Statistical precision: The goal of this part is to test the statistical efficiency, after the final 

dimensionality reduction of all the databases using PCA, SVD, 

 

SPCA, and the proposed approach. The most common precision measure is the standard 

deviation (sd) measured by the formula (11). 

 

Sd=√1/N-1∑∑𝑛   (𝑥𝑖 − 𝑥 𝑏𝑎𝑟) (11) 

 

Classification accuracy: The goal of this part is to improve the effectiveness of 

dimensionality reduction before and after the final reduction of the dimensionality of Pima 

Diabetes and Waveform databases, by using the classification methods for PCA, SVD, 

Sparse PCA, and our proposed approach. 

 

In general, the performance of a classification process can be evaluated by the following 

quantities: 

 

True Positives (TP), False Positives (FP), and False Negatives (FN), and the use ofdifferent 

metrics such as precision and recall. The precision P and the recall R are measured by the 

following formulas: 

P =TP/TP + FP     (12) 

R =TP/TP + FN    (13) 

 

Where N is the number of values of the sample, and xi bar is the mean of the values xi. 



www.wjert.org  

Sumaiya et al.                                 World Journal of Engineering Research and Technology 

 

 

 

310 

4. RESULTS AND ANALYSIS 

Table 2: Dimensionality reduction results (number of columns reduced.) 

Methods SVD PCA SPCA PA 

Pima Diabetes 5 9 7 10 

Waveform 10 20 20 22 

Human Activity 1 28 107 98 112 

Human Activity 2 117 342 343 344 

Thyroid Disease 185 505 524 525 

 

Dimensionality reduction results 

 

 

Figure 4: Dimensionality reduction (number of columns reduced.) 

 

5. CONCLUSION AND FUTURE WORK 

A new method for dimensionality reduction in the data pre-processing phase of mining high- 

dimensional data has been introduced. This approach is based on the theory of Copulas 

(sampling techniques) to estimate the multivariate joint probability distribution without 

constraints of specific types of marginal distributions of random variables that represent the 

dimensions of proposed datasets. A Copula based model provides a complete and scale free 

description of dependency that is thereafter used to detect the redundant values. A more 

extensive evaluation is made by eliminating dimensions that are linear combinations of others 

after having decomposed the data, and using the LU decomposition method. The problem of 

data reduction has been reformulated as a constrained optimization problem. Proposed 
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approach is compared with well-known data mining methods using five real-world datasets 

taken from the machine learning repository in terms of the dimensionality reduction and the 

efficiency of the methods. The efficiency of the proposed method was improved by using the 

both statistical and classification methods. The different results obtained show the 

effectiveness of our approach which outperforms significantly the performance of 

dimensionality reduction comparing to other methods, i.e., it provided a smaller bias with 

more better standard deviations, a highest precision, and a lowest recall with all classifiers for 

all databases. Further work can be carried out in several directions. Researchers have made 

great efforts to improve the performance of the  dimensionality reduction approach in very 

large datasets. However, the most serious problem is the presence of missing values in 

datasets. Missing value scan result in loss of efficiency of the dimensionality reduction 

approach, lead to complications in handling and analyzing the data, or distort the relationship 

between the data distribution. Also, it would be interesting to investigate the possibility of 

using meta-heuristics or hybrid approaches to determine a solution of the proposed 

optimization problem in the Big Data setting. 
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