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ABSTRACT  

In the study, simulation model is developed for the prediction of daily 

inflow into Dadin-Kowa Reservoir (River Gongola) in Northern 

Nigeria. In the study, the 1991-2001 records of observed and 

forecasted daily rainfall amounts are used as predictors and the 

reservoir daily inflow as predicted targets for Multilayer Perceptron 

Artificial Neural Networks (MLP-ANNs). With a learning rate of 0.01 and momentum 

coefficient of 0.85, the MLP-ANN model is developed using 1 input node, 7 hidden nodes, 

1000 training epoches and 24 adjustable parameters. Error measures such as the Mean 

Absolute Error (MAE), the Mean Squared Relative Error (MSRE) and the Coefficient of 

Determination (R
2
) are employed to evaluate the performance of the developed model for 

data calibration (1991-1998), verification (1991-2001) and validation (2010-2011). The result 

revealed: MAE={0.7156, 0.6717, 1.046} x 10
-5

; MSRE = {1.4984, 1.5087, 1.1478 }x 10
-7

; 

and R = {0.9957,0.9958,0.9688}. Furthermore, dynamic model is developed based on 

observed and simulated daily reservoir inflow to obtain optimal allocation policy to 

irrigation, industrial and domestic user sectors for each month of the year. The research 

reveals that only the months with prolonged dry spells have optimal returns to the user 

sectors while the months with records of rainfall could not produce optimized returns in the 

model. Therefore, the application of the results will lead to saving N175, 298,126 annually in 

the dam provision of water to the region. 
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INTRODUCTION   

Dadin-Kowa dam was commissioned in 1988 for irrigation, domestic water supply and flood 

control (Ibeje et al., 2012). Over the years, it has become very difficult to determine the area 

of cultivable land in each year because there is no prior information of available reservoir 

inflow. Sometimes the water needs of the cultivable area would be more than the available 

water in the reservoir. This has often resulted in the reduction of the cultivable area which in 

turn reduced the amount of agricultural produce. At other times, especially in wet years, the 

cultivable area would be limited. This resulted in evacuation of some water from the reservoir 

through the dam outlets. It is therefore very important to forecast the reservoir inflow in order 

to determine the optimal cultivable area which the reservoir supplies water. Dadin-kowa 

reservoir has lost large amount of water many times in the recent years. Excess rainfall during 

rainy season can fill the reservoir and make it to overflow at the end of rainy season. By 

forecasting the reservoir inflow, the excess water in rainy season could be used to generate 

hydropower energy before overflowing the dam.  

 

The use of Artificial Neural Network (ANN) techniques in water resources and stream flow 

prediction is relatively new and has been reported by French et al., (1992); Zurada (1992); 

Hall and Minns (1993); Zealand et al., (1999); Abrahart et al., (1998); Zhu and Fugita (1994); 

Hsu et al (1993); Minns (1998) and Salazar et al., (1998), among others. ANN have a 

structure where nonlinear function are present and the parameter identification are based on 

techniques which search for global maximum in the space of feasible parameter values, and 

hence can represent the nonlinear effects present in the rainfall-runoff processes. An 

important advantage of ANN compared to classical stochastic models is that they do not 

require variables to be stationary and normally distributed (Burke, 1991). Non-stationary 

effects present in global phenomena, in morphological changes in rivers and other can be 

captured by the inner structure of ANN (Dandy and Mainer, 1996). Furthermore, ANNs are 

relatively stable with respect to noise in the data and have a food generalization potential to 

represent input-output relationships (Zealand et al., 1999). When combined with optimization 

methods, prediction techniques like ANN, serve management purposes much better. 

  

“Water allocation is a means of dividing up available water resources among multiple users, 

with an aim of balancing the competing needs for water among all the users” (Australian 

Department of Agriculture, 2008). Allocation allows limited resources to be shared. In the 

case of water, allocation is currently made on the basis of whether the resources being 



Ibeje.                                               World Journal of Engineering Research and Technology 

 

 

 

www.wjert.org  

 

340 

assessed is currently in surface storage (surface water) or subsurface (groundwater). Water 

allocation is based on an estimate of sustainable yield of a defined resource, derived from an 

understanding of storage capacity, degree of replenishment and the impacts of extraction. 

Dynamic programming model, the technique of optimization of resources allocation was 

utilized in solving water allocation problem in this research. Allocation of water to the 

various user sectors namely irrigation, domestic and industrial water often resulted to 

conflicts in the chosen case study. This becomes more pronounced in months of dry spell. 

Thus, the objective of the study is to develop rainfall-inflow simulation model using Artificial 

Neural Network (ANN) which will be used to determine the optimal water allocations to each 

water demand sector that maximizes the total returns from all the demand sectors-irrigation, 

domestic and industrial water supply. 

  

The Study Area  

The study area is the Dadin-Kowa reservoir. This is located at the narrow section of the 

Gongola River in the present Gombe sate, Nigeria (see Figure 1). Dadin-kowa town is located 

between latitudes 10 to 10
o
 20

o
 N and longitudes 11

o
01

o
E and 11

o
19

o
E (Figure 1) it shares 

common boundary with Akko L.G.A in the south and west, Yamatu-Deda to the East and 

Kwami to the North. It occupies an area of about 45km
2
 (Dadin-kowa L.G.A., 1999). The 

climate of Dadin-kowa is characterized by a dry season of six months, alternating with a six 

months rainy season. As in other part of Nigerian savanna, the precipitation distribution is 

mainly triggered by a seasonal shift of the inter-tropical Convergence Zone (ITCZ). For the 

years 1977 to 1995, the mean annual precipitation is 835mm and the mean annual 

temperature is about 26
o
C whereas relative humidity has same pattern being 94% in August 

and dropping to less than 10% during the harmattan period (Dadin-kowa L.G.A., 1999). The 

relief of the town ranges between 650m in the western part to 370m in the eastern parts. 

Dadin-Kowa Dam is a multipurpose dam which impounds a large reservoir of water from 

Gongola River. It has a storage capacity of 1.77 billion cubic meters for irrigation to 950km
2
 

(Ibeje, et al, 2012). Its flood spillway has a capacity of 1.111m
3
/s. 
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Figure 1: Hydrological Map of Nigeria Showing the Location of Dandi Kowa Reservoir. 

 

Dadin-kowa dam construction was the Nigerian federal government project. The construction 

commenced in 1981 and was completed in 1987. The dam is a multipurpose project designed 

to serve among other uses, irrigation, industrial and domestic supply and flood control. 

Downstream of the River is located a rice farm that is irrigated by a canal from the dam (Ibeje 

et al., 2012). According to the farm manager, the farm is a 70Ha land and returns an annual 

yield of 8.5MT/Ha. The farm is allotted to small farmers cooperatives who pay agreed 

amount of money to the dam authorities for the water used in irrigation. More than 50 

farmers are cultivating on the farmland. There is also a major conduit from the river intake 

that pumps water to a water treatment plant from where the water is sent to Gombe town for 

industrial and domestic uses. The water is toll free. 

  

Rainfall-Inflow Simulation Modelling 

In simulation context, MLP-ANN training consists of providing input-output examples to the 

network, and minimizing the objective function (i.e. error function) using either a first order 

or a second order optimization method. This so-called supervised training can be formulated 

as one of minimizing as function of the weight, the sum of the nonlinear least squares 

between the observed and the predicted outputs, defined by:  

 

Where n is the number of patterns (observations) and m the total output units, y represents the 

observed response (“target output”) and  the model response (“predicted output”). In the 

case of one output unit (m = 1) reduces to  
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Which is the usual function that is minimized in least squares regression. In the BP training, 

minimization of E is attempted using the steepest descent method and computing the gradient 

of the error function by applying the chain rule on the hidden layers of the MLP-ANN 

(Rumelhart et al., 1986). Consider a typical multi layer MLP-ANN whose hidden layer 

contains M neurons. The network is based on the following equations: 

                                                                           (3) 

                                                                                     (4) 

Where netpj is the weighted inputs into the jth hidden unit, N the total number of input nodes, 

Wji the weight from input unit i to the hidden unit j, xpi a value of the ith input for pattern p, 

Wjo the threshold (or bias) for neuron j, and g(netpj) the jth neuron’s activation function 

assuming that g() is the sigmoid function. Note that the input units do not perform operation 

on the information but simply pass it onto the hidden node. The output unit receives a net 

input of  

                                                                  (5) 

                                                                                             (6) 

Where M is the number of hidden units, Wkj represents the weight connecting the hidden 

node j to the output k, Wko is the threshold value for neuron k, and the kth’s predicted 

output. Recall that the ultimate goal of the network training is to find the set of weights Wji 

connecting the input units i to the hidden units j and Wkj connecting the hidden units j to 

output k, that minimize the objective function (Eq. (6)). Since Eq. (6) is not an explicit 

function of the weight in the hidden layer, the first partial derivates of E are evaluated with 

respect to the weights using the chain rule, and the weights are moved in the steepest-descent 

direction. This can be represented mathematically as  

                                                                                           (7) 

Where  is the learning rate which simply scales the step size. The usual approach in BP 

training consists in choosing  according to the relation 0 <  < 1. From Eq. (7), it is 

straightforward that BP can suffer from the inherent slowness and the local search nature of 

first order optimization method. However, BP remains the most widely used supervised 

training method for MLP-ANN because of the available remedies to its drawbacks. In all, 
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second order nonlinear optimization techniques are usually faster and more reliable than any 

BP variant (Masters, 1995). Therefore, LMBP for MLP-ANN was used for data training. The 

LMBP uses the approximate Hessian matrix (second derivatives of E) in the weight update 

procedure as follows: 

                                                                              (8) 

Where r is the residual error vector,  a variable small scalar which controls the learning 

process, J = E is the Jacobian matrix, and H =
 
J

 T 
denotes the approximate Hessian matrix 

usually written as 
2
E = 2J

T
J. In practice, LMBP is faster and finds better optima for a 

variety of problems than do the other usually methods (Hagan and Menhaj, 1994). 

  

Design of MLP-ANN Architecture 

The number of predictors and predicands specified the number of neurons in the input and 

output layers respectively. An experiment with trial-and-error measure, recommended as the 

best strategy by Shamseldin (1997) is used to determine the number of neurons in the hidden 

layer. In general, the architecture of multi-layer MLP-ANN can have many layers where a 

layer represents a set of parallel processing units (nodes). The three-layer FNN used in this 

study contains only one intermediate (hidden) layer. MLP-ANN can have more than one 

hidden layer; however theoretical works have shown that a single hidden layer is sufficient 

for ANNs to approximate any complex nonlinear function (Cybenko, 1989; Horinik et al., 

1989). Indeed many experimental results seem to confirm that one hidden layer may be 

enough for most forecasting problems (Zhang et al., 1988; Coulibaly et al., 1999). Therefore, 

in the study, one hidden layer FNN is used. It is the hidden layer nodes that allow the network 

to detect and capture the relevant pattern(s) in the data, and to perform complex nonlinear 

mapping between the input and the output variables. The sole role of the input layer of nodes 

is to relay the external inputs to the neurons of the hidden layer. Hence, the number of input 

nodes corresponds to the number of input variables. The outputs of the hidden layer are 

passed to the last (or output) layer which provides the final output of the network 

 

Performance Assessment of Rainfall-Inflow Simulation Model  

Commonly used error measures, therefore, were employed in this study to make the 

evaluation of the forecasts. They are coefficient of efficiency (CE), the mean absolute error 

(MAE), the squared relative error (MSRE) and the coefficient of determination (R
2
), 

respectively defined as follows: 
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                                 (9) 

                                 (10) 

                                 (11) 

Where  is the observed discharge,  is the simulated discharge,  is the mean of the 

observed discharges,  is the mean of the simulated discharges and  is the length of the 

observed/simulated series. 

 

The MAE, which ranges from 0 to + ∞, is used to measure how close forecasts are to the 

eventual outcomes. Theoretically, a coefficient of zero (MAE = 0) means the best model with 

a perfect performance. The MSRE, which ranges from 0 to + ∞, can provide a balanced 

evaluation of the goodness of fit of the model as it is more sensitive to the larger relative 

errors caused by the low value and the best coefficient will be zero (MSRE = 0). The R
2, 

which
 
ranges from 0 to 1, is a statistical measure of how well the regression line close to the 

observed data and coefficient of one (R
2
=1) indicates that the regression line perfectly fits the 

observed data. 

 

Inflow Optimization Modelling 

The main data used for the analysis were provided by the Upper Benue River Development 

Authority, Gombe State, Nigeria. They include information for the period 1991-2001 daily 

conduit outflow, daily canal outflow, price of water and total daily discharge. The cash 

benefits resulting from the use of water for basic house needs such as drinking water, water 

for cooking, cleaning, laundry, lawn care are referred to as domestic returns. On the other 

hand, cash returns basically due to allocation of water for various industrial purposes like 

product processing, cooling of machines, washing of plants and other diverse industrial 

applications are classified as industrial returns. The allocations from the dam are jointly 

pumped as town water supply; no separate meters were available to measure allocations to 

industries and the industries do not have water meters. Thus, industrial and domestic returns 

were lumped together in the model. The monthly industrial and domestic returns were 

lumped together in the model. The monthly industrial and domestic returns were computed as 

the product of the price of water, total monthly conduit discharge and the number of days in 

which the conduit was open in that month. This procedure was repeated for eleven years 

records of each month. Mathematically, 
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Where s = Total monthly conduit flow in cubic meters per second (m
3
/s), p = price of water 

in Naira per cubic meter (N/m
3
) and n = number of days the canal was on in a given month. 

As stated earlier, the dam allocates water to an irrigation site downstream of the Gongola 

River. The cash returns resulting from the use of water irrigation may not necessarily mean 

the monthly farm yield. This is because the farm yield is a composite unit resulting from 

more than just water as the farm input. Hence, the returns were computed as the product of 

the canal discharge, the price of water and the number of days in which the canal was left 

open in that month. This computation was repeated for eleven years record of the month 

considered. Mathematically, 

 

Where c = Total monthly canal discharge in cubic meters per second (m
3
/s), p = price of 

water in Naira per cubic meter (N/m
3
) and n = number of days the canal was open in a given 

month.  

 

Formulation of Inflow Optimization Model 

A consideration of the model formulation for the month of January was first made. Then, the 

same approach was applied to the other months. However, the constraints for each of the 

months are different. The constraints for the other months are shown in Table1. For all the 

months the objective functions and the state variables are the same.  

Stage 1: State variable: S1, X2, X*2 where S1 = Amount of resource (water) available for 

allotment to agriculture, X2 = Amount of resource (water) allocated to agriculture and X*2 = 

Allotment to agriculture that results in F*1 (s1).  

Objective Function: The objective is to maximize the return due to allocation of s1.  

Mathematically: 1  

Constraints: 0≤X1≤S1; 0≤S1≤2,659,651,200m
3
 

Model: 1  

   0≤X2≤S1  0≤s1≤2,659,651,200m
3
 

 

Stage 2: State variable: S2, X1, (S1-X2), X*1 where S2 = Amount of resource (water) available 

for allocation to agriculture, industrial and domestic uses; X1 = Amount of resource allocated 

to industrial and domestic use, (S1-X2) = Amount of resource available for allocation at stage 

1 and X*1 = Allocation to industrial and domestic use that results in F*2(S2).  

Objective function:  
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Constraints: 0≤X2≤S1 ; 0≤S2≤2,287,353,600m
3
 

Model:  

0≤X2≤S1  0≤X1≤2,287,353,600m
3 

 

Assumptions  

(i) The price of water was assumed to be constant over the years as 1Kobo/m
3
. This 

assumption though not practical was made because water is free of charge in Gombe 

state.  

(ii) Conduit and canal outflows represent allocations to industrial and domestic; agricultural 

sectors.  

(iii) No losses occurred in the allocations to the various user sectors.  

(iv) Flow duration in a day was assumed to be 24 hours.  

The constraints as well as the results of the parameters estimations are then inputted into 

TORA software. The dynamic programming calculations were performed using TORA 

software. This is a computer program capable of performing calculations in dynamic and 

linear programming (fig 4 and fig 5). 

 

Results of Rainfall-Inflow Simulation Modeling 

Tables 2, 3 and 4 show the R
2 

(coefficient of determination) tests for the analysis to determine 

the number of input nodes, hidden nodes and the training epochs for MLP network trained 

using back propagation algorithm (MLP-BP). The results in table 2 were produced by 

assigning hidden node for the neural networks model and the number of input nodes was 

varied to identify the best input node required by the neural network. It is clear that the best 

R
2
 tests were produced with one input node, i.e. when only the last inflow lag is used. By 

assigning input node to one and changing the number of hidden nodes, the results in table 3 

were obtained. The results indicated that the best number of hidden nodes for MLP-BP is 7. 

The analysis to find the adequate training epochs was carried out and the results are shown in 

table 4. The results suggested that the adequate training epoch is 1000 for MLP-BP. In order 

to test the generalization properties of the neural networks models, R
2
 tests for multi-step-

ahead (MSA) forecasting of the inflow were calculated. The neural network models were 

trained using the following structure: 

MLP-BP: input node = 1, Hidden Nodes = 7, Training Epochs = 1000 
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Table 1: Major Constraints in Optimization for Each Month. 

Month Stage of programming Constraints (m
3
)
 

January 2 0≤s1≤2,659,651,200 

 1 0≤s1≤2,287,353,600 

February 2 0≤s1≤1,782,950,400 

 1 0≤s1≤1,782,950,400 

March 2 0≤s1≤1,628,467,200 

 1 0≤s1≤1,628,467,200 

April 2 0≤s2≤982,022,400 

 1 0≤s1≤982,022,400 

May 2 0≤s2≤3,152,653,200 

 1 0≤s1≤3,153,563,200 

June 2 0≤s2≤3,983,904,000 

 1 0≤s1≤3,983,904,000 

July 2 0≤s2≤5,244,307,200 

 1 0≤s1≤5,244,307,200 

August 2 0≤s2≤429,481,440 

 1 0≤s1≤429,481,440 

September 2 0≤s2≤679,752,000 

 1 0≤s1≤679,752,000 

October 2 0≤s2≤3.346272x10
10 

 1 0≤s1≤3.346272x10
10

 

November 2 0≤s2≤1.061424x10
10 

 1 0≤s1≤1.061424x10
10

 

December 2 0≤s2≤8,991,388,800 

 1 0≤s1≤8,991,388,800 

 

 

Figure 4: The Algorithm of the Stage 1 Flowchart of the TORA Software Dynamic 

Programming Calculations. 
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R
2
 tests for lead-time from 1-day up to 6-day of the inflow were calculated over both the 

training and independent data sets as shown in table 5. The results for training data set 

indicate that MLP-BP gave good R
2
 tests up to 4-day, 5-day and 6-day lead-time respectively, 

where their R
2 

test values are about 0.8. The results for independent set in table 4 showed that 

MLP-BP gave good R
2
 tests up to 4-day, 5-day and 6-day ahead, respectively.  

 

 

Figure 5: The Algorithm of the Stage 2 Flowchart of the TORA Software Dynamic 

Programming Calculations. 

 

Table 2: Variation of R
2
 Tests with Different Input Nodes.   

No. of input nodes MLP-BP 

1 0.9290 

2 0.3927 

3 -0.3635 

4 -0.4949 

5 -0.4949 
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Table 3: Variation of R
2
 Tests with 

Different Hidden Nodes. 

Table 4: Variation of R2 Tests with 

the Number of Training Epochs. 

No. of hidden nodes MLP-BP 

1 -1.5959 

2 0.8946 

3 0.9290 

4 0.9536 

5 0.9521 

6 0.9508 

7 0.9570 

8 0.9543 

9 0.9507 

10 0.9296 

11 - 

12 - 

13 - 

14  

15 - 

20 - 
 

No. of epoch MLP-BP 

1 -0.6300 

2 -0.6278 

3 -0.6233 

4 -0.6129 

5 -0.5847 

6 -0.5123 

7 -0.3538 

8 -0.1210 

9 0.0854 

10 0.2498 

12 0.5184 

14 0.7317 

16 0.8567 

18 0.8996 

20 0.9242 

100 0.9570 

1000 0.9706 

1500 - 

2000 - 

3000 - 
 

 

Table 5: R
2
 Tests Calculated over both the Training and Independent Data Sets.  

Lead-time 

(days) 

Training data 

set 

Independent 

data set 

MLP-BP MLP-BP 

1 0.9888 0.9706 

2 0.9771 0.9342 

3 0.9491 0.8899 

4 0.9098 0.7955 

5 0.8672 0.7232 

6 0.8138 0.6311 

 

Results of Model Performance Assessment 

Table 6: Model Error Measures for the Calibration, the Validation and Verification 

Data sets.  

QR/ MLP-BP-ANN: 1-7-1/0.9957 

Data R MAE×10
-5

 MSRE×10
-7

 

Calibration 

(1991-1998) 
0.9957 0.7156 1.4984 

Validation 

(2010-2011) 
0.9946 1.1046 1.4035 

Verification 

1999-2001 
0.9688 1.1478 1.1478 
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Satisfactory forecasting is obtained in this study since the R
2
 is sufficiently high and close to 

1, and the MSRE is adequately low and approximates to 0. The measures MAE of calibration 

and validation are far less than the relevant mean value of the observed data. The high score 

of R
2
 indicate that all the models present the “best” performance according to the standard 

given by Dawson et al. (2007). The statistic result of error measures of the validation are as 

much as that of the calibration and both of them are encouraging. This outcome implies that 

the training procedures are successful without “overtraining” or “local minimum” and the 

proposed models have powerful generalization abilities for out-of-sample forecasting. 

  

Results of Inflow Optimization Modelling 

The water allotted to the industrial and domestic sector (town water supply) should be varied 

within the lower limits of demand especially on days of prolonged rainfall. This is because 

the energy utilized in pumping the water to the treatment plant as well as the cost of treatment 

is not justified by the reckless use of the water by the consumers. This is because alternative 

sources such as rainwater harvesting are available during such days. This recommendation 

should be followed religiously mainly in the months of July, September, October and 

December where no optimal returns were observed in the model for industrial and domestic 

water allocation. The following allocation policies as shown in the table 10 are recommended 

for adoption for the management of the Dadin-Kowa dam project. It is strongly recommended 

that the respective total monthly allocations should never fall below the values presented in 

the table above. The dam authority is advised to use any of the months of April, May or June 

for maintenance of the dam facility. This is suggested based on the revelations of the research 

that no amount of allocations in any of these months would attract any optimal benefit to the 

water users in any of the demand sectors.  

 

CONCLUSION 

In this work, Multilayer Perceptron Back Propagation Artificial Neural Network (MLP-BP-

ANN) models were developed for forecasting daily inflow values into Dadin-Kowa reservoir. 

The experimental results indicate that these models can extend the forecasting lead-times 

with a satisfactory goodness of fit. As regards the accuracy, the model provided good  
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Table 7: Summary of the Results for Agricultural returns. 

Month 
Model 

Returns (N) 

Real Returns 

(N) 

Net Savings due 

to model (N) 

January (1991-2001) 4,313,088 2,239,486 2,073,602 

February  (1991-2001) 5,612,544 2,806,272 2,806,272 

March (1991-2001) 6,642,432 6,220,000 422,432 

April (1991-20010 * * * 

May (1991-2001) * * * 

June (1991-2001) * * * 

July (1991-2001) 6,642,432 6,220,000 422,432 

August (1991-2001) 6,642,432 1,555,200 5,087,232 

September (1991-2001) 6,220,800 5,812,993 407,800 

October (1991-2001) 7,776,000 6,642,432 1,133,568 

November (1991-2001) 6,220,880 1,555,200 4,665,680 

December (1991-2001) * * * 

Total   17,019,018 

*No optimal yield was achieved 

 

Accuracy for short time horizon forecast which however decreased when longer time 

horizons were considered and this was particularly true for the rising phase of the flood wave 

where a systematic underestimation was observed. This temporal limit is coherent with that 

detected by other authors using similar data-driven models applied to basins with similar 

extension to that considered in this study (e.g. Campolo et al., 1999, 2003; See and Open-

shaw, 1999; Solomatine and Dulal, 2003), and this limit is certainly due to the fact that no 

information or forecast of rainfall is considered available within the time spell ahead with 

respect to the instant when the forecast is performed. When the simulated inflow were 

applied in dynamic modelling for optimal reservoir release policy, the following inferences 

were remarkable. According to the model, optimal returns for various allocations of water: 

including agricultural; industrial and domestic uses are readily attained in the first three 

months of the year: January, February and March. Also similar success was recorded in the 

first months of August and November. 
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Table 8: Summary of Results for Industrial and Domestic Returns. 

Month 
Model Returns 

(N) 

Real Returns 

(N) 

Net Savings due 

to model (N) 

January (1991-2001) 22,873,536 19,954,080 2,919,456 

February(1991-2001) 12,458,000 7,499,520 4,958,480 

March (1991-2001) 749,928,000 662,320,640 4,958,480 

April (1991-2001) 3,392,062 3,392,064 -2 

May (1991-2001) 6,722,784 6,722,000 784 

June (1991-2001) 33,410,000 33,410,782 -782 

July (1991-2001) * * * 

August (1991-2001) 270,920,160 207,847,648 63,072,512 

September(1991-2001) * * * 

October (1991-2001) * * * 

November (1991-2001) 101,088,000 98,366,400 2,721,600 

December (1991-2001) * * * 

Total   158,279,408 

* No optimal yield was achieved  

 

It could be inferred that optimization of returns to water allocation is possible only in the 

months that have long dry spells, i.e. unavailability of rainfall. September, October; 

represents periods of partial dry spells, optimal returns were recorded only in the agricultural 

sector through the use of the model. Thus, partial dry spell favors optimal returns for 

agriculture. However, the months of April, May, June, and December were the zero 

optimization months as none of the allocation sectors yielded optimal returns for the total unit 

of water allocated. The model and the real scenario replicated each other in these months. 

Therefore periods of rainfall do not require any optimization of water allocation based on the 

above judgments. The functional reservoir volume that supported all allocation policy was 

observed to be 1.5877557x10
10

m
3
 whereas the actual Live storage Capacity of the 

1.77x10
10

m
3
. Application of the result will lead to saving N175, 298,426 annually in the dam. 

Thus, a total of N175, 298,426 will saved in the dam annually by using the model.  
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Table 10: Recommended Optimal Allocation of Water. 

Month 

Recommended total monthly 

water allocations for optimal 

returns to all sectors (m
3
) 

Number of 

days in the 

month 

Recommended average daily 

water allocations for optimal 

returns to all sectors (m
3
/s) 

January 2,659,651,200 31 993 

February 1,782,950,400 29 712 

March 873,043,200 31 326 

April 982,022,400* 30 975 

May 3,152,563,200* 31 1,177 

June 3,983,904,000* 30 1,537 

July 1,238,976 31 0.5 

August 1.6 x 10
10 

31 5,974 

September 1.6 x 10
10 

30 6,173 

October 3.3 x 10
10 

31 12,321 

November 9,562,272,000* 30 3,793 

December 3,562,272,000* 31 1330 

*: Current allocation policy which is the average 11-year record for the month.  
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