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ABSTRACT 

The paper presents a mathematical model, developed with a Matlab 

program, of a Boost Converter with a control system for studies of 

chaotic processes originating in the converter, and of various methods 

of preventing them. The choice of a mathematical model instead of 

known specialized programs for modeling power electronics circuits is  

due to the fact that such approach makes it possible to use the entire mathematical apparatus 

available for carrying out many calculations and processing their results. As will be seen 

from the paper, the model is sufficiently flexible and compact and allows for simple cyclic 

calculations of various chaotic processes. For the first time, the paper considers two ways of 

realization of Current Mode Control (CMC) – by the upper limit of pulses of the input 

inductance current, and by the lower one. Basing on these, the newly proposed ways of 

synchronization (preventing) of chaotic processes have been tested on the two mentioned 

control modes. In the conclusion, a number of calculations on the mathematical model have 

been compared with the results of modeling with the Orcad-Pspice program, which have 

shown their totally adequate character. 
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1. INTRODUCTION 

In the recent decades, a multitude of studies and publications have been devoted to chaotic 

processes originating in non-linear dynamic systems of most varied nature. The results of 

these studies became new scientific fields – non-linear dynamics, synergetics, and a 

generalized information theory (Brillouin, 1963, Haken, 1983, Prigogine et al., 1984, 1994, 

Gleick, 1988, Doyle, 2011). A new paradigm of the basics of the course of all physical 

processes: mass-energy-information has come into being. Due to this, of special interest 

become simplified physical models, in particular, models based on electric circuits, which 

make it possible to generate chaotic processes, to study their course, and to determine their 

laws.  

 

An example of such simple models is the boost converter, which transforms a certain DC 

voltage into a DC voltage at a higher level. Many studies dealing with the boost converter as 

a model for obtaining chaotic processes have been conducted, among which on should first 

and foremost to note (Deane, et al., 1990, 1992, Hamill, et al., 1992). These studies not only 

pay attention to the emergence of chaotic processes in boost converters in the CMC, but also 

give methodical bases for their studies.  

 

A significant contribution to the studies of chaotic processes in various converter types used 

in power electronics has been made by C.K. Tse (Tse, 2003, 2004, Lu et al., 2000). These 

publications give the results of his studies of the generation of chaotic processes, the 

emergence of their various stages, and possibilities of synchronization. In order to describe 

these processes a vast mathematical apparatus of non-linear dynamics has been used – the 

bifurcation theory, Poincare’s phase planes and maps, the Lyapunov exponent, Hopf’s 

bifurcations, etc. The processes in different types of converters have been studied. 

 

For estimating chaotic processes for a CMC boost converter bifurcation and statistical 

analysis are applied (Baranovski, et al, 1999, Woywode, et al., 2003) . In (Baranovski, et al, 

2000) put stress on using the Fourier transformation and the power density spectrum (PDS), 

and the PDS of the inductor current of a boost converter has been calculated as an example. A 

specific feature of chaotic processes is that they decrease EMI in a system. Papers (Li, 2009) 

are dealing with this phenomenon, and (Baranovski, et al, 2003) gives a method of 

constructing a map of a chaotic process to be used for its further generation by a special 

control circuit. In (Zhang, et al., 2015) one finds a detailed consideration of this problem. The 



Yuval et al.                                     World Journal of Engineering Research and Technology 

 

 

 

www.wjert.org 

 

403 

paper gives also other methods of spectral analysis for studying chaotic processes, namely the 

wavelet method and the Prony method. 

 

Paper (Negoitescu, et al., 2008) investigates the bifurcation and chaotic behavior of a CMC 

Buck-Boost converter operating in continuous current mode (CCM). Its results have been 

obtained and processed using the following programs: CASPOS, Mathematica and Matlab. 

Similar processes in a buck converter with a closed loop control system have been considered 

in (Yuan, et al., 1998), and for PFC, in (Ghosh, et al., 2013). Paper (Zhioua, et al., 2014) is 

devoted to the application of the programs Matlab and PSIM for obtaining and study chaotic 

processes in a boost converter. 

 

The influence of the output capacitor of the boost converter on the bifurcation periods is 

considered in (Dongale, 2015), where it is shown that they are increasing with the increase of 

the capacitor. Paper (Dongale, 2013) considers the influence of the input voltage and the 

load’s resistivity on these processes. The dependence of the onset of bifurcations on the 

waveform of the current setting the CMC – from a constant value to various parameters of 

sawtooth waves – is studied in (Zafrani, et al., 1995). Synchronization possibilities are dealt 

with in (Bao, et al., 2008), where a strategy for excluding chaotic processes has been given. 

It should be noted that while many papers give rather detailed descriptions of current modes, 

they give little space to the models themselves and the calculations based on them, and 

therefore there arises a need for a repeated development of a model, and a repeated 

compilation of programs for processing of the results.  

 

The present paper is dealing with the creation and description of a most simple mathematical 

model which makes it possible to generate and study general laws of the course of chaotic 

processes. The model contains both a program for obtaining the necessary modes as well as 

programs for their mathematical processing. To that, Section 2 of the paper is devoted. Also 

in Section 2 and in Section 4 two chaotic processes are presented and described, which 

fundamentally differ in their directions. Sections 3 and 5 proposes a new method of 

synchronization (prevention) of chaotic processes, which has been shown to be efficient. 

 

2. Mathematical model in the CMC-above mode  

The presented in this paper a mathematical model is intended for studies of dynamic modes 

in a conventional DC-DC boost converter. If the boost converter is controlled by the Voltage 

Mode Control (VMC), then used the control system based on PWM, providing regulation of 
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the duty cycle by varying the control voltage. Boost converter can be controlled by the CMC, 

and it is this method will be discussed below, since its use may arise the bifurcation and 

chaotic regimes, which are of interest to us. 

 

As is known, this method is realized through comparing some value of current, Iref with the 

current iin of the inductance Lin of the converter (Fig. 1a), and provided that the condition 

iin=Iref is fulfilled, the switch S opens, the current iin decreases until the clock pulse comes, 

after that the switch S closes, the current iin again increases until it reaches the current value 

Iref and the process repeats itself. For the fixation of these two states an RS-trigger is used. 

 

This control process where all the value of interest are denoted is shown in Fig. 2a. Fig. 2b 

shows another approach to realizing CMC: the value of the current Iref is always less than iin, 

if it decreases, and the condition 
ini =Iref fulfils, the switch S closes, the current iin increases 

until the clock pulse comes, when the switch S opens, and the current iin decreases until it 

reaches the boost converter current value. The first method of current control (Fig. 1a, Fig. 

2a) we shall call CMС-above, the second (Fig. 1b, Fig. 2b), - CMС-bottom.  

 

The VMC does not lead to chaotic processes and is the most applicable in praxis. Note that if 

the duty cycle D changes, / (1 )o inV V D  , 2/ (1 )in in oI V R D  .Taking into account, that 

/in in s ini V DT L  , we get 
mI / 2ax in inI i   and

minI / 2in inI i  .  

 

The dynamic description of the boost converter behaviour is set by a system of differential 

equations with respect to the current ini and the voltage ov : 

1

1

/ ,

/ / .

in in o in

o o o o in

L di dt d v V

C dv dt v R d i

  

  
     (1) 

 

Here 1 1d d   and d - is the commutation function, which equals 1 when the switch S is 

closed, and 0, when it is open.  

 

System (1) is not stiff, therefore let us substitute the differentials of the variables by their 

finite increments ( ( 1)) ( )in in ini i t k i t k        , ( ( 1)) ( )o o ov v t k v t k         
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Fig. 1: Boost converter with CMC (a) CMC-above, (b) CMC-bottom. 

 

for sufficiently small time intervals t  on each k
th

 segment of calculation and change the 

form in which equations (1) are written: 

 

 

1

1

( ( 1)) / ( ) ( ) / ( ),

( ( 1)) ( ) ( ) / ( ) / ( )

in in in o in in

o in o o o o o

i t k V L d t k v t k L t i t k

v t k d t k i t k C v t k R C t v t k

             

               
   (2) 

or, by passing to the form of writing the variables ini и ov  in the Matlab program, we get 

(instead of the "*" sign, the sign "  " is used): 

 

 

1

1

( 1) / ( ) ( ) / ( ),

( 1) ( ) ( ) / ( ) / ( )

in in in o in in

o in o o o o o

i k V L d k v k L t i k

v k d k i k C v k R C t v k

     

     
     (3) 

 

Now write the equations that describe the functioning of the RS-trigger (Fig. 1a), which 

respectively form the variable 1d  in (3). For the trigger output Q, this will be a function 

2 ( )T k (or d), and for a free output Q  - 1( )T k  (or 1- 2 ( )T k    d1). The outputs are 

complimentary to each other. First, we write the equation for the clock pulse. To do that, we 

form the equation of the sawtooth voltage  ( ) / /ramp s sV t t T floor t T   and by comparing 

this sawtooth voltage with the constant voltage V , we get a sequence of clock pulses. Here 

we mean that for discrete variables k and for ( ) ( )rampVc k V V k  , and when ( ) 0Vc k  , the 

function ( ( ) 0) 1Vc k   , otherwise, it equals zero. The same holds for other expressions of 

the same form.  

 



Yuval et al.                                     World Journal of Engineering Research and Technology 

 

 

 

www.wjert.org 

 

406 

Fig. 2: Currents diagrams for CMC (a) CMC-above, (b) CMC-bottom. 

 

With the arrival of the clock pulse ( )Vc k  the output Q  of the trigger equals zero, and when 

the current ini  reaches the value Iref , the output equals one. Using logical functions, this can be 

written as follows: 

1 2( 1) 1 ((( ( ) 0) ( ) 0)) 0).cT k V k T k           (4) 

Indeed, immediately after passing a short clock pulse ( ( ) 0) 0Vc k   , 2 ( ) 1T k  , the expression 

in parentheses in (4) is equal 1 and 1( 1) 0T k   . 

For the output Q  of the trigger, we have:  

 2 1( 1) 1 (( ( ) 0) (1 ( ( ))) 0).ref inT k T k I i k       
 
(5) 

Indeed, immediately after the current ( )ini k reaches the current 
refI

 
( ( )) 1ref inI i k  , further 

(1 ( ( ))) 0) 0ref inI i k    , 1( ) 1T k  , the expression in parentheses in (5) is equal 1 and 

2 ( 1) 0T k   . 

 

Let us introduce the reference values of the voltage and current as 
B inV V ,

 

/B in oI V R  

respectively. Accounting for this and taking into account (4) and (5), the complete system of 

equations describing the functioning of the boost converter in the CMС-above mode, takes on 

the form: 

 

 

1 2

5

2

2

1 2

2 1

1(1) 0; 2(1) 0; (1) 1; (1) 0; 3;

1:10 ;

1( 1) 1 1 (1 ( )) 2( ) 1( );

2( 1) 2 (1 ( )) 1( ) 2 2( ) 2( );

( 1) 1 ((( ( ) 0) ( ) 0)) 0);

( 1) 1 (( ( ) 0) (1 ( 1

ref

ref

x x T T

for k

x k T k x k x k

x k T k x k x k x k

T k k T k

T k T k x



  

  





    



       

        

      

       ( ))) 0);k

end



    (6) 
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Here 1( ) ( ) / , 2( ) ( ) /in B o Bx k i k I x k v k V  , 1 /o s inR T L  , 2 /s o oT R C  ,  

/ref ref BI I 
 

( ) ( ) / ,c ink V k V   
30.5 10    , 620 10sT s  . 

 

The system of equations (6) serves as a basis of the mathematical model of the boost 

converter in the CMС-above mode. Figs. 3a and b gives the results of calculations in the 

Matlab program of the relative value of the current 1( )x k  and of the relative value of the 

voltage 2( )x k  for two values of ref : 3.0ref   and 4.8ref  . Here the values of the constants 

1 4  , 2 0.1  , / 0.01BV V   . In the first case, when the duty cycle 0.5D  , the converter 

functions in a normal mode with the period Ts . In the second case, 0.5D   and the converter 

move to a double-period mode, the period of work becomes 2 sT , and the lower limit values 

of the current during a period acquire two different values. For comparison, these same 

regimes simulated in Pspice, which gave a complete coincidence and validation of the 

proposed model. 

 

 

Fig. 3: Examples of output voltages and input currents in boost converter with CMC-

above (a) iref=3 mode with period Ts, (b) iref=4.8 mode with period 2Ts, (a) and (b) – 

calculated with the proposed model, (c) and (d) – calculated with Orcad-Pspice. 

 

The system of equations (6), consisting of two equations for the variables x1 and x2 and two 

more logical equations for the functioning of the RS trigger, completely describes all the 
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processes in boost converter in CMC mode and allows you to get all the necessary 

dependencies and graphs. So, for example, in Fig. 4a shows the output signals T1 (k) and T2 

(k) during the operation of the trigger in the steady-state period doubling mode (ref = 5), in 

Fig. 4b - the curve of the limiting cycle of the current ripple through the inductance L - 1x  and 

its derivative - the voltage across the inductance L 1x .The next two graphs show the 

harmonic composition of these quantities, and graph (e) shows the phase plane of the 

quantities 1x  and 1x in chaos mode (ref = 13.8).  

 

As is well known, after the period doubling mode a further increase of the reference current 

ref will lead to the quadrupling of the period with four values of the lower limit current, then 

to octupling, etc., with the eventual setting of a chaotic process, which is characteristic by the 

absence of periodicity, and random changes of the lower limit values of the current. 

 

 

Fig. 4: Functional graphs of boost converter in CMC mode in steady state at ref = 5 (a) - 

output signals of the RS trigger, (b) - limit cycle in the plane 1x - 1x , (c), (d) - harmonic 
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composition of current ripples 1x and voltage 1x , ( e) - phase plane of the quantities in 

chaos mode (ref = 13.8). 

 

In order to obtain all these modes, we add to system (6) an equation describing changes of 

( ) 3.0 0.02ref j j   , and carry out cyclic calculations of modes for different j while changing 

k until a steady state is reached in each case. In this case, the mathematical model assumes 

the form (7). 

 

Carrying out calculations by the Matlab program, we get the values of the currents 1( )x k  and 

the voltages 2( )x k for all the modes of functioning of the boost converter, from a periodic 

one with the period sT , and until the chaotic mode sets on. 

 

 

5

1 2

2

2

1

1: 500;

1:10 ;

( ) 3.0 0.02 ;

1( , ) 0; 2( , ) 0; ( , ) 1; ( , ) 0; (1) 3;

1( , 1) 1 1 (1 ( , )) 2( , ) 1( , );

2( , 1) 2 (1 ( , )) 1( , ) 2 2( , ) 2( , );

( ,

ref

ref

for j

for k

j j

x j k x j k T j k T j k

x j k T j k x j k x j k

x j k T j k x j k x j k x j k

T j k





  

  





  

    

       

        

 2

2 1

1) 1 ((( ( ) 0) ( ( , ) 0)) 0);

( , 1) 1 (( ( , ) 0) (1 ( ( ) 1( , ))) 0);ref

k T j k

T j k T j k j x j k

end

end





     

       

 (7) 

 

As was already noted, for the mode with the period sT , we obtain one value of the current at 

the lower limit, for the doubling of the period, two values, for quadrupling, four, et etc., and 

for the chaotic mode, the number of these values increases infinitely. 

 

This picture is usually represented with a plot of the dependence of the lower limit values on 

the current ref changes - Fig. 5 shows the results of these calculations, obtained with a simple 

program:  

 

5

1: 500;

10 [1: 25] 2000;

1 1( , );

(3 0.02 , (:,:), ' .');

j

m

w x j m

plot j w k



  



 
   (8) 
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It is seen that the first mode materializes up to the value 4.5ref  , the second mode – with the 

period doubling of the period – up to the value 6ref  , further follows the period quadrupling 

mode, then to octupling, which quickly transforms into the chaotic mode with respect to the 

values of the lower limits of the currents.  

 

 

Fig. 5: Plot bifurcation diagrams for different values of ref (CMC-above). 

 

The curve in Fig. 5 is a typical one for determined chaos modes, independently of the nature 

of phenomena, whether for the process of procreation of a population described by the 

logistical equation (Gleick, 1988), or, as in our case, for changing of modes in a boost 

converter controlled by the CMC- above method. 

 

As can be seen from the above material, the magnitude of the current ripple 1x  through the 

inductance L significantly affect the nature of the mode in boost converter. These ripples, 

together with the voltage 1x  across the inductance, determine the value of reactive (non-

active) power, circulating between the input source and the converter. It can be shown that 

the area of the limit cycle in the plane 1x - 1x  (for example, Fig. 4b), divided by 2 gives the 

value of this power, calculated by the formula 

1

sini i i

i

Q i V I 




    , (8a) 

 

where
 

,i iV I - are the effective values of the voltage and current ripple, i is the phase angle 

between them, i - is the harmonic number of these quantities (Emde, 1921, Mayevsky, 1978). 

In this particular example Fig. 4b, reactive power, calculated through the area, Q =1.21. The 

same power, calculated by the formula, through the harmonic composition gives Q =1.19. As 

will be seen from subsequent sections, it is precisely the effect on current ripple and reactive 
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power that makes it possible to avoid the bifurcation regime and chaos (see also (Beck, et al., 

2019)). 

 

3. Synchronization method in the CMC-above mode  

Consider now the method proposed in this paper, of preventing chaotic modes independently 

of the value of duty cycle D. A schematic for realization of the method is given in Fig. 6a. As 

is seen from it, in parallel to the input inductance, a switch S1 is connected, which closes for 

a short period (approximately for the time 0.05 sT ) upon reaching the lower limit of the 

inductance current of some current 1ref , which approximately equals its value when 

functioning in a usual VMC mode. The current 
1ref  varies with the variations of the current 

ref , that is, increases or decreases simultaneously with it. The boost converter control system 

is supplemented by yet another RS-trigger (Fig. 6a, RS1), which forms a pulse at the output 

1Q  when the inductance current reaches the current 1ref , and changes its stet when clock 

pulse comes to the other input.  

 

 

Fig. 6: Boost converter with synchronization of chaotic process (a) for CMC-above, (b) 

for CMC-bottom. 

 

Taking into account the change made in the boost converter circuit, its mathematical model 

should be supplemented by equations describing the switching of the RS1-trigger, similar to 

those, which were introduced for the first trigger. On the basis of the conditions of the RS1 

functioning, these equations assume the following form: 
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3 4

4 1 3 2

( 1) 1 ((( ( ) 0) ( ( ) 1( ))) 0);

( 1) 1 ((( 1( ) ( )) ( ( ) 0) ( ( ) 0)) 0)

ref

ref

T k T k j x k

T k x k j T k T k





      

        
 (9) 

 

Here, the function 
3 ( )T k reflects the Q1 output operation, and the function 

4 ( )T k - a output 1Q  

of the trigger. Now the system of equations, and respectively, the mathematical model 

describing the processes in the circuit in Fig. 6a, assumes the following form: 

  

5

1

1 2 3 4 1

2

1:500;

1:10 ;

( ) 3.0 0.02 ; ( ) 1.2 0.018 ;

1(1, ) 0; 2(1, ) 0; (1, ) 1; (1, ) 1; (1, ) 0; (1, ) 0; (1) 1.5; (1) 0.8;

1( , 1) 1 (1 4( , )) 1 (1 ( , ) 4( , )) 2( ,

ref ref

ref ref

for j

for k

j j j j

x k x k T k T k T k T k

x j k T j k T j k T j k x j

 

 

 





     

       

         

 2

1 2

) 1( , );

2( , 1) 2 (1 ( , ) 4( , )) 1( , ) 2 2( , ) 2( , );

( , 1) 1 ((( ( ) 0) ( , ) 0)) 0);

k x j k

x j k T j k T j k x j k x j k x j k

T j k k T j k



  



 

         

      

 

2 1

3 4

4 1 3 2

( , 1) 1 (( ( , ) 0) (1 ( ( ) 1( , ))) 0); (10)

( , 1) 1 ((( ( , ) 0) ( ( ) 1( , ))) 0);

( , 1) 1 ((( 1( , ) ( )) ( ( , ) 0) ( ( , ) 0)) 0);

ref

ref

ref

T j k T j k j x j k

T j k T j k j x j k

T j k x j k j T j k T j k

end

end







       

      

          

 

This system of equations, as is seen, is supplemented by the equation for the varying current 

ref1 and to the first and second equations is added function T4(j,k) with accounts for the 

switching of the latch RS1 of the current. The plot of variations of the lower values of the 

current is given in Fig. 7. Comparing the latter plot with the plot in Fig. 5, we see that no 

changes in the duty cycle 0.5D   are observed in a wide range, no current bifurcations are 

observed, the lower values of the current in the entire range equal the same value, and, as a 

result chaotic processes do not emerge. For the maximal value of the current ref  the values 

of the input current and the output voltage of the boost converter are, 

respectively, ( 1(500,:)) 11.597mean x  , ( 2(500,:)) 3.395mean x   ( 0.705D  ). The output power 

also increases, which previously was bounded in the CMC mode. Thus, the proposed method 

of removal of chaotic processes has shown its efficiency. 
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Fig. 7: Plot of variations of the lower limit values of the current x1 (iin) with 

synchronization of the CMC-above. 

 

4. Description of the mathematical model in the CMC-bottom mode 

Consider further the CMC mode when the switching of the main switch S occurs when the 

lower limit of the input current ini reaches the current ref  (the CMC-bottom mode, Fig. 1b, 

Fig. 2b). The complete system of equations in relative units that describes the functioning of 

the boost converter in the CMС- button mode assumes the form (11): 

 

 

 

2

2

1 2

2 1

1( 1) 1 1 (1 ( )) 2( ) 1( );

2( 1) 2 (1 ( )) 1( ) 2 2( ) 2( );

( 1) 1 (((1 ( 1( ) )) ( ( ) 0)) 0);

( 1) 1 ((( ( ) 0) ( ) 0)) 0);

ref

x k T k x k x k

x k T k x k x k x k

T k x k T k

T k k T k

  

  





       

       

       

      

  (11) 

 

Here the first two equations remained unchanged, while two others describe the conduct of 

the RS–trigger in this control method: the arrival of the clock pulse opens the switch S (there 

is no pulse on the output of the trigger RS), and when the lower limit of the current iin reaches 

the value ref a pulse appears at that output, which closes the switch S. Figs. 8a and b gives 

the results of calculations in the Matlab program of the relative value of the current x1(k) and 

the relative value of the voltage x2(k) for two values of ref=4.85 and ref=2.5. 
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Fig. 8: Examples of output voltage and input current in boost converter with CMC-

bottom mode (a) ref=4.85, mode with period TS, (b) ref=2.5, mode with period 2TS. 

 

Here the values of the constants 1  and 2 , as well as the function ( )cV k  are the same as in 

the case of CMС- above. In the first case, when the duty cycle 0.5D  , unlike the CMС-

above, the converter functions in the normal mode with the period sT . In the second case, 

0.5D  and the converter passes to the mode of double period, the period of functioning 

becomes 2 sT , and the upper limit current values acquire two different values during the 

period. The further lowering of the reference current ref will lead to the quadrupling of the 

period, with four values of the upper limit current, etc., then octupling, finally resulting in the 

emergence of a chaotic process whose specific feature is the absence of periodicity and 

random changing of upper limit current values.  

 

To obtain all these modes, we add to system (11) an equation of changes 

( ) 5.0 0.016ref j j   , and carry out cyclical calculations of modes for various j when k 

changes until in each case a steady state mode establishes. In that case the mathematical 

model acquires the form (12). Completing the calculation in program, we obtain the values of 

the currents x1(k) and voltages x2(k) in all the modes of functioning of the boost converter, 

from the periodical one with the period TS until the chaotic process establishes. As was 

already noted, in the mode with the period TS we obtain one value of the current at the upper 

limit, upper the doubling of period, two values, upon quadrupling , four, etc., while in the 

chaotic mode there appears an infinite number of values. We represent this picture, as in the 

mode CMC-above, with a plot of the dependence of the upper limit current values on the 

variation of the current ref (Fig. 9). 
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 

 

5

1 2

2

2

1

1: 500;

1:10 ;

( ) 5.0 0.008 ;

1( ,1) 0; 2( ,1) 0; ( ,1) 1; ( ,1) 0;

1( , 1) 1 1 (1 ( , )) 2( , ) 1( , );

2( , 1) 2 (1 ( , )) 1( , ) 2 2( , ) 2( , );

( , 1) 1 (((1

ref

for j

for k

j j

x j x j T j T j

x j k T j k x j k x j k

x j k T j k x j k x j k x j k

T j k



  

  





  

   

       

        

   2

2 1

( 1( , ) ( ))) ( ( , ) 0)) 0);

( , 1) 1 ((( ( ) 0) ( , ) 0)) 0);

refx j k j T j k

T j k k T j k

end

end





    

      

 (12) 

 

We see that the first mode is realized until the value 3.5ref  , the second mode of the 

doubling of the period, until the value 1.8ref  , further follows the mode of the quadrupling 

of the period (until the value 1.5ref  ), which quickly transforms into the octupling mode, 

and further, into a chaotic mode with respect to the values of the lower limits of the currents. 

The curve in Fig. 9, although is a typical in the whole, but it is a metter of principle that in 

this case the process is directed downwards, and the chaotic mode emerges upon the decrease 

of the current. 

 

5. Synchronization method in the CMC-bottom mode  

Consider a method for preventing the emergence of chaotic processes independently of the 

value D of the duty cycle also for the CMC-bottom mode. The schematic for the realization 

 

 

Fig. 9: Plot bifurcation diagrams for different values of ref (CMC-bottom). 

 

of this method is given in Fig. 6b. As in Fig. 6a , a switch is connected in parallel to the input 

inductance, which closes for a short time (approximately for 0.05 sT ) when in this case is 
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reached the upper limit of some inductance current 
1ref , more or less equal to its value upon 

functioning in the VMC regular mode. The control system of the boost converter in this case 

is similar to that described for Fig. 6a. On the basis if the conditions of functioning of the 

RS1, equations (13) are supplemented by the following equations: 

1

3( 1) 1- ((( 1( ) ( )) ( 4( ) 0)) 0);

4( 1) 1- ((( 3( ) 0) ( 1( ) 0) ( ( ) 1( ))) 0);

ref

ref

T k x k i j T k

T k T k T k i j x k

     

       
  (13) 

 

Now the system of equations, and consequently, the mathematical model that describes the 

processes in the schematic in Fig. 6b, assumes the following form: 

5

1

 1: 245;

     1:10 ;

( ) 5 - 0.016 ;  ( ) 6.9 - 0.022 ;

1( ,1) 0; 2( ,1) 0; 1( ,1) 1; 2( ,1) 0; 3( ,1) 0; 4( ,1) 0;

1( , 1) ( 1 (1- 4( , )) - ( 2( , ) 1) (1- ( 2( , ) | 4( , )))) 1( , );

ref ref

for j

for k

j j j j

x j x j T j T j T j T j

x j k T j k x j k T j k T j k dt x j k

 

 





   

     

     

2( , 1) (( 1( , ) 2) (1- ( 2( , ) | 4( , ))) - 2( , ) 2) 2( , );

1( , 1) 1- (((1 ( 1( , ) ( ))) ( 2( , ) 0)) 0);                

2( , 1) 1- ((( ( ) 0) ( 1( , ) 0)) 0);

3( , 1) 1- ((( 1( , )

ref

re

x j k x j k T j k T j k x j k dt x j k

T j k x j k j T j k

T j k k T j k

T j k x j k

 







     

      

     

  

1

1( )) ( 4( , ) 0)) 0);

4( , 1) 1- ((( 3( , ) 0) ( 1( , ) 0) ( ( ) 1( , ))) 0);    

    

f

ref

j T j k

T j k T j k T j k j x j k

end

end



  

       

 (14) 

 

As is seen from this system of equations, it is supplemented by an equation for the current 

ref1, and in the first and second equations the current function 4( , )T j k , which accounts for the 

switching of the RS1- trigger. The plot of the upper limit values of the current calculated by 

this method is shown in Fig. 10. It is seen that that in this case the proposed method of 

preventing chaotic processes also showed its efficiency. 
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Fig. 10: Plot of variation of the upper limit values in the current x1(k) with 

synchronization in CMC-bottom. 

 

6. CONCLUSIONS  

1. A simple model of a boost converter in CMC has been developed on the basis of the 

Matlab platform, which makes it possible not only quickly to obtain all the modes of the 

functioning of the converter, including chaotic ones, but in this model itself, to carry out 

numeric and graphic processing of results. 

2. Two control modes by currents, the CMC-above and CMC-bottom have been considered 

and studied, for which two kinds of differing in principle bifurcation diagrams are 

obtained, that is coming of chaos for increasing quantities in the first case, and for their 

decreasing, in the second case. 

3. For each kind of controls considered, methods of synchronization of chaotic processes 

have been proposed that show their efficiency. In both cases, the methods are based on 

the effect on the ripple of the reactor current and, accordingly, on the reactive power of 

the current ripple circulating between the source and the converter. 
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