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ABSTRACT 

The paper developed a technique that made much impact recently in 

optimization of 330 kV and other Extra High Voltage Networks as it 

solves load flows which are non-linear with both equality and 

inequality constraints at the same time thereby saving time and also the 

system from encountering problems due to delays in fault clearings. 

The existing solves one constraint after the other and has more than 6  

iterations before converging, while the developed method has few iterations and often 

converge after first iteration. The developed technique guarantees higher system power 

generation and consequently, larger loading with high system stability. With these advantages 

over the other methods the technique stands the best for optimisation. This technique is 

realised by applying the non-negative Primal Variables ,“S” and “z” into the problem 

formulation to transform the Inequality constraint part to Equality constraints and 

subsequently apply another non-negative Dual Variables, “ ” and “v” together with Lagrange 

multiplier “λ” to solve optimisation. Optimisation is solved by incorporating, Barrier 

Parameter “ ” which ensures feasible point(s) exist(s) within the feasible region (INTERIOR 

POINT), Damping Factor or Step length parameter “α”, Step Size ∆Y, in conjunction with 

Safety Factor “ ”  (which improves convergence and keeps the non-negative variables strictly 

positive) are used for updating variables (Y
1
=Y

0
+α∆Y

0
). If initialised variables fail 

convergence test, iteration starts with the updated variables. The problem formulation is done 
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economically through minimisation of cost of power generation; min C(PG)= α+βPG+γPG
2
,  

g(x)=0, stands for conventional power flow equation and other equality constraints, which is 

represented as; PG PD loss=0 and h £ h(x) £ ĥ, stands for operating limits on the system, 

which is represented as PGmin £ PG) £PGmax. The numerical algorithms of the method 

runs; Step Zero (Initialisation), Step One (Compute Newton Direction ∆Y), Step Two 

(Update Variables), Step Three (Test for Convergence). Studies with results and analysis of 

improved perforformance by using PD-IP technique on the 330KV Bus Power Stations using 

Shiroro HydroPower Station of Nigeria of Bus number 1 as example and from table  shows 

that percentage improvement to the existing methods is 22% on power generation, 15% on 

powere demand and 64% on power loss. Therefore, this method ensures and guarantees1 high 

system stability. Finally PD-IP technique proved to stands most desired and so should be 

introduced to Institutions and Utility Companies.  

 

INTRODUCTION 

Though Fast Decoupled Load Flow (FDLF) (Vincovic and Mihalic, 2008) method was 

widely accepted by the industry because of its fast, simple to implement and with reduced 

computer storage requirements, several refinements were later made such as the Carpentiers 

Implicit Coupling (CrIC) modification, Carpenter J.L Active reactive decoupling for 

improved convergence characteristics of the reactive model (Zhang and Tolbert, 2007) and 

hybrid model (Gomez-Exposito et al, 2015).  

 

The first known Interior-Point (I.P) method is usually attributed to Frisch, which is a 

logarithmic barrier method that was later in 1960s extensively studied by Fiacco and Mc 

Cormick to solve non-linear inequality constrained problems (Torren and Quintina, 2001, 

Granville, 2007). The greatest break-through in IP research took place in 1984, when 

Karmarka came up with a new IP method for Linear Programming LP reporting solution 

times of up to 50 times faster than the simplex method. Then Karmarka‟s algorithm is based 

on non-linear projective transformations.  Later, several variants of Karmarka‟s IP method 

have been proposed and implemented.Finally, the Primal-Dual methods show that its 

algorithm (Shyamasundar, 2010) proved to perform better than earlier IP algorithms.  

 

One of the drawbacks of IP methods is their difficulty in detecting infeasibility. The 

computational efforts of each iteration of an IP algorithm is dominated by the solution of 

large, sparce linear systems (Geletu et al, 2011). Therefore the performance of any IP code is 
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highly dependent on the linear algebra kernel (Alamaniotis et al, 2012). Although in the last 

decade IP methods have achieved significant development, there are still many open 

questions that need more research to further improve their performance. This work addresses 

some of these issues (Qui and Deconinck, 2009). 

 

Optimal load flow methods are essentially static optimisation procedures in which the 

optimal generation schedule that satisfies the load flow equations and minimises production 

cost C(X, U) is sought. The problem for a system of A interconnected areas may be stated as 

follows:     

      A            

Min C(X, U) = Ck (Xk, Uk) 

     k = 1 

Subject to the constraints that: 

F (X, U, D
0
) = 0 

X  ≤ X ≤ X 

U  ≤  U ≤   Ū                                                                                       (1.1) 

Where X and U are vectors of control variables, 

 

D
0
 is constant introduced to facilitate solutions to the problems. 

 

This formulation is appropriate for areas operating in a pool arrangement (Jabr et al, 2016) 

whereby generation schedules are determined to minimise the production cost for the entire 

system. The optimum generation schedule for a separate single system is determined by 

minimising Ck (Xk, Uk) subject to the constraints that Fk (Xk, Uk, Dk
0
) = 0 etc. Since the 

problems are mathematically identical, it is valid restricting the work to a single area, for a 

system of A interconnected areas. 

 

From the above equation, it is noted that basically three (3) constraints must be satisfied by X 

and U. The first is equality constraint that disallows any value of X and U that does not 

satisfy the load flow equations. The other two constraints are inequality constraints on X and 

U within the defined ranges. 

 

A constrained minimisation problem like the above is solved by transforming it into an 

unconstrained minimisation problem.   

 

 _ 
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The merit of this new technique is; solving the above Load Flow problems faster, that is 

having faster algorithm (Xin-She and Xingshi, 2013) and in effect protect the 33OkV System 

from incessant blackouts(Capitanescu et al, 2012). As one of the shortcomings of the existing 

methods of load flow analysis (Momo et al, 2017) on 330kV power system is, time 

consumption as it has more than six iterations for one variable and this gives room for 

unwarranted blackouts and islanding conditions (Wu et al, 2010), as the existing methods 

solve equality and inequality constraints in Non-linear load flow problems separately, 

contributing to time consumption (Lui and Wu, 2017 and Yuan et al, 2016). Data collected 

from TCN, GenCos, DisCos (Odiah, 2011, Ebewele, 2014 and Awosope, 2003), show that 

the existing methods have poor generation-assignment resulting in poor power generation and 

system stability.  

 

Overview Of The Works Cited 

There are no sources in the current document. 

 

2.1 Optimisation Based On Economic Operation of Power System 

Consideration is made so that power system is operated as to supply all the (complex) loads 

(Moradi, et al 2011) at minimum cost (Wang and Murillo, 2007). Often total load is less than 

the available generation capacity (Fliscounakis et al, 2013 in developed world but not always 

so in Nigeria (Alawode and Jubril, 2010). Where the total load is less than, there are many 

possible generation assignment (Bakare et al, 2005 and Orike and Corne, 2013), but when 

there is peak load/demand for power, it means, all the available generation capacity is used 

resulting in no option. During options, (Capitanescu et al, 2011) power generation in system 

(PGi) is picked to minimise cost of production while satisfying load and the losses in the 

transmission system (Kimbark, 1966 and Arya, 1990), min C(PG) =  +  PGi + (PGi
2
). 

Optimal economic dispatch (Yuan and Hesamzadel, 2017 and Xia and Elaiw, 2010) may 

require that all the power be imported from neighboring utility through a single transmission 

system (Street et al, 2014). Also, it is noted that, small variations in demand are taken care of 

by adjusting the generations already on line, while large variations are accommodated 

basically by starting up generator units when the loads are on the upswing and shutting down 

when the loads decrease (Mao and Iravani, 2014). Although the problem is complicated by 

considering the long lead time required (6-8 hours) for preparing a “cold thermal unit for 

service”, (Colombo and Grothey, 2013). To avoid the cost of start-up or shut-down, there is a 
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requirement that enough spare generation capacity (spinning reserve) (Arul et al, 2013) be 

available on-line in the event of a random generator failure (Awosope, 2003). 

Mathematically, Economic Operation of Power System run thus,:- 

Fi (PGi) = PGi . Hi (PGi) also, Fi (PGi) = ai
 + bi 

PGi + y
i
 PGi

2
                            

(2.1) 

Cost, Ci (PGi) = K. (PGi Hi (PGi) in (N/hr), ie K. (Fi (PGi) in (N/hr)                                 

(2.2) 

 

 

 

Economically, the problem is formulated by having the objective of ith generator power 

generation PGi and voltage magnitude from; the ith generator of m generators as to 

minimise the total cost (CT). min CT ∆  Ci (PGi)  (m generators are committed)  (Oluseyi, 

2010) such that PG ∆ PDi  + Plos (Sambo, 2011), (2.3) 



Obinwa.                                          World Journal of Engineering Research and Technology 

 

 
 

www.wjert.org 

 

457 

Where, PDi is power demand from ith generator. Subject to the satisfaction of power flow 

equation above and inequality constraints on generator power, line flow and voltage-

magnitude respectively below (Bai and Wei, 2009) 

1. PGi min ≤ PGi ≤ PGi max          i = (1, 2,…m) 

2.  ≤ Pijmax all linesp 

3. min ≤ ≤ max               i = (1, 2, …m…) 

 

Where, Pij is line flow between ith generator and jth generator. 

The above inequalities show that:- 

1. Upper limits on PGi, is set by thermal limits (Nlu and Wei, 2013) on the generator unit, 

while the lower limits is set by other thermodynamics. 

2. Constraints on the transmission-line power, relate to thermal and stability limits. 

Constraints on  (Lesientre et al, 2011) keep the system voltage from varying too far from 

their rated or nominal values. The objective is to help maintain consumers‟ voltage which 

should neither be too high nor too low. 

3. Formulation of the problem is consistent with the availability of injected active power and 

the bus-voltage magnitude, as control variables can be extended to such, as phase angle 

across phase-shifting transformer, the turn-ratios of tap-changing transformers and the 

admittance of variable (controllable) shunts and series inductors and capacitors (Adebayo et 

al, 2012 and Jabr et al, 2016).  

4. The minimisation of cost function subject to equality and inequality constraints is a 

problem of optimization.  

 

By power flow analysis, if PGi and transmission-line power angles obtained satisfy the 

inequality constraint, the choice of set of  and the power generated in ith system reduced 

by 1 (PGi -1) within the constraint set is feasible and  so the total cost CT  is calculated. 

 

Under normal operating condition, there is relatively time-coupling between active power 

flows and the power angles on the one hand, and reactive power flows and the voltage-

magnitudes on the other hand. The results is formulated in terms of active power flow, setting 

the at their nominal values. While performing calculations, some approximations made 

are;- 

1. Neglecting line-power flow and line losses.  



Obinwa.                                          World Journal of Engineering Research and Technology 

 

 
 

www.wjert.org 

 

458 

2. No generator limits and no line losses.  

3. Line losses considered  

 

For approximation (1), there is no power flow equation. 

For approximation (2), there is no inequality constraint and so it is optimal to operate every 

generator at equal incremental costs IC. 

IC =  (which is slope of fuel cost curve), Ci is cost in ith generator (2.4) 

IC unit is N/MWH. IC is the increase in cost-rate per unit increase in MW Output power; or 

in crease in cost per unit increase in MWH (Afi, 2012). 

 

2.2 Optimisation Based On Minimum Mismatch Method  

Generally, load flow equation of an N-bus network can be expressed as: 

S = P + jQ = V
T
I
*
 = V

T
 (YV)

* 
(Kamel, et al 2013)                             (2.5) 

 

All the above quantities are complex, except P and Q which are real and imaginary parts of S. 

Because of non-linearity of load flow equations, several mathematical solutions may exist 

and this gives rise to non-uniqueness in the load flow calculations (Wu, et al 2010), hence, 

for practical purpose, only one of the solutions is acceptable and this is the solution with the 

minimum system losses and acceptable high voltages. 

 

2.3 Optimisation Based On Fast Decoupled Load Flow Method
 

This is a modification of the Newton-Raphson (NR) technique which takes advantage of the 

weak coupling between the real and reactive power (Bhowmick, et al 2008). Two constant 

matrices are used to approximate and decouple the Jacobian Matrix under the following 

assumptions,  

i. Cos 0 kj  1 

ii. Gkj Sin 0 kj <<Bkj 

iii. Qk<< Bkk Vk
2 

(because for most transmission lines X/R << 1) (Lin and Teng 2000). Where 

X and R are shunt reactance and series resistance respectively, with shunt reactance being 

very small compared to series resistance of most transmission lines. 

 

2.4 Optimisation Based On Second Order Load Flow (Solf) Method  

Load flow equation, with variables defined in rectangular form for nodal real and reactive 

power mismatches. 

          N 
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Pi =   (ei ej Gij – ei ef Bij +fifj Gij+ fi ej Bij), 

i= j 

N 

Qi =   (fi fj Gij – fi fj Bij - eifj Gij- ei ej Bij),     

i= j 

Ei 
2 

= ei
2
 +fi

2
 Where Ei is modulus of ith bus Voltage.                                                     (2.6) 

Where Vi = ei +jfi (nodal or bus voltage), 

 

2.6. Optimisation Based On Mathematical Model Of Primal-Dual Interior-Point 

Technique 

Min f(x) 

Such that g(x) = 0                                                                                             (2.7) 

h £ h(x) £ ĥ  

 

x IR
n
 is a vector of decision variable with control/ non-functional dependent variable. 

f: IR
n
 –IR is a scalar function standing for power system operation optimisation goal. 

g: IR
n
 –IR

m
 is a vector function representing the conventional power flow equation and other 

equality constraints(Chiang and Grothey, 2014 and Chiang,2013). 

h: IR
n
 –IR

p
 is a vector of functional variables with lower bound h and upper bound ĥ 

representing the operating limits on the system. 

It is assumed that f(x), g(x) and h(x) are twice continuously differentiable. Since the above 

problem minimises f(x) subject to h(x) > 0. The objective is obtaining feasible point X. that 

attains the desired minimum  

 

III Methodology 

3.1 Transforming Inequality Constraint To Equality Transformation of (2.7) is done 

(Yang, et al 2016) by incorporating non- negative slack vectors „s‟ and „z‟ into the inequality 

constraint   h < h(x)< ĥ, imposing strict positivity conditions on those slacks (Yang, et al 

2016) by incorporating them into logarithmic barrier terms (Babu and Harini, 2016):- 

Min f(x)   

Subject to g(x) = 0 

 -s – z + ĥ – h = 0      

  -h (x) – z + ĥ = 0 

 Into logarithmic barrier term as                                          

(3.1) 
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Min f(x)- µ
k  

 

Subject to g(x) = 0 

 -s – z + ĥ – h = 0      

  -h(x) – z + ĥ = 0   

“s” > 0; “z” > 0     

 

Where, k is the iteration count or number and p the number of interconnected systems. 

Solving these equality constraints, ^we apply vectors of lagrangian multipliers called Dual-

Variables “” “π” and “v” together with the Newton method.  Where  IR
m

, π IR
p
 and v  

IR
p.

 The point “Y” becomes (s, z, π, v, x, ) [Wu, et al 2012 and Ling, 2007) lagrangian 

function Lµ(y),  

Lµ(y) = f(x)- µ
k  

Σ(in si+in zi) -λ
T
gx- π

T 
(s-z+h-h) - V

T 
(-h (x) – z + h ).                 (3.2)

 

 

3.3    Optimality Conditions 

A local minimiser of (3.1) is expressed in terms of stationary point of  Lx(y) satisfying the 

Karush-Kuhn Tucker (KKT) optimality conditions for the NLP (2.7)(Torren and Quintana, 

2001 and Wu, et al 2012) as  

   s π 

               zv        

 y1(y) = s + z – ĥ + h    =0                            (3.3) 

   h(x) + z - ĥ 

                    xf(x) – Jg(x)
T
  + Jh (x)

T
v 

- g(x) 

 

V= v + π for simplification  

s π - mk
e 

ylm (y) =  zv -mk
e        

   s + z – ĥ + h          

   h(x) + z – ĥ         =0              (3.4) 

   xf(x) – Jg(x)
T
  + Jh (x)

T
v  

- g(x) 

 

Where l or L is local minimiseStrict feasibility starting point is not mandatory for Primal 

Dual Interior Point technique but the condition (s, z)>0 and ( p, v) >0 must be satisfied at 

every point in order to define the barrier term (Sivasubramani and Swarup, 2011 and Lage et 

al 2009). So, IP starts from a point y
0
 that satisfies (s

0
, z

0
)>0 and (po

v
o
) >0. Primal Dual (IP) 

iterates (Capitanescu and Wehenkel, 2008) by one step of Newton method for NL equation to 

^ 

^ 

 
 

^ 

^ 

^ 
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solve the KKT system (3.4). A step size is computed in Newton Direction and variables 

updated and mk
 values reduced. The algorithm terminates when the Primal and Dual 

infeasibilities and the complementary gap fall below pre-determined tolerance otherwise, 

with (s, z)>0 and  (p, v) > 0 a new estimate y
k
 is computed using one step of Newton method 

to find zeroes (the roots of the NL functions applied to (3.3). 

 

3.4 Estimating New Point (Y
K

) 

3.4.1 Computing Newton Direction or Step Size Y 

The Newton direction is obtained by solving. Newton method (Tinney and Hart, 2007) with 

large sparse coefficient matrix (Geletu, et al 2011), with step size column matrix as shown 

below (Flicousnakis, et al 2013 and Molzahn, et al 2013):-     

        p 0 s 0 0 0  Ds  rs 

 0 v z z 0 0  Dz  rz 

 1 1 0 0 0 0  Dp  rp          

 0 1 0 0 Jh 0  Dv  rv 

 0 0 0 Jh
T 


2

x lm -Jg
T
  Dx  rx 

 0 0 0 0 -Jg 0  Dl  rl 

 

(Minot and Li, 2015 andMolzahn, et al 2013). 

rs = -sp + mk
e 

 rz = -zv + mk
e 

 rp = -s –z + ĥ – h 

 rv = -h (x) - z + ĥ             

 rx = -x f(x) + Jg (x)
Tl - Jh (x)

T
v 

 rl = g(x) 

 

Where, 
2

x lm is the combination of Hessians of objective and constraints functions.  


2

x lm(y) = 
2

x f(x) - 
2

xgj(x)lj + 
2

x hj (x) vj                                                           (3.7)    

            

Where “l” is local minimiser a function of differentiation, 
2

xf(x) is the Hessian or 2nd 

differentiation of objective function w.r.t.x, 
2

xg(x) is the Hessian or 2nd differentiation of 

equality constraint function w.r.t.x, 
2

x h (x) is the Hessian or 2nd differentiation of 

inequality constraint function w.r.t. x, xf(x) is the 1st differentiation of objective function  

^ 

^ 

^ 

(3.5) = 

(3.6) Where:  
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w.r.t.x, Jg(x) is the 1st differentiation or Jacobian value of equality constraint w.r.t.x. Jh(x) is 

the 1st differentiation or Jacobian value of inequality constraint w.r.t.x. 

 

Evaluation of the Newton directions is usually the computationally most expensive task in 

single iteration of PD-IP algorithm. In the computation of DY, factorisation of the coefficient 

matrix (3.5) is much more expensive than the forward and backward solutions that follow 

factorisation.  

                Ds 

      Dz 

Y=      Dp 

                                 Dv                                                                                                   

                       Dx    

                                Dl   
 

Where, the scalars 
k

P€ (0,1) and 
k

D€ (0,1) are step length parameters called damping 

factors which improve convergence and keep non-negative variables strictly positive, k is the 

iteration counts.  

 

ak
P= min [1, γ min{-si

k
/Dsi/Dsi<0, -zi

k
/Dzi/Dzi<0}]                          

ak
D= min[1, γ min {-pi

k
/Dpi/Dpi<0, -vi

k
/Dvi/DVi<0}]                           

 

The scalar γ (0,1) is a safety factor which ensures that the next point will satisfy the strict 

positivity conditions; typical constant values, γ
O
   = 0.25. γ

 k
 = 0.99995. 

 

3.4.3 Updating Variables 

3.4.3.1Updating control variable(s) and primal variables  

X1
k
 = X1

k-1 
+ a p

k
 DX1

k-1 
2 control  

X2
k
 = X2

k-1
 + ap

k
 DX2

k-1 
variables

 

S
k
 = S

k-1
 + ap

k
  DS

k-1 

Z
k
 = Z

k-1
 + ak

p DZ
k-1    

    

 

3.4.3.2 Updating dual variables and lagrange multiplier 

pk
 = pk-1

 + ak
DDpk-1 

V
k
 = V

k-1
 + ak

DV
k-1 

lk = lk-1
 + ak

DDl k-1
 

 

3.5 Reducing The Barrier Parameter (μ
k
)   

 (3.9)  

 (3.8) 
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The scalar μ
k
 is the barrier parameter or complementary gap (Lage, et al 2009) which 

ensures the feasible point X exist within the feasible region and it is obtained by 

μ
k +1  = Wk

 rk      
        (3.10) 

Where 
k
 is chosen = max0.99Wk-1

/2; 0.1) and it is called the Centering Parameters  

With W0
 = (0.2 fixed) and µ

O 
= (0.1 fixed) 

rk
 = (S

k
)
Tpk

 + (Z
k
)
T
V

k                                                                                     
               (3.11) 

μ
k
 is computed first, only if iteration (1) fails, then μ

1
 and Y

1
 is used to form iteration (2) as 

Y
0
 and μ

0
 (given) are used to form iteration (1)  

 

3.6 Testing For Convergence 

Interior-Point (IP) Iterations Are Considered Terminated Whenever 

V1
k 

<
 
ξ1,    mk

< ξm, 

V2
k 

<
 
ξ1,    :< ξ2, 

V3
k 

<
 
ξ2,    :< ξ1, 

V4
k 

<
 
ξ2,    V4

k 
<

 
ξ2  

is satisfied, where 

V1
k
 = max [max{h-h(x); h(x) – ĥ }, ¥], 

V2
k
 =  

Since 2 & 2 are vectors of lagrangian multipliers,  

they have no vector addition and so denominator reduces to 1 + 2 

V3
k
 =                  

V4
k
 =        

    Typically,  ξ 1 = 10
-4

,
 

  
ξ 2 = 10

-2 
E1 (i.e. 10

-6
) , 

ξ x = 10
-12

.
 

 

Generally, ξ1 = 10
-8

 is chosen for quadratic functions with 2 variables. 

 

 (3.12) 
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If V
k

1, V
k
2 and V

k
3 are satisfied, then primal feasibility, scaled dual feasibility and 

complementary condition are satisfied which means that iterate K is a Karush Khun Turker 

(KKT) point of accuracy. 

 

When numerical problems prevent verifying this condition, the algorithm stops as soon as 

feasibility of the equality constraint is achieved along with a very small fractional change in 

the objective value and negligible changes in the variables. The typical tolerances are ξ 1= 10
-

4
, ξ 2 = 10

-2
 ξ 1 and ξ = 10 (Lavaei and Low, 2012)

 

 

3.7   Primal-Dual Interior-Point Technique Numerical Algorithms 

Step 0: (Initialisation) 

Set K = 0, define μ
0
 and choose a starting point Y

0
 that satisfies the strict positivity 

conditions. 

Step 1: (Compute Newton Direction) 

Form the Newton System at the current point and solve for the Newton Direction. 

Step 2: (Update Variables) 

Compute the step lengths in the Newton direction and update the primal and dual variables. 

Step 3: (Test for Convergence) 

If the new point satisfies the convergence criteria, stop. Otherwise, set K = K + 1, update the 

barrier parameter μ
k
 and return to step 1. 

 

3.7.1 Representation of the Algorithms in Flow Chart (Xin-She andXingShi-He, 2013) 
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Fig. 3.1: PD-IP Technique’s Flow Chart of Optimal Load Flow. 

 

3.7.2 Implementation of the Algorithms of Primal-Dual Interior–Point Technique  

3.7.2.1 Step Zero (0), Choosing an initial point 

Although the starting point needs only to meet the strict positivity conditions (Cao, et al 

2016), IP method performs better if some initial heuristics (Niu, et al 2014) are used, for 

instance, X
0
 is middle point between the upper and the lower limits of the bounded variables. 

 

3.7.2.1.1Initial point for one variable with linear inequality constraint, pick X
o 

a little 

less than ĥ.  E.g 100 < X < 300 

Pick X
0   

= 250 

 

3.7.2.1.2 Initialising primal slack variables   (S
0 

and
 
Z

0
) 

S
0
= min [Max{γ

o
h

, h(X

0
) – h min}, (1-γ

0
) h


] 

S
0
 = min [max {0.25h


, h(X

0
) – h min}; 0.75h


] 

Where: h

 = h max –h min 

γ
0
 = 0.25                (3.13) 

1 - γ
0
 = 0.75      

H (X
0
) = values of X

0
 including constant  

          Z
0
 = h


 - S

0 

Step 0 

Initialisation of variables 

Start 

Step 3 

Initial Point tested for 

convergence 

Step 1 

Iterations start by forming Newton System and 

computing Newton steps  

Step 2 

Step lengths obtained and 

variables updated  

Stop 

Feasible 

Point is  

obtained > Tolerance 

< Tolerance 
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3.7.2.1.3 Initialising dual variables (
0
, V

0
) 

p0
 = m0

 (S
0
)
-1

 e (e is diagonal I of matrix) 

p0
 =0.1(S

0
)
-1       

 

V
0
 = m0

 (Z
0
)
-1

 e - p0     
 

l0 
= 0 (since the power balance of steady state system is passive) 

s
0 

z
0 

Y
o
=  p0 

  
v

0 

  
x

0 

  l0 

 

Convergence of the initial point is tested and if it fails then:  

 

3.7.2.2  Step one (1), Computing Newton direction Y    

With mo
 defined and initial point Y

o
 obtained; Newton method (3.5), of page 22 is formed 

and Newton direction computed with (3.6) and (3.7) of (3.5)
 

 

3.7.2.2.1 Newton direction for one variable with linear constraint
 

After iteration one, rs
o
, rz

o
, rp0, 

rv
o
 and 

2
xlm

0
 of (3.5) are zeros and convergence often 

occur. 

 

From, row 6 of equation (3.5), where value of Dx
o
 is obtained. Dx

 
value is substituted into 

row 4 to obtain Dz which in turn is substituted into row 3 where Ds = -Dz to obtain Ds. Ds 

value is substituted into row 1 to obtain Dp which in turn is substituted into row 2 to obtain 

Dv and finally Dv with Dx of row 6 are substituted into row 5 to obtain Dl.  

 

3.7.2.3  Step two (2), Updating variables (Y
k
)

 
with step length parameter “” (3.8).  Y

1 = 

Y
O +aDY

o
 

Newton direction DY is computed from (3.5) and variables are updated from (3.9) 

 

3.7.2.4 Step three (3), Testing for convergenceIf the new point satisfies the convergence 

criteria, stop. Otherwise, set K= K + 1, update the barrier parameter mk
 and return to step 1 

(Lavaei and Low, 2012).  

3.8 Work Example of One Variable: 

 (3.14) 
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Min C (PG) = 20 + 4.1 PG + 0.0035 P
2
G (Nagrath  and Kothari, 2010 and Gill, et al 2014) 

S. t PG – 240 – 0.02PG = 0 

1. 100 < PG < 300 

2. QGmin < QG < QG max 

3.  min< < max       

Where, C is the cost 

 

Step 0: Initialisation 

PG
0
 = 250, hD = PGmax – PGmin = 200 

Jg(PG) = 0.98, J
2
g (PG) = 0 

Jh (PG) = 1, J
2
h (PG) =0 

C
1
 (PG) = 4.1 + 0.007PG, 

2
C (PG) = 0.007 

m0
 = 0.1, Ω

0
 = 0.2 (fixed), γ

0
 = 0.25, γ

k
 = 0.99995 

ξ = 10
-4

, Ω
k
 always 0. 

 

Choosing heuristically,  

1. PG
0
, is picked little less than PG max and here, 250  

2. PD, is picked little less than PG
o
 and here, 240 

3. Ploss, is picked as hundredth of PG
o
 and here   0.02 PG

o
 

s
0
, must be greater than z

0
 

s
0
 = 150, z

0
 = 50, PG

0
 = 250 from (3.13) of page 26. 

p0
 = 0.0007, v

0
 = 0.0013, l0 = 0, V

O^
 =

o
 + v

0 
= (0.0020) from (3.14) of page 26. 

  150  s
0
  

  50  z
0
 

Therefore, y
0
 =   0.0007    = p0

  g(PG) = 5 

0.0013    v
0 

 h(PG) = 250 from (2.21) 

250 PG
0
 

0 l0 

 

Test for Convergence: from (3.12) 

V1
0
 = 5 > 10

-4
 

V2
0
 = 0.02 > 10

-4
 

V3
0
 = 0.00067 > 10

-4 
 =  
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Iteration 1With y
0
 and with m0

 = 0.1,    Newton System is formed from 3.5 0.0007,

 0, 150, 0, 0, 0 Ds
0
  0.0000 

 0      0.002 50 50 0 0 Dz
0
  0.0000 

 1  1 0 0 0 0 Dp0
  0.0000 

 0  1 0 0 1 0 Dv
0
  0.0000 

 0  0 0 1       0.007 -0.98        DPG
0
           -5.8513 

 0  0 0 0 -0.98 0 Dlo  5.0000 

 

 

The right hand results are obtained from equations (3.6) of page 22 and (3.7) of page 22 by 

simplification and factorisation of Newton method/system to determine Newton steps as 

follows: 

DPG
o
 = -5.102  by starting from row 6 

In row 4, Dz
0
 – 5.102 = 0.0000 

 

Therefore, Dz
0
 = 5.102 

In, row (3) Ds = - Dz 

                 Ds
o
 = - 5.102 

In, row (1)  0.007Dz
o
 + 150Dpo

 = 0 

  Dpo
 = 0.007Dz

o
 

    150      = 2.3809x10
-5

 

In, row (2) 0.002Dz
o
 + 50 Dpo 

+ 50Dv
o
 = 0 

 Dv
o
= -2.2789x10

-4
 

Finally, in row 5, Dv
o
 + 0.007 DPG

o
-0.98 Dlo = -5.8513 

          Dlo = 5.9338 

a1
p = a1

D = 1, from (3.8) and from (3.9) of page 23, variables are updated as:- 

    144.8980 

  55.1020 

  7.2381x10
-4

   g (PG
1
) = 0 

y
1
 =                1.0711x10

-3
   h (PG

1
) = 244.898 

      244.8980         m1
 = 0.1(0.0997 + 0.0714) = (0.1711) from (3.10) 

                       5.9341             = 0.1 (0.1711) = 0.01711 

 

Test, from (3.12) page 24, V1
1
 = max [max {100-244.898, 244.898 – 300} 0] 

= 
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V1
1
 = max [-144.898, -55.102, 0] 

V1
1
 = 0 < 10

-4
 

V2
1
 =  = 0 < 10

-4
 

 

Converged after first iteration. 

Therefore, PG = 244.898  

PD = 240 (Real Power Demand of the system) 

Ploss = 4.898 (from 0.02 PG) or (PG - PD) 

 

CHAPTER 4 RESULS AND ANALYSIS 

Table 4.1: Summary of Optimisation of Load Flow Problems By Primal-Dual Interior-

Point Technique over the Existing Methods (Values in P.U.). 

Bus 
Number of 

Iterations 
Power Generation Power Demand Power Loss 

Name No. 

PD-

IP 

Tech 

Existing 

PD-

IP 

Tech 

Exist- 

Ing 

% 

Impro 

vment 

PD-

IP 

Tech 

Exist- 

ing 

% 

Impro 

Vment 

PD-

IP 

Tech 

Exist 

Ing 

% 

Improvment 

Shiroro 1 1 6 0.490 0.402 22 0.480 0.374 15 0.010 0.028 64 

Afam 2 1 6 0.087 0.060 28 0.085 0.004 2050 0.002 0.056 96 

Geregu 12 1 6 0.179 0.120 48 0.175 0.024 625 0.004 0.096 96 

Sapele 15 1 6 0.174 0.170 02 0.170 0.158 08 0.004 0.012 67 

Delta 17 1 6 0.281 0.281 00 0.275 0.113 142 0.006 0.108 94 

Kainji 24 1 6 0.276 0.259 07 0.270 0.088 213 0.006 0.171 96 

Jebba 51 1 6 0.378 0.352 08 0.370 0.288 30 0.008 0.064 88 

Note: The Seven Power Stations‟ buses are chosen for analysis as a special case of 52 bus 

system as they contributed to the bulk supply of power to the system. 

 

5.1 DISCUSSION OF RESULTS 

Generally, the work reveals that Primal-Dual IP load flow technique optimisation excels 

others as it solves one variable with linear constraints function of equality and inequality and 

obtains solutions at a very fast rate as it converges often at first iteration. It results in much 

improved larger power dispatch and consumption from system, thereby saving the system 

from unnecessary outages and blackouts. 

 

Note: The Seven Power Stations‟ buses are chosen for analysis as a special case of 52 bus 

system as they contributed to the bulk supply of power to the system. 
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