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ABSTRACT 

The work handles a method of optimisation of 330KV power system 

load flow per excellence. This method is called, PRIMAL-DUAL 

INTERIOR-POINT TECHNIQUE and it is used in solving optimal 

load flow problems. As load-sheddings, power outages and system 

losses have been cause for worries, especially among the developing 

nations such as Nigeria, hence a need for a more functional load flow 

solution technique, which, this work addresses. Optimisation is 

achieving maximum of required and minimum of un-required and it is  

obtained mathematically by differentiating the objective function with respect to the control 

variable(s) and equating the resulting expression(s) to zero. This work developed a 

mathematical model that solves load flow problems by engaging non-negative PRIMAL 

variables, “S” and “z” into the inequality constraint of the load flow problems in other to 

transform it to equality constraint(s). Another non-negative DUAL variables “ ” and “v” are 

incorporated together with Lagrangian multiplier “λ” to solve optimisation. While solving 

optimization, Barrier Parameter “ ” which ensures feasible point(s) exist(s) within the 

feasible region (INTERIOR POINT). Damping factor or step length parameter “α”, in 

conjunction with Safety factor “ ” (which improves convergence and keeps the non-negative 

variables strictly positive) are employed to achieve result. The key-words which are 

capitalized joined to give this work its name, the PRIMAL-DUAL INTERIOR-POINT. The 

initial feasible point(s) is/are tested for convergence and where it/they fail(s), iteration starts. 

Variables are updated by using the computed step size  and the step length parameter “α”, 
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which thereafter, undergo another convergence test. This technique usually converges after 

first iteration. Primarily, this technique excels the existing methods as; it solves load flow 

problems with equality and inequality constraints simultaneously, it often converges after 

first iteration as against six or more iterations of the existing methods for one variable 

objective, for two variables, the iteration number is very few compared to existing method. 

Its solution provides higher power generations from available capacity and minimum system 

loss as example, Geregu Power Station on Bus 12 where, result shows 89.3% generation as 

against 60% of existing methods. Generation loss is 1.8% as against 80.3% of existing 

methods and availability loss of 12.5% as against 88.2% of existing. Therefore this method 

ensures very high system stability. 

 

INTRODUCTION 

1.1 Background to the Study 

The first known interior-point (i.p) method is attributed to frisch of 1955, which is a 

logarithmic barrier method of wright, of 1957 that was later in 1960s extensively studied by 

fiacco and mc cormick, of 1968
 
to solve non-linear inequality constrained problems (irisari et 

al, 1984 torren and quintina, 2001 granville,2007). The greatest break-through in ip research 

took place in1984, when karmarka came up with a new ip method, reporting solution times of 

up to 50 times faster than the simplex method. karmarka‟s algorithm is based on non-linear 

projective transformations. After 1984, several variants of karmarka‟s ip method have been 

proposed and implemented with primal-dual method being proposed, developed and waiting 

for implementation since its algorithm proved to perform better than earlier ip algorithms. 

 

1.2 Problem statement since problems that occur in 330kv power system if not handled with 

dispatch and swiftness, result in total blackout with often catastrophic effects. As the existing 

conventional methods to solution of Optimal Load Flow problems are time consuming, 

giving rooms for blackouts. 

 

1.2 AIM of this work is to obtain optimisation of 330KV power system by using Primal 

Dual Interior Point technique. 

 

The Objectives include; 

 To obtain solution for optimisation of Load Flow problems on 330KV power system that 

converges at first iteration. 
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 To be able to solve load flow problems with equality and inequality constraints 

simultaneously by engaging non-negative PRIMAL variables into inequality constraint in 

other to become equality constraints. 

 To develop a technique whose solution results in generation of about 90% of power 

station‟s available capacity. 

 To obtain solution that provides minimum running cost of system. 

 To articulate all the technique‟s variables, such as Primal variables, Dual variables and 

the independent variable(s), parameters, such as Barrier parameter and Step length 

parameters and constants, such as Centering parameter, Safety factor and others to 

achieve the above mentioned objectives. 

 To sensitise power industries the need to adopt the technique in their operations as 

reliability,security, stability and efficiency are guaranteed.   

 

1.4 Scope of The Research Work Since the thesis is universal, its utility transcends Nigerian 

boundaries hence Nigeria 330 KV Network system study is adopted. Useful data are obtained 

internally and externally and from the existing conventional methods. 

 

1.5 Justification For Study As Engineering research works are aimed at advancement of 

technology and moving the system over to the next level, the new technique has faster 

solution time, fewer iterations and handles both equality and inequality constraints problems 

simultaneously.  

 

1.6 Limitations Of The Research The technique, the Primal-Dual Interior-Point Technique 

is globally utilisable, but inability of accessing enough foreign materials affected the work‟s 

100% success.   

 

1.7 Motivation For The Research Study analysis of the data collected from November 2012 

to October 2018 from Discos,TCN and Gencos on 330kV, 52 bus power system network 

reveal disturbing facts, hence the research to develop best operational method to achieve 

optimum, continuous, higher system stability and reliable service to the consumers hence this 

technique.  
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Relasted Work 

2.1 Optimisation Based On Economic Operation of Power System 

Consideration is made so that power system is operated as to supply all the (complex) loads 

at minimum cost. Often total load is less than the available generation capacity (Fliscounakis 

et al, 2013) and so there are many possible generation assignment,(Hiyama, 1982), but when 

there is peak load/demand for power, it means, all the available generation capacity is used 

resulting in no option. During options, power generation (PGi) is picked to minimise cost of 

production while satisfying load and the losses in the transmission system (Capitanescu et al, 

2012) min C(PG)= α+βPG+γPG
2
. Optimal economic dispatch may require that all the power 

be imported from neighboring utility through a single transmission system (Street et al, 

2014). Also, it is noted that, small variations in demand are taken care of by adjusting the 

generations already on line, while large variations are accommodated basically by starting up 

generator units when the loads are on the upswing and shutting down when the loads 

decrease (Mao and Iravani, 2014). Although the problem is complicated by considering the 

long lead time required (6-8 hours) for preparing a “cold thermal unit for service”, (Colombo 

and Grothey, 2013). To avoid the cost of start-up or shut-down, there is a requirement that 

enough spare generation capacity (spinning reserve) be available on-line in the event of a 

random generator failure (Awosope, 2003). 

 

2.2 Optimisation Based On Minimum Mismatch Method  

Generally, load flow equation of an N-bus network can be expressed as: 

S = P + jQ = V
T
I
*
 = V

T
 (YV)

* 
(Kamel et al, 2013)                                                               (2.1) 

Where:- “S” is the power injection vector 

“I” is the current injection vector 

“V” is the bus voltage vector and; 

“Y” = G + jB is the system admittance matrix. 

 

All the above quantities are complex, except P and Q which are real and imaginary parts of S. 

Because of non-linearity of load flow equations, several mathematical solutions exist, giving 

rise to non-uniqueness in the load flow calculations, with only one of the solutions with the 

minimum system losses and acceptable high voltages, as low voltage may correspond to 

unstable operation, is taken (Wu, et al 2010). 

 

 

 



Obinwa.                                    World Journal of Engineering Research and Technology 

 

 
 

www.wjert.org 

 

437 

2.3 Optimisation Based On Fast Decoupled Load Flow Method
 

This is a modification of the Newton-Raphson (NR) technique which takes advantage of the 

weak coupling between the real and reactive power (Bhowmick et al, 2008) with two 

constant matrices used to approximate and decouple the Jacobian Matrix(Song and Cai, 

2013).  

 

2.4 Optimisation Based On Second Order Load Flow (Solf) Method  

Load flow equation, with variables defined in rectangular form for nodal real and reactive 

power mismatches. (Ferreira and Dacosta, 2005) 

          N 

Pi =   (ei ej Gij – ei ef Bij +fifj Gij+ fi ej Bij), 

        i= j 

         N 

Qi =   (fi fj Gij – fi fj Bij - eifj Gij- ei ej Bij),     

        i= j 

Ei 
2 

= ei
2
 +fi

2
 Where Ei is modulus of ith bus Voltage.   (2.3) 

 

2.5. Optimisation Based On Mathematical Model of Primal-Dual Interior-Point 

Technique 

Min f(x)  

Such that g(x) = 0                                                                                                           

(2.4) 

H  h(x)  ĥ  

x IR
n
 is a vector of decision variable including control and non-functional dependent 

variable, 

f: IR
n
 –IR is a scalar function representing the power system operation optimisation goal. 

g: IR
n
 –IR

m
 is a vector function representing the conventional power flow equation and other 

equality constraints. 

h: IR
n
 –IR

p
 is a vector of functional variables with lower bound h and upper bound ĥ 

representing the operating limits on the system. 

 

It is assumed that f(x), g(x) and h(x) are twice continuously differentiable. Since the above 

problem minimises f(x) subject to h(x) > 0. The objective is to obtain a feasible point X. that 

attains the desired (Chiang and Grothey, 2014. Farivar and Low, 2013, Gan, et al 2015)  

(2.2) 
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2.5.1 Greek Alphabets Used and Their Meanings in Primal-Dual Interior-Point 

Technique. 

“s” and “z” (small and big zeta) PRIMAL VARIABLES are non-negative slack vectors, for 

transforming inequality constraint(s) to equality constraint(s) “slack” means loosely attached, 

“Primal” means basic.  

“” “v” and (small letter pi, and nu) are non-negative Lagrangian vector called Dual 

Variables. They are vector multipliers incorporated with “λ” (lambda) the lagrangian 

multiplier to help Primal Variables solve the emerged equality constraints for 

optimisation.”Dual” means joint action. 

“μ”(small letter mu) is a Barrier parameter or Complimentary Gap which is incorporated to 

ensure. 

that the feasible point(s) exist(s) within the Feasible region (Interior-Point).  

“Ω”(Omega) is centering parameter used with “ρ” (Rho),  the confining parameter in 

computing „μ” 

“γ”(gamma) is safety factor that ensures, next point satisfies positivity condition, used in 

computing step lengths (damping factor) "α” that improve convergence and keep non-

negative variables strictly positive. The constants “γ” and “Ω” stand for 

personnelemolument in the system   

 s, z,  and v are variables for static var compensators  and FACTS (flexible ac transmission 

system). 

 

METHODOLOGY 

3.1 Transforming Inequality Constraint to Equality Constraints  

Transformation of (2.4) is done (Yang, et al 2016) by incorporating non- negative slack 

vectors „s‟ and „z‟ into the inequality constraint   h < h(x)< ĥ, imposing strict positivity 

conditions on those slacks by incorporating them into logarithmic barrier terms  as follows; 

Min f(x)   

Subject to g(x) = 0 

-s – z + ĥ – h = 0      

-H(x) – z + ĥ = 0 

Into logarithmic barrier term as                                          

Min f(x)- µ
k  

 

Subject to g(x) = 0 

(3.1) 
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-S – z + ĥ – h = 0      

-H(x) – z + ĥ = 0   

“S” > 0; “z” > 0     

 

Where, k is the iteration count or number and p the number of interconnected systems. 

Solving these equality constraints (Wu, et al 2012, and Ling, 2007), we apply vectors of 

lagrangian multipliers called Dual-Variables “” “π” and “v” together with the Newton 

method 

Lµ(y) = f(x)- µ
k  

Σ(in si+in zi) -λ
T
gx- π

T 
(s-z+h-h) - V

T 
(-h (x) – z + h).   (3.2) 

 

3.2   Optimality Conditions 

A local minimiser of (3.1) is expressed in terms of stationary point of  Lx (y) satisfying the 

Karush- Kuhn Tucker (KKT)  optimality conditions for the NLP problem (2.10) (Torren and 

Quintana, 2001) as  

   s π 

               zv        

 y1(y) = s + z – ĥ + h    =0                            (3.3) 

   h(x) + z - ĥ 

                    xf(x) – Jg(x)
T
  + Jh (x)

T
v 

- g(x) 

V= v + π for simplification  

 

Where l or L is local minimiser 

Strict feasibility starting point is not mandatory for Primal Dual Interior Point technique but 

the condition (s, z)>0 and (, v) >0 must be satisfied at every point in order to define the 

barrier term (Capitanescu and Wehenkel, 2012). The algorithm terminates when the Primal 

and Dual infeasibilities and the complementary gap fall below pre-determined tolerance 

otherwise, with (s, z)>0 and (, v) > 0 a new estimate y
k
 is computed using one step of 

Newton method to find zeroes (the roots) of the NL functions. 

 

 

 

 

 

 

 

^ 

^ 

^ 
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3.3 Estimating New Point (Y
K

) 

3.3.1 Computing Newton Direction or Step Size Y 

The Newton direction is obtained by solving. Newton method (Tinney and Hart, 2007) with 

large sparse coefficient matrix (Geletu et al, 2011), with step size column matrix as below 

(Molzahn et al, 2013):-     

         0 s 0 0 0  s  rs 

 0 v z z 0 0  z  rz 

 1 1 0 0 0 0    r          

 0 1 0 0 Jh 0  v  rv 

 0 0 0 Jh
T 


2

x l -Jg
T
  x  rx 

 0 0 0 0 -Jg 0    r 

 

(Tinney and Hart, 2007). 

rs = -s + 
k
e 

 rz = -zv + 
k
e 

 r = -s –z + ĥ – h 

 rv = -h (x) - z + ĥ             

 rx = -x f(x) + Jg (x)
T
 - Jh (x)

T
v 

 r = g(x) 

 

Where, 
2

x l is the combination of Hessians of objective and constraints functions. 
2

x l(y) 

= 
2

x f(x) - 
2

xgj(x)j + 
2

x hj (x) vj      (3.7)               

 

Where “l” is local minimiser a function of differentiation, 
2

xf(x) is  the Hessian or Second 

differentiation of objective function  w.r.t.x, 
2

x g(x) is the Hessian or Second differentiation 

of equality constraint function w.r.t.x, 
2

x h (x) is the Hessian or Second differentiation of 

inequality constraint function w.r.t. x, xf(x) is the first differentiation of objective function  

w.r.t.x, Jg(x) is the first differentiation or Jacobian value of equality constraint w.r.t.x. Jh(x) 

is the first differentiation or Jacobian value of inequality constraint w.r.t.x. In the 

computation of Y, factorisation of the coefficient matrix (3.5) is much more expensive than 

the forward and backward solutions that follow factorisation. 

 

 

 

 

 

^ 

(3.5) = 

(3.6) 
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3.3.2   Computing Step Length Parameter (    

The scalars 
k

P€ (0,1) and 
k

D€ (0,1) are step length parameters called damping factor. 

They improve convergence and keep non-negative variables strictly positive. k is the iteration 

counts.  


k

P= min [1, γ min{-si
k
/si/si<0, -zi

k
/zi/zi<0}]                          


k

D= min[1, γ min {-i
k
/i/i<0, -vi

k
/vi/Vi<0}]                           

 

The scalar γ (0,1) is a safety factor which ensures that the next point will satisfy the strict 

positivity conditions; typical constant values, γ
O
   = 0.25. γ

 k
 = 0.99995. 

 

3.3.3 Updating Variables 

3.3.3.1Updating control variable(s) and primal variables  

X1
k
 = X1

k-1 
+  p

k
 X1

k-1 
2 control  

X2
k
 = X2

k-1
 + p

k
 X2

k-1 
variables

 

S
k
 = S

k-1
 + p

k
  S

k-1 

Z
k
 = Z

k-1
 + 

k
p Z

k-1    
    

 

3.3.3.2 Updating dual variables and lagrange multiplier 


k
 = 

k-1
 + 

k
D

k-1 

V
k
 = V

k-1
 + 

k
DV

k-1 


k
 = 

k-1
 + 

k
D

 k-1
 

 

3.4 Reducing the Barrier Parameter (μ
k
)   

The scalar μ
k
 is the barrier parameter or complementary gap which ensures the feasible 

point X exist within the feasible region (Lage et al, 2009) and it is obtained by 

μ
k +1  = 


k
 

k      
        (3.10) 

Where 
k
 is chosen = max (0.99

k-1
/2; 0.1) and it is called the Centering Parameters  

With 
0
 = (0.2 fixed) and µ

O 
= (0.1 fixed) 


k
 = (S

k
)
T


k
 + (Z

k
)
T
V

k                                                                                     
              (3.11) 

μ
k
 is computed first, only if iteration (1) fails, then μ

1
 and Y

1
 is used to form iteration (2) as 

Y
0
 and μ

0
 ( given) are used to form iteration (1)  

 

3.5 Testing For Convergence 

Interior-Point (IP) Iterations Are Considered Terminated Whenever 

V1
k
 = max [max{h-h(x); h(x) – ĥ }, ], 

 (3.9)  

 (3.8) 



Obinwa.                                    World Journal of Engineering Research and Technology 

 

 
 

www.wjert.org 

 

442 

V2
k
 =  

Since 2 & 2 are vectors of lagrangian multipliers,  

they have no vector addition and so denominator reduces to 1 + 2 

V3
k
 =                  

 

V4
k
 =        

Typically, V1
k
 and V2

k
  ξ 1 = 10

-4
, or < ξ1

 

V3 
k
 and V4

k
 ξ 2 = 10

-2
ξ 1 (i.e. 10

-6
) , or < ξ2, 


k
< ξ or ξ x = 10

-12
, is satisfied 

 

Generally, ξ1 = 10
-8

 is chosen for quadratic functions with 2 variables. 

If V
k

1, V
k
2 and V

k
3 are satisfied, then primal feasibility, scaled dual feasibility and 

complementary condition are satisfied which means that iterate K is a Karush Khun Turker 

(KKT) point of accuracy. 

 

When numerical problems prevent verifying this condition, the algorithm stops as soon as 

feasibility of the equality constraint is achieved along with a very small fractional change in 

the objective value and negligible changes in the variables. The typical tolerances are ξ 1= 10
-

4
, ξ 2 = 10

-2
 ξ 1 and ξ = 10

-12. 

 

3.6   Primal-Dual Interior-Point Technique Numerical Algorithms 

Step 0: (Initialisation) 

Set K = 0, define μ
0
 and choose a starting point Y

0
 that satisfies the strict positivity 

conditions. 

Step 1: (Compute Newton Direction) 

Form the Newton System at the current point and solve for the Newton Direction. 

 

Step 2: (Update Variables) 

Compute the step lengths in the Newton direction and update the primal and dual variables. 

 

 

 

 (3.12) 
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Step 3: (Test for Convergence) 

If the new point satisfies the convergence criteria, stop. Otherwise, set K = K + 1, update the 

barrier parameter μ
k
 and return to step 1. 

 

3.6.1 Implementation of the Algorithms of Primal-Dual Interior–Point Technique  

3.6.1.1 Step Zero (0), Choosing an initial point 

Starting point needs only to meet the strict positivity conditions, IP method performs better if 

some initial heuristics are used, for instance, X
0
 is between the upper and the lower limits of 

the bounded variables. 

 

3.6.1.1.1 Initial point for two variables with quadratic inequality constraint h < h (x) < 

ĥ)    

 

         X1   

X
0
 =          =   ĥ - h 

         X2           

 

X
0

i are tested by substituting them into h (x) without considering constant term. 

 

Example, if h (x) is, 1< X1
2 

+ X2
2 

– 6x1 – 2x2 + 10 < 4, 

 

Heuristically picking X1 as 5 and X 2 as 4 and substituting them into above inequality 

ignoring constants gives 3 equals the range (4 - 1) of the inequality. 

  5 

X
0
 =         = 3   

             4             

 

 

3.6.1.1.2 Initialising primal slack variables   (S
0 

and
 
Z

0
) 

S
0
= min [max {γ

o
h

, h(X

0
) – h min}, (1-γ

0
) h


] 

S
0
 = min [max {0.25h


, h(X

0
) – h min}; 0.75h


] 

Where: h

 = h max –h min 

γ
0
 = 0.25                (3.13) 

1 - γ
0
 = 0.75      

H (X
0
) = values of X

0
 including constant  

          Z
0
 = h


 - S

0      
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3.6.1.1.3 Initialising dual variables (
0
, V

0
) 


0
 = 

0
 (S

0
)
-1

 e (e is diagonal I of matrix) 


0
 =0.1(S

0
)
-1       

 

V
0
 = 

0
 (Z

0
)
-1

 e - 
0     

 


0 

= 0 (since the power balance of steady state system is passive). 

Convergence of the initial point is tested and if it fails then:  

 

3.6.1.2  Step one (1), Computing Newton direction Y    

With 
o
 defined and initial point Y

o
 obtained; Newton method (3.5), is formed and Newton 

direction computed with (3.6) and (3.7) of (3.5)
 

 

3.6.1.2 .1 For two variables with quadratic constraint  

With 
o
 defined and initial point Y

o
 obtained; Newton method (3.5), formed and Newton 

direction computed with (3.6) and (3.7) of (3.5).Factorisation starts from row 3 of (3.5) where 

s is substituted for -z and applied to row 1, then row 2, row 4 and with row 4, row 5 and 

row 6 are factorised and finally row 6 and row 7 are simultaneously factorised to obtain X1 

and X2 before backward substitutions.   

 

3.6.1.3 Step two (2), Updating variables (Y
k
)
 
with step length parameter “” (3.8). Y

1 = 

Y
O +
Y

o
 

Newton direction Y is computed from (3.5) and variables are updated from (3.9) 

 

3.6.1.4 Step three (3), Testing for convergence 

If the new point satisfies the convergence criteria, stop. Otherwise, set K= K + 1, update the 

barrier parameter 
k
 and return to step 1.  

 

Result and Analysis 

4.1 min x1
2
 + x2

2
 - 4 x1 - 8 x2 + 20 (Nagrath and Kothari, 2010) subject to  x1

2
 + x2

2
 - 2 x1 - 2 

x2 – 2 = 0 1 < x1
2
 + x2

2 
– 6x1 – 2x2 + 10 < 4 

Step 0: Initialisation 

 

Heuristically X1 and X2
 
are chosen   as follows: 

ĥ   - h = h(x) 

4 – 1 = 3 = h(x) 

 

 (3.14) 
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To choose (X1, X2) to give 3 we have              

X
0
 
=     

=  

 

s
0
 = 1min [max {0.25 x 3, 13-1}, 0.75 x 3] 

     = min [12, 2.25] 

s
0
 =   2.25 

 

Note after obtaining x
0
 from h(x) as 3, subsequent h(x) includes the constant term in the 

inequality, which is 0 to give 13. 

z
0
 = h


 - s

o
 , i.e 3-2.25=0.75 

     =(S
0
)
-1

e where e = diagonal 1 

     = 0.1 (2.25)
-1

 

     = 0.0444 

v
0
 = (Z

0
)
-1

e - 
0
 

v
0
 = 0.1333 – 0.0444 

     = 0.0889 

V
O 

= (Z
0
)
-1

e = 0.1333 

 


0
 = 0 (for passive power balance) i.e steady state condition. 


0
 = 0.1, 

0
 = 0.2 (fixed), γ

0
 = 0.25 and other γ

k
 = 0.99995, E = 10

-8
 other  

k
 = 0.1 

xf(x)   =   2x1 – 4   ;             x
2
f(x)   =     2    0 

       2x2 – 8            0    2 

Jg(x) = {2x1 – 2; 2x2 – 2};      x
2
g(x) =            2    0 

0 2 

Jh(x) = {2x1 – 6; 2x2 – 2};      x
2
h(x) =            2      0 

  0      2 

    
2

xl
0
 =     2.17778      0  

0 2.17778 

 

Where 
2

xl = 
2

xf(x) - j
2
xgj(x) + Vj

2
xhj(x) 

Therefore, Y
0
 is initialised as 

 

 

m 

j=1 

^ 
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 s
0
  2.2500 

 z
0
  0.7500 

 
0
  0.0444  f(x

0
) = 9 

Y
0
 = v

0
 = 0.0889  g(x

0
) = 21 

 x1
0
  5.0000  h(x

0
) = 13 

 x2
0
  4.0000 

 
0
  0.0000 

 

Testing for convergence, 

V1
0
 = 21>10

-8 

V2
0
 = 0.8585 > 10

-8 

V3
0
 = 0.0205 > 10

-8 

Not converged. (Convergence failed) 

 

Iteration I: With Y
0
 and 

0
 known, Newton System is formed and solved as follows 

 0.0444,    0 2.2500  0 0 0 0         s
o
        0.0000 

0     0.0889 0.7500       0.7500 0 0 0 z
o
        0.0000 

1 1 0  0 0 0 0 
o
        0.0001 

0 1 0  0 4 6 0 v
o
 =     -9.7500 

0 0 0  4      2.1778 0 -8 x1
o
        -6.3550 

0 0 0  6 0   2.1778 -6 x2
o
         0.5334 

0 0 0  0 -8 -6 0 
o
  21 

From (row 3) s
O
 = -z

O
 

From (row 1) -0.0444z 
O
+ 2.25

O
 = 0.0001 

 =    


O  

 = 0.01973z
O
 + 0.00004     

From (row 2) 0.1037 z + 0.75v
o
 = -0.00003 

 =   

z
O 

 = -7.2324v
o
 –0.00029 

in row (4) v
o
 = 9.7497 + 4x1

o
+ 6x2

o 

            7.2324 

v
o
 = 1.3484+0.5532x1

o
+0.8298x2

o 

in row (5) 4.3901x1
o
 + 3.3184x2 – 8

o
 = -11.7418 

in row (6) 3.3184x1
o
 + 7.1554x2

o
 – 6 

o
= -8.6218 

from  row (5) 
o
 = 11.7478 + 4.3901x1

o
 + 3.3184x2

o 

         8 
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Substituting 
o
 into row (6) gives 0.0262x1

o
 + 4.6672x2

o
 = 0.1881 row (7) is 8x1

o
 – 

6x2
o
    = 21 

Then x1
o
 = -2.6665, x2

o 
= 0.0553 


o
 from, row (5) = 0.02827 


o
 from, row (6) = 0.02815 


o 
mean is 0.0282 

v
o 
= -0.0808 

z
o  

= 0.5841 

s
o
 = -0.5841 


o
 = 0.0115 

p
1
 = D

1
 = 1 

Y
0
 =  s

0
  -0.5841 

  z
0
  0.5841 

  
0
  0.0115 

  v
0
 = -0.0808 

  x1
0
  -2.6665  

  x2
0
  0.0553 

  
0
  0.0282 

Y
1
                  1.6659   

  1.3341 

  0.0560   f(x
1
) = 0.1143 

  0.0081   g(x
1
) = 7.1131 

  2.3335   h(x
1
) = 9.7290 

  4.0553 

  0.0282 

 

Testing for convergence: 

V1
1
 = 7.1131 > 10

-8 

V2
1
 = 0.1023 > 10

-8 

V3
1
 = 0.0183 > 10

-8 

V4
1
 = 7.9742 > 10

-8 

 

Convergence fail 


1
 = 

1


1
 from (3.10), while 

1 
is from (3.11), 

= 0.1 x 0.1041 = 0.0104 
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Iteration 2 

With Y
1
 and 

1
 the next Newton System is formed, from where Newton directions are 

computed, and variables updated with convergence tested as  

V1
2
 = 3.1720 >10

-8 

V2
2
 = 0.0900 >10

-8 

V3
2
 = 2.2640 x 10

-6
 >10

-8 

V4
2
 = 0.1198 >10

-8
, 

 

Resulting in failure of the system to converge after iteration 2. Although this process 

continues until at 8 IP iteration, the system converges with x1 = 2.0000 and x2 = 2.7721 

Where V1
8
 = 2.8499 x 10

-10
 < 10

-8 

 

5.1 DISCUSSION OF RESULTS 

Generally, the work reveals that Primal-Dual IP load flow technique optimisation excels 

others as it solves two variables with quadratic constraints function of equality and inequality 

and obtains solutions at a very fast rate as it converges in few number of iteration.. 

 

5.2 Summary of Findings 

1. Other techniques solve load flow separately on Equality constraint and Inequality 

constraint, while the PD-IP technique solves load flow problems containing both 

constraints at the same time. 

2. Number of Iterations to convergence (solution) to load flow problems of two variables are 

always so many for the other techniques while PD-IP technique often converges to 

solution wthin eight iterations 

3. PD-IP technique convergence save time and so better optimisation technique. 

 

5.3 Contributions to Knowledge 

PD-IP technique has many advantages compared to the others, as it solves load flow 

problems containing both equality and inequality constraints simultaneously, it has few 

iterations, it obtains solutions at a short period. It is imperative that students and Electric 

Utility Industries have to study and operate with it.  
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5.4 Recommendations 

For the technique‟s merits over others, intense efforts is needed to study deeper into the 

technique by making it accessible to various Institutions of learning and to Electricity 

Industries.  
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