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ABSTRACT 

In recently, different iterative methods viz Adomian decomposition 

method, variational iteration method, Homotopy Pertubation method 

etc. have been developed for solving linear and nonlinear ordinary and 

PDEs. Recently Versha and Jafery proposed an iterative method called 

the New Iterative Method (NIM) and successfully applied it to linear  

and nonlinear PDEs of integer and fractional order. In this paper we propose an efficient 

modification to the NIM and applied the modified NIM to obtain improved form solutions of 

various types of linear and nonlinear Klein-Gordon equations. The proposed modification is 

easy to use and we obtained excellent performance in comparison with the existing iterative 

methods that have been traditionally used in finding the solution of linear and nonlinear 

Klein-Gordon equations. The main feature of the modified NIM is that it reduces the size of 

calculations and gives the solution rapidly while still maintaining high degree of accuracy. 

 

1. INTRODUCTION 

The study of PDEs was started in the 18th century by Euler, d’Alembert, Lagrange and 

Laplace
[1]

 as a central tool in analytical study of models in physical sciences. During this 

century and in early 19th century, the classical PDEs which serve as paradigms for the later 

development also appeared. A profusion of equations, associated with major physical 

phenomena, appeared during 1750-1900: 

• The Euler equation of incompressible fluid flows in 1755. 

• The minimal surface equation by Lagrange in 1760. 
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• The Monge-Ampere equation by Monge in 1775. 

• The Laplace and Poisson equations by Poisson in 1813. 

• The Navier Stokes equations for fluid flows in 1822-1827 by Navier. 

• Maxwell’s equation in electromagnetic theory in 1864. 

• The Helmholtz equation and the eigenvalue problem for the Laplace operator in connection 

with acoustics in 1860. 

• The Korteweg-De Vries equation (1896) as a model for solitary water waves. 

In recent years many efficient numerical techniques have been developed for solving linear 

and nonlinear PDEs. Some important techniques are: 

• Adomian decomposition method.
[2,3]

 

• Modified Adomian decomposition method.
[4]

 

• Variational iteration method.
[5]

 

• Homotopy purterbation method.
[6,7]

 

 

For an applied mathematician it becomes increasingly important to be familiar with all 

traditional and recently developed methods for solving PDEs, and the implementation of 

these methods. However, in this thesis, we will restrict our analysis to solve different models 

of linear and nonlinear Klein-Gordon equations. 

 

2. PRELIMINARIES 

 Classification of PDEs as Homogeneous and Inhomogeneous 

We can also classify a PDE as homogeneous and inhomogeneous. A PDE of any order is 

called homogeneous if every term of the PDE contains the dependent variable u or one of its 

derivatives; otherwise, it is called an inhomogeneous PDE. 

 

Examples:1 

 2 1 21
( , )

4
tu x t x t L u x   

The terms of the Eq. (1.1) contain partial derivatives of dependent variable only; therefore it 

is a homogeneous PDE.  

 

2.1. Classification of second order PDEs 

A second order linear PDE in two independent variables x and y in its general form is given 

by 

[1]xx xy yy x yAu Bu Cu Du Eu Fu G       



Ammarah et al.                              World Journal of Engineering Research and Technology 

 

 

 

www.wjert.org 

 

95 

Above equation can be classified into three basic classes which are as follows: 

(i) Parabolic: The Eq. (1) is said to be parabolic if it satisfies the condition B
2 

− 4AC = 0. 

Heat flow and diffusion process equations are the examples of Parabolic equations. 

(ii) Elliptic: The Eq. (1) is called an elliptic equation if B
2 

− 4AC < 0. Examples of elliptic 

equations are Laplace equation and Schrodinger equation. 

(iii) Hyperbolic: The Eq. (1) is called hyperbolic if it satisfies the property B
2 

− 4AC > 0. 

The examples of hyperbolic equations are wave propagation equations. 

 

2.2. Solution of PDEs 

A solution of a PDE is the value of the dependent variable, e.g. u such that it satisfies the 

PDE under discussion and satisfies the given conditions as well. 

 

2.3. Initial Value Problem 

The PDE in which all the conditions for finding constants of integration are given only on the 

starting point is called an initial value problem. 

 

3. Boundary Value Problem 

A PDE that controls the mathematical behavior of physical phenomenon in a bounded 

domain D and the dependent variable u is prescribed at the boundary of domain is called the 

boundary value problem. 

 

Next we give a detailed explanation of some important numerical methods that are being used 

now a days in solving linear and nonlinear PDEs in different branches of applied 

Mathematics, engineering and Physics. The first method to be discussed is the well-known 

Adomian decomposition method. 

 

4. Adomian Decomposition Method 

The Adomian decomposition method (ADM) has been receiving much attention of 

Mathematicians in recent years in applied Mathematics in general and in the area of series 

solutions in particular. The decomposition method demonstrates fast convergence of the 

solution and attacks to homogeneous and inhomogeneous problems in a direct and 

straightforward fashion without using linearization, perturbation or any other restrictive 

assumption that may change the physical behavior of the model under consideration. The 

ADM was introduced and developed by George Adomian,
[3,4]

 chair of the center of applied 

mathematics at the University of Georgia and is well addressed in the literature. This method 
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has proved to be a competitive alternative to the Taylor series method and other series 

techniques. The ADM consists of decomposing the unknown function u(x, y) of any equation 

into a sum of an infinite number of components defined by the decomposition series 

0

( , ) ( , ) [2]n

n

u x y u x y




  

Where the components un(x,y), n ≥ 0 are to determine in a recursive manner. Although the 

linear term u is expressed as an infinite series of components, the ADM requires a special 

representation for the nonlinear terms such as u
2
,u

3
,u

4
,sin(u),e

u
,uux,u

2
x etc. that appear in the 

equation. . To get a clear overview of ADM, we first consider the linear differential equation 

written in an operator form by 

, [3]Lu Ru g   

Where L is, mostly, the lower order derivative which is assumed to be invertible, R is other 

linear differential operator and g is source term. Applying L
−1 

to both sides of Eq. (3) and 

using the given conditions, we obtain 

1

( ), [4]u f L Ru


   

 

The ADM defines the solution u by an infinite series of components given by 

0

, [5]n

n

u u




  

 

Substituting Eq. (4) in Eq. (5) leads to 

1

0 0

( ( )) [6]n n

n n

u f L R u
 



 

    

 

Alternatively, Eq. (6) can be written as 

1

0 1 2 3 0 1 2 3... ( ( ...)) [7]u u u u f L R u u u u           

 

The components u0, u1, u2, ··· are now determined by the following relation 

0

1

1

,

( ( )), 0. [8]k k

u f

u L R u k





  
 

 

Having determined these components, we then substitute it into Eq. (1.6) to obtain the 

solution in a series form. We demonstrate the ADM by applying it to linear PDEs. 
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Example 2. Using ADM, solve the homogeneous linear Klein-Gordon equation 

0, [9]tt xxu u u    

With initial conditions  

( ,0) 0, ( ,0) . [10]tu x u x x   

 

Solution: Applying L
−

t 
1 

on both sides of Eq. (9) and using the decomposition series for u(x,t) 

we get 

1

0 0 0

(( ( , )) ( , )), [11]n t n xx n

n n n

u xt L u x t u x t
  



  

      

 

Close examination of Eq. (11) suggests that the recursive relation is 

0

1

( , ) ,

( ( , ) ( , )), 0 [12]k t kxx k

u x t xt

u L u x t u x t k



  
 

 

That in turn gives 

0

1 3

1 0 0

1 5

2 1 1

( , ) ,

1
( ( , ) ( , )

3!

1
( ( , ) ( , ) , [13]

5!

.

.

.

t xx

t xx

u x t xt

u L u x t u x t xt

u L u x t u x t xt







   

    

 

In view of Eq. (13) the series solution is 

3 51 1
( , ) ( .......) [14]

3! 5!
u x t x t xt xt    

So that the exact solution is given by u(x, t) = xsin (t).  

 

5. Applications of ADM to Nonlinear PDEs 

The nonlinear PDEs arise in different areas of Physics, engineering, and applied 

Mathematics. In this section, we discuss the implementation of ADM to nonlinear PDEs. For 

this purpose, we consider the nonlinear partial differential equation in an operator form: 

( , ) ( , ) ( ( , ) ( ( , ))) ( , ), [15]x yL u x y L u x y R u x y F u x y g x y     
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The use of the operators Lx and Ly depends upon two facts: 

(i) The operator of lowest order should be selected to minimize the size of computational 

work. 

(ii) The selected operator of lowest order should be of best known conditions to accelerate 

the evaluation of the components of the solution. 

 

If we assume that the operator Lx meets the above two bases of selection, then we get 

( , ) ( , ) ( , ) ( ( , ) ( ( , ))) [16]x yL u x y g x y L u x y R u x y F u x y     

 

Applying the inverse operator L
−

x 
1 
on both sides of Eq. (16) gives 

0

( , ) ( , ), [17]n

n

u x y u x y




  

1 1 1 1

0

2

2 3

0

( , ) ( , ) ( , ) ( ( , )) ( ( , )) [18]

(0,

(0, ) (0,

1
(0, ) (0, ) (0,

2!

1 1
(0, ) (0, ) (0, ) (0,

2! 3!

.

.

.

x x y x x

x

x xx

x xx xxx

u x y L g x y L L u x y L R u x y L F u x y

Where

u y

u y xu y

u y xu y x u y

u y xu y x u y x u y





       








 



   








 

 

Proceeding in the same manner we get the series solution 

0

( , ) ( , ) [19]n

n

u x t u x t




  

And the nonlinear term F(u(x,y)) is given by 

0

( ( , )) , [20]n

n

F u x y A




  
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Example 3. Using ADM, solve the nonlinear PDE 

2 21
, [21]

4

( ,0) 0, [22]

( , ).

tu x u x

withinitial condition

u x

Where u u x t

 





 

 

Solution: Operating L
−

t 
1 
to Eq.(21), we have 

2 1 21
( , ) [23]

4
tu x t x t L u x   

In series solution u(x,t) can be written as 

0

( , ) ( , ) [24]n

n

u x t u x t




  

and the nonlinear term is defined as 

2

0

, [25]x n

n

u A




  

Where An are Adomian polynomials for n ≥ 0. Now using Eqs. (25) and (24) in Eq. (23), we 

obtain 

2 1

0 0

1
( , ) ( ) [26]

4
n t n

n n

u x t x t L A
 



 

    

From this we get the following relation 

2

0

1

1

( , )

1
( , ) ( ), 0.

4
k t k

u x t x t

u x t L A k





 
 

Furthermore, the Adomian polynomials An are given by 

0

1

2

20 ,

2 0 1

2 0 2 21 ,

...

A u x

A u xu x

A u xu x u x





 
 

And so on. The first few components are given by 

2

0

2 3

1

2 5

2

( , ) ,

1
( , ) ,

3

2
( , )

15

...

u x t x t

u x t x t

u x t x t







 



Ammarah et al.                              World Journal of Engineering Research and Technology 

 

 

 

www.wjert.org 

 

100 

The series solution by combining the above components is given as 

2 3 5

2

1 2
( , ) ( ....) [27]

3 15

( , ) tan [28]

u x t x t t t

And inclosed form

u x t x t

   

  

 

5.1. Modified Decomposition Method (MDM) 

To accelerate the convergence of the series solution Wazwaz
[5]

 presented a modification of 

the ADM. The modified decomposition method (MDM) can be applied, wherever it is 

appropriate, to all PDEs of any order. To explain the technique, we consider the PDE in an 

operator form 

Lu Ru g   

where L is the highest order derivative, R is a linear differential operator of less order or equal 

order to L, and g is the source term.  

 

we obtain 

1(Ru)u f L   (29) 

where f represents the terms arising from the given initial condition and from integrating the 

source term g. Now the series solution can be given as 

0

n

n

u u




  (30) 

 

The ADM admits the use of the recursive relation 

0u f  (31) 

1

1 (R(u )) , k 0k ku L

    

 

The MDM introduces a minor modification to Eq. (31) so that the determination of the 

components of u can be made faster and easier. For specific cases, the function f can be 

decomposed as sum of two functions, namely f1 and f2. In other words, we can set 

1 2f f f   (32) 

 

To reduce the size of calculations, we identify the zeroth component u0 by one part of f, 

namely f1 or f2. The other part of f can be added to the component u1 among other terms. 

Consequently, the modified recursive relation can be expressed as 
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0

1

1 2 0

1

1

,

(R(u )),

(R(u )) , k 0.k k

u f

u f L

u L









 

 

 

 

Two important remarks related to the above modified technique can be made here. First, by 

proper selection of the functions f1 and f2, the exact solution u may be obtained by using very 

few iterations, and sometimes by evaluating only two components. The success of this 

modification depends only on the choice of f1 and f2, and this can be made through trials. 

Secondly, if f consists of one term only, the standard ADM should be applied. In addition to 

MDM, to accelerate the convergence of the solution in ADM, a technique called noise terms 

phenomenon can also be employed which is explained next. 

 

5.2. The Noise Terms Phenomenon 

The main ideas about noise terms and the noise terms phenomenon can be outlined 

as follows: 

(i) The identical terms with opposite signs that arise in the components u0 and u1 are called 

noise terms. These identical terms with opposite signs may exist only for 

inhomogeneous differential equations. 

(ii) By canceling the noise terms appearing between u0 and u1, even though u1 contains more 

terms, the remaining non-canceled terms of u0 may give the exact solution of the PDE. 

Therefore, it is essential to check that the non-canceled terms of u0 satisfy the given 

PDE. Moreover, if the non-canceled terms of u0 did not satisfy the given PDE, or the 

noise terms did not appear between u0 and u1, then it is required to evaluate more 

components of u to find the solution in a series form. 

(iii) The conclusion about the self-canceling noise terms was based on observations drawn 

from solving specific models without giving any proof. The interested reader is referred 

to
[11,12]

 for further readings about the noise terms phenomenon. 

(iv) Wazwaz concluded in
[12,13]

 that the zeroth component u0 must contain the exact solution 

u among other terms. Also, the nonhomogenity condition does not always guarantee the 

appearance of the noise terms as examined by Wazwaz. 

 

Next, we demonstrate the applications of MDM and the noise terms phenomenon with the 

help of different models. 
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5.3. Applications of Noise Terms Phenomenon and MDM 

Example 4. Using MDM, solve the nonlinear PDE, 

 

Applying L
−

t 
1 
on both sides of Eq. (35) and using the initial conditions, we get 

3 11
(x, t) xt xt

3
t xu L uu     (36) 

 

Using the decomposition assumptions for the linear term u(x,t) and for the nonlinear term uux 

defined by 

0

(x, t) (x, t)n

n

u u




  

and 

0

x n

n

uu A




  

into (36) gives 

 3 1

0 0

1
(x, t) ( )

3
n t n

n n

u xt xt L A
 



 

    . (37) 

 

This gives the recursive relation admitting MDM 

0

3 1

1 0

1

2 1

u (x, t) xt

1
u (A )

3

u (A ), k 0

t

k t k

xt L

L





 



 

  
  

(38) 

Finally, we obtained 

0

3 1 2

1

2

u (x, t) xt

1
u (xt )

3

u 0, k 0

t

k

xt L





 

 

, (39) 

2 ,t xu uu x xt    

with initial conditions 

(33) 

(x,0) 0, t 0,

where u u(x, t).

u  


 

 

Solution. The operator form of Eq. (33) is 

(34) 

2(x, t) x xtr xL u uu    (35) 



Ammarah et al.                              World Journal of Engineering Research and Technology 

 

 

 

www.wjert.org 

 

103 

In view of (39), the exact solution is given by  

(x, y) xt .u    

 

Example 5. Use the noise terms phenomenon and MDM to solve the following 

inhomogeneous nonlinear Klein-Gordon equation 

2 2 2 4 42 2tt xxu u u x t x t      

with initial conditions 

(40) 

   ,0   0, ,0   0.tu x u x   (41) 

Solution. Applying L
−

t 
1 
on both sides of Eq. (40) and using the initial conditions we get 

 

2 2 4 4 6

0

1 1

1

1 1
(x, t) x

6 30

(u ) L (A ) , k 0k t kxx t k

u t t x t

u L 



  

  

,   

using the above relation, we get the following approximations 

2 2 4 4 6

0

1 1 4 4 6

1 0 0

1 1
(x, t) x

6 30

1 1
(u (x, t)) L (A ) ......

6 30

.

.

.

k t xx t

u t t x t

u L t x t 



  

   

 

Canceling the noise terms in u0(x,t) that appears in u1(x,t) and verifying that the remaining 

term satisfies the equation leads to the exact solution 

2 2(x, t) xu t                                                                                                               (42) 

 

Now we apply MDM to demonstrate the fast convergence. The MDM introduces the 

relation 

 

2 2

0

4 4 6 1

1 0 0

1

(x, t) x

1 1
(u (x, t) A ) 0

6 30

0, 0.

t xx

k

u t

u t x t L

u k







     

 

, (43) 

Finally, we get the series solution 

 2 2

0

0

(x, t) (x, t) xn

n

u u t




   (44) 

which is the exact solution.  
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Example 6. Use the noise terms phenomenon and the MDM to solve the inhomogeneous 

nonlinear Klein-Gordon equation 

 2 2 2

tt xxu u u x t   , (45) 

with initial conditions 

    ,0   0, ,0  .tu x u x x   (46) 

Solution. Applying L
−

t 
1 
on both sides of Eq. (45) and using the initial conditions, we get 

2 4

0

1 1

1

1
(x, t) x ,

12

(u ) L (A ) , k 0,k t kxx t k

u t x t

u L 



 

  

 

using the above relation, we get the following approximations 

2 4

0

1 1 6 2 4 3 7 4 10

1

1
(x, t) x ,

12

1 1 1 1
(u ) L (A ) .

80 12 252 12960
k t kxx t k

u t x t

u L t x t x t x t 



 

     

. 

Canceling the noise term, 2 41

12
x t  that appears in u0  0 , ,u x t and verifying that the remaining 

non-canceled terms satisfy the given equation, the exact solution can be obtained as 

  ,  .u x t xt  

Next the modified recursive relation can be rewritten as 

2 2

0

2 4 1

1 0 0

1

(x, t) x

1
(u (x, t) A ) 0

12

0, 0.

t xx

k

u t

u x t L

u k







   

 

, 

Finally, we get the exact solution 

  ,  .u x t xt  

 

5.4. The Variational Iteration Method 

In recent years, the variational iteration method (VIM) established by Ji-Huan He [14] has 

been thoroughly investigated by many researchers to handle a wide range of scientific and 

engineering applications: linear, nonlinear, homogeneous and inhomogeneous. This method 

is effective and reliable for analytic and numerical treatment of the models. The method gives 

rapidly convergent successive approximations of the exact solution if such a solution exists. 

The VIM deals nonlinear terms in a straightforward manner without any specific assumptions 

as in ADM, perturbation techniques, etc. In what follows, we give a brief description of the 
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VIM by considering the following differential equation in operator form 

  ,Lu Nu g t    

where L and N are linear and nonlinear operators respectively and g(t) is the source 

inhomogeneous term. The VIM presents a correction functional for Eq. above in the form 

1
0

(t) u (t) ( ( )(Lu ( ) N ( ) g( ))d ,
t

nn n nu u           

where λ is a general Lagrange multiplier, which can be identified optimally via the variational 

theory, and ˜un is a restricted variation which means δu˜n = 0. The VIM requires the 

determination of the Lagrange multiplier λ(ξ) that will be identified optimally by using 

Integration by parts usually so that we can use  

           

               

' '

'' '  ' ''

n n n

n n n n

u d u u d

u d u u u d

          

             



 





 

 
 

and so on. Having determined the Lagrange multiplier  ,  the successive approximations 

1,   0,nu n  of the solution u will be readily obtained upon using any selective function 

.ou Consequently the solution  .nu limu Next, we demonstrate 

 n   

the use of VIM by applying it to various models. 

 

5.5. Applications of VIM 

Example 7. Using VIM, solve the homogeneous linear Klein-Gordon equation 

Solution. The correction functional for this equation reads 

2 2

1 2 20

u (x, ) (x, )
(x, t) u (x, t) ( )( (x, ))d .

t nn
nn n

u
u u

x

 
   




 
   

   

This yields the stationary conditions 

 

0

00

1  0,|

|  0,

 0,|

t

t

t



















 





 

from above conditions we get 

 t   . (49) 

   0,tt xxu u u    

with initial conditions 

(47) 

    ,0   0,  ,0  .tu x u x x   (48) 
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Substituting this value of the Lagrange multiplier into the correction functional gives the 

iteration formula 

2 2

1 2 20

u (x, ) (x, )
(x, t) u (x, t) ( )( (x, ))d .

t
n n

n n n

u
u t u

x

 
  




 
    

                             (50) 

Considering the given initial values, we can select  0 ,  u x t xt . Using this selection into Eq. 

(50), we obtain the following successive approximations 

0

3

1

3 5

2

3 5 7

3

3 5 7

(x, t) xt,

1
(x, t) xt ,

3!

1 1
(x, t) xt ,

3! 5!

1 1 1
(x, t) xt ,

3! 5! 7!

.

.

.

1 1 1
(x, t) x(t ...).

3! 5! 7!
n

u

u xt

u xt xt

u xt xt xt

u t t t



 

  

   

    

. 

Hence the exact solution is given by    ,  .u x t xsin t
 

 

6. METHODOLOGY 

The Modified New Iterative Method for solving Klein-Gordon Equations 

6.1. Introduction 

Klein-Gordon equation is one of the most important mathematical model in quantum field 

theory, nonlinear optics and plasma physics. The Klein-Gordon equation appears in physics 

in linear and nonlinear forms. This equation has been extensively studied by using traditional 

methods, such as finite difference method, finite element method and collocation method. 

Backlund transformations and the inverse scattering method were also applied to handle this 

equation. The methods investigated the concepts of existence, uniqueness of the solution and 

the weak solution as well. The objectives of these studies were mostly focused on the 

determination of numerical solutions where a considerable volume of calculations is usually 

needed. 

 

In [3, 6, 11, 13, 14, 16, 17, 18, 19, 20], ADM, VIM and homotpoy perturbation method were 

applied to obtain the exact solutions of linear and nonlinear Klein-Gordon equation. In this 

thesis, we apply NIM developed by Versha
[9] 

to Klein-Gordon equation. 
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The NIM converges for homogeneous Klein-Gordon equation but does not always converge 

for linear and nonlinear inhomogeneous Klein-Gordon equations. We propose an efficient 

modification to NIM to apply it to both linear and nonlinear inhomogeneous Klein-Gordon 

equation. The modification is slight but the obtained results show that the modified technique 

is practical and efficient. Moreover, the modified technique minimizes the amount of 

calculations as compared to ADM, VIM and HPM. 

 

6.2. Modified New Iterative Method(MNIM) 

The modified new iterative method(MNIM) is based on including particular terms of the 

source term of inhomogeneous Klein-Gordon equation into the integral representing N(u) in 

NIM.
[9]

 This selection is based on the following rules: 

If the source term is function of the independent variable, x only, we include it in N(u). 

1. If the source term is function of both independent variables x and t, we include it in N(u). 

2. If the source term contains the terms which are functions of x,t and both x and t, then we 

include in N(u) the terms involving t and both x and t. 

3. If the source term is then NIM
[9]

 can be applied to obtain the solution. 

 

Next we demonstrate MNIM by applying it to various models of Klein-Gordon equation. 

 

6.3. Applications of NIM to homogeneous linear Klein-Gordon equations 

Here the NIM
[9]

 is applied to homogeneous and inhomogeneous Klein-Gordon equations. The 

obtained results show the excellent performance of the method. 

 

6.4. Applications of MNIM to inhomogeneous Klein-Gordon equations 

Here we apply the NIM
[9]

 to linear and nonlinear inhomogeneous Klein-Gordon equation and 

demonstrate that it does not always converge to exact solution. The Modified new iterative 

method is then applied to find the exact solutions where NIM is not applicable. 

 

Example 6.1. Using MNIM, solve the inhomogeneous nonlinear Klein-Gordon equation 

2 2 2

tt xxu u u x t   , 

with initial conditions 

(51) 

   ,0   0,  ,0  .tu x u x x   (52) 

Solution. The exact solution of Eq. ( 51) is 

 
0

, t   .iu x u xt


 
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(a) New Iterative Method 

Integrating Eq. (51) from 0 to t twice we get 

2 4
2

0 0

2 4
2

0
0 0

(u u ) .
12

(u) (u u )
12

t t

xx

t t

xx

x t
u xt dtdt

x t
set u xt and N dtdt

   

   

 

 

 

Now the successive approximations are 

2 4

0

2 4
2 8 4 5 3 2 2

1 0 0 020 0 0 0

10 4 7 3 6 4 2

2 4
10 4 7 3 6 4 2 10 4

0 1

7 3 6

12

1 1
(u ) ( (u ) u ) ( t x t x x )

6 144 6

1 1 1 1
t x t x

12960 252 180 12

1 1 1 1 1
t x t x

12 12960 252 180 12 12960

1 1
t x t

252 180

t t t t

x t
u xt

d t
u N dtdt t dtdt

dx

t x t

x t
u u xt t x t t x

 

       

   

        

 

   

2
2 10 2 7

0 1 0 1 0 120 0 0 0

20 8 17 7 16 4 14 6 13 3

12 11 5 8 4 7 2 2

1 1
( ) ( (u ) (u ) ) (( t x)

1080 42

1 1 1 1 1
( t x t x
167961600 1632960 1166400 63504 22680

1 1 1 1 1
t t x t x ))

32400 6480 126 90 7759825

t t t t

xt

d
N u u u u dtdt t x

dx

t x t x t x

t x t x dtdt



        

    

     

   

22 8

19 7 18 4 16 6 15 3 14

13 5 12 2 10 4 9 4 2

22 8 19 7

2 0 1 0

9200

1 1 1 1 1
t x t x t

55847320 356918400 15240960 4762800 5896800

1 1 1 11 1
t x t x ,

1010880 142560 11340 22680 12

1 1 1
( ) (u ) ( t x

77598259200 55847320 356918

t x

t x t x

t x t x t x

u N u u N t x



    

   

       18 4

16 6 15 3 14 13 5 12 2 10 4

9 4 10 4 7 3 6 4 2 22 8

19 7 18 4

400

1 1 1 1 1 1
t x t t x

15240960 4762800 5896800 1010880 142560 11340

11 1 1 1 1 1 1
t ) ( t x t x )

22680 12 12960 252 180 12 77598259200

1 1 1
t x

55847320 356918400 152

t x

t x t x t x

t x t x t t x

t x



     

        

  16 6 15 3 14 14

13 5 12 2 10 4 9

1 1 1
t x t

40960 4762800 5896800 5896800

1 1 1 11
t x ,

1010880 142560 11340 22680

t x t

t x t x t x tx

   

   

 

which shows that iterations are diverging. 
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a. Modified New iterative Method 

Integrating Eq. (51) from 0 to t twice we get 

2 2 2

0 0

2 2 2

0
0 0

(u u x t ) .

(u) (u u x t )

t t

xx

t t

xx

u xt dtdt

set u xt and N dtdt

   

   

 

 
 

Now the successive approximations are 

 

0

2 2 2 2 2 2 2

1 0 0 0
0 0 0 0

0 1

2 2 2

0 1 0 1 0 1
0 0

2 0 1 0

,

(u ) ((u ) u x t ) (0 x t ) 0

,

(u ) ((u ) (u ) x t ) 0

(u ) (u ) 0

.

.

.

t t t t

xx

t t

xx

u xt

u N dtdt x t dtdt

u u xt

N u u u dtdt

u N u N



       

 

      

   

   

   

Hence the series solution is 

0

(x, t) iu u xt


   

which is exact solution. 

 

Example Using MNIM, solve the following inhomogeneous linear Klein-Gordon equation 

     ,tt xxu u u cos x cos t     

with initial conditions 

(52) 

     ,0   ,  ,0   0tu x cos x u x   (53) 

Solution. Integrating Eq. (52) from 0 to t twice we get 

   

   

0 0

0
0 0

(u u) .

(u) (u u)

t t

xx

t t

xx

u dtdt

set u and N

cos x cos t

cos x tco d dts t

  

  

 

   

 

Now the successive approximations are  
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   

       

   

0

1 0 0 0
0 0 0 0

0 1

2 0 1 0

(u ) ((u ) u ) ( ) 0

(u ) (u ) 0

.

.

.

t t t t

xx

cos x cos t

cos x cos t cos x cos t

cos x cos

u

u N dtdt dtdt

u u

u

t

N u N



      

 

   

   

 

Hence 

   
0

(x, t) i cos x cosu u t


   

which is exact solution. 

 

Example. Using MNIM, solve the following inhomogeneous linear Klein-Gordon equation 

     ,sintt xxu u u cos x t     (54) 

with initial conditions 

      ,0   0, ,0   .tu x u x cos x   (55) 

Solution. Integrating equation (54) from 0 to t twice we get 

   

   

0 0

0
0 0

sin (u u) .

sin (u) (u u)

t t

xx

t t

xx

u dtdt

set u and N dtd

cos x t

tcos x t

  

  

 

 
 

Now the successive approximations are  

   

       

   

0

1 0 0 0
0 0 0 0

0 1

2 0 1 0

sin

(u ) ((u ) u ) ( sin sin ) 0

sin

(u ) (u ) 0

.

.

.

t t t t

xx

cos x t

cos x t cos x t

cos

u

u N dtdt dtdt

u u

u N u N

x t



      

 

   

   

 

Hence the series solution is 

   
0

(x, t) cosiu u cos x t


   

which is exact solution. 
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RESULTS AND DISCUSSION 

In this paper we have made an modification to NIM to apply it to various linear and nonlinear 

models of Klein-Gordon equations. The modified technique is slight but easy to use and have 

many advantages over the existing methods that have been used for solving Klein-Gordon 

equations. The solutions were obtained in a direct and straightforward manner without any 

assumptions or transformations that may change the physical behavior of the problem by 

using MNIM. The obtained results show that the MNIM reduces the size of calculations. The 

method has been compared with the exact solutions to assess the efficiency of the MNIM. 

While the Adomian decomposition method requires the determination of tedious Adomian 

polynomials, and the variational iteration method requires the determination of the Lagrange 

multiplier, the MNIM is independent of any such type of constraints. The method is validated 

by applying it to several physical models of Klein-Gordon equations. In MNIM a few 

approximations can be used to achieve a high degree of accuracy. We have found that MNIM 

is an efficient way to approach the exact solution of Klein-Gordon equations. 

 

Future Work 

(i) Apply NIM to linear and nonlinear boundary value problems. 

(ii) Apply MNIM to the physical problems where NIM is not applicable. 

(iii) Extend NIM to singular boundary value problems. 

(iv) Extend NIM to apply it to system of partial differential equations. 

(v) Use NIM to find solitary wave solutions of different physical models. 

(vi)  
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