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ABSTRACT 

Optimization technique that is applied in 330 kV and other Extra High 

Voltage Networks are many but, all in all Primal-Dual Interior-Point 

(PD-IP) technique currently proves most successful. . The Technique 

solves load flows which are non-linear with both equality and 

inequality constraints at the same time thereby saving time and saving 

the system from encountering problems due to delays in faults 

clearing. The existing solves one constraint after the other and has  

more than six (6) iterations before converging, while the developed method converges after 

first iteration. The developed technique guarantees higher system power generation with, 

higher loading and higher system stability. With these advantages PD-IP is most cherished 

and it is obtained by applying the non-negative Primal Variables, “S” and “z” into the 

problem formulation to transform the Inequality constraint part to Equality constraints and 

subsequently apply another non-negative Dual Variables, “ ” and “v” together with Lagrange 

multiplier “λ” to solve optimisation. Optimisation is solved by incorporating, Barrier 

Parameter “ ” which ensures feasible point(s) exist(s) within the feasible region (INTERIOR 

POINT), Damping Factor or Step length parameter “α”, Step Size ∆Y, in conjunction with 

Safety Factor “ ”  (which improves convergence and keeps the non-negative variables strictly 

positive) are used for updating variables (Y
1
=Y

0
+α∆Y

0
). If initialised variables fail 

convergence test, iteration starts with the updated variables. The problem formulation is done 
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economically through minimisation of cost of power generation; min C(PG)= α+βPG+γPG
2
,  

g(x)=0, stands for conventional power flow equation and other equality constraints, which is 

represented as; PG PD loss=0 and h  h(x)  ĥ, stands for operating limits on the system, 

which is represented as PGmin  PG) PGmax. The numerical algorithms of the method 

runs; Step Zero (Initialisation), Step One (Compute Newton Direction ∆Y), Step Two 

(Update Variables), Step Three (Test for Convergence). Studies with results and analysis of 

improved performance by using PD-IP technique on the 330KV Bus are discussed with 

higher system stability obtained.  

 

INTRODUCTION 

The first known Interior-Point (I.P) method is usually attributed to Frisch, which is a 

logarithmic barrier method that was in 1960s extensively studied by Fiacco and Mc Cormick 

to solve non-linear inequality constrained problems (Torren and Quintina, 2001, Granville, 

2007). The greatest break-through in IP research took place in 1984, when Karmarka came up 

with a new IP method for Linear Programming LP reporting solution times of up to 50 times 

faster than the simplex method. Then Karmarka‟s algorithm is based on non-linear projective 

transformations.  Later, several variants of. 

 

Relasted Work 

2.1 Optimisation Based On Economic Operation of Power System 

Power system is operated as to supply all the (complex) loads at minimum cost. Often total 

load is less than the available generation capacity (Fliscounakis et al, 2013) and so there are 

many possible generation assignment, but when there is peak load/demand for power, it 

means, all the available generation capacity is used resulting in no option. During options, 

power generation (PGi) is picked to minimise cost of production while satisfying load and the 

losses in the transmission system (Capitanescu et al, 2012) min C(PG)= α+βPG+γPG
2
. Also, 

it is noted that, small variations in demand are taken care of by adjusting the generations 

already on line, while large variations are accommodated basically by starting up generator 

units when the loads are on the upswing and shutting down when the loads decrease (Mao 

and Iravani, 2014). Although the problem is complicated by considering the long lead time 

required (6-8 hours) for preparing a “cold thermal unit for service”, (Colombo and Grothey, 

2013). To avoid the cost of start-up or shut-down, there is a requirement that enough spare 

generation capacity (spinning reserve) be available on-line in the event of a random generator 

failure (Awosope, 2003). 
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2.2   Optimisation Based On Minimum Mismatch Method  

Generally, load flow equation of an N-bus network can be expressed as: 

S = P + jQ = V
T
I
*
 = V

T
 (YV)

* 
(Kamel et al, 2013)                                                               (2.1) 

Where:- 

“S” is the power injection vector 

“I” is the current injection vector 

“V” is the bus voltage vector and; 

“Y” = G + jB is the system admittance matrix. 

 

All the above quantities are complex, except P and Q which are real and imaginary parts of S. 

Because of non-linearity of load flow equations, several mathematical solutions exist, giving 

rise to non-uniqueness in the load flow calculations, with only one of the solutions with the 

minimum system losses and acceptable high voltages, as low voltage may correspond to 

unstable operation, is taken (Wu, et al 2010). 

 

2.3 Optimisation Based On Fast Decoupled Load Flow Method
 

This is a modification of the Newton-Raphson (NR) technique which takes advantage of the 

weak coupling between the real and reactive power (Bhowmick et al, 2008) with two 

constant matrices used to approximate and decouple the Jacobian Matrix(Song and Cai, 

2013).  

 

2.4 Optimisation Based On Second Order Load Flow (Solf) Method  

          N 

Pi =   (ei ej Gij – ei ef Bij +fifj Gij+ fi ej Bij), 

        i= j 

         N 

Qi =   (fi fj Gij – fi fj Bij - eifj Gij- ei ej Bij),     

        i= j 

Ei 
2 

= ei
2
 +fi

2
  

Where Ei is modulus of ith bus Voltage.                                                                         (2.3) 

 

2.5. Optimisation Based On Mathematical Model Of Primal-Dual Interior-Point 

Technique 

min f(x)  

(2.2) 
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such that g(x) = 0                                                                                                           

(2.4) 

h  h(x)  ĥ  

x IR
n
 is a vector of decision variable including control and non-functional dependent 

variable, 

f: IR
n
 –IR is a scalar function representing the power system operation optimisation goal. 

g: IR
n
–IR

m
 is a vector function of the conventional power flow equation and other equality 

constraints. 

h: IR
n
 –IR

p
 is a vector of functional variables with lower bound h and upper bound ĥ 

representing the operating limits on the system. 

 

It is assumed that f(x), g(x) and h(x) are twice continuously differentiable. Since the above 

problem minimises f(x) subject to h(x) > 0. The objective is to obtain a feasible point X. that 

attains the desired (Chiang and Grothey, 2014. Farivar and Low, 2013, Gan, et al 2015). 

 

2.5.1 Greek Alphabets Used and Their Meanings in Primal-Dual Interior-Point 

Technique. 

“s” and “z” (small and big zeta) PRIMAL VARIABLES are non-negative slack vectors, for 

transforming inequality constraint(s) to equality constraint(s) “slack” means loosely attached, 

“Primal” means basic.  

 

“” “v” and (small letter pi, and nu) are non-negative Lagrangian vector called DUAL 

VARIABLES. They are vector multipliers incorporated with “λ” (lambda) the lagrangian 

multiplier to help PRIMAL VARIABLES solve the emerged equality constraints for 

optimisation.”Dual” means joint action. 

 

“μ”(small letter mu) is a Barrier parameter or Complimentary Gap which is incorporated to 

ensure. 

that the feasible point(s) exist(s) within the Feasible region (INTERIOR-POINT).  

 

“Ω”(Omega) is centering parameter used with “ρ” (Rho),  the confining parameter in 

computing „μ” 

“γ”( gamma) is safety factor that ensures, next point satisfies positivity condition, used in 

computing step lengths (damping factor) "α” that improve convergence and keep non-
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negative variables strictly positive. The constants “γ” and “Ω” stand for 

personnelemolument in the system   

 s, z,  and v are variables for static var compensators  and FACTS (flexible ac transmission 

system). 

 

Methodology 

3.1 Transforming Inequality Constraint To Equality Constraints  

Transformation of (2.4) is done (Yang, et al 2016) by incorporating non- negative slack 

vectors „s‟ and „z‟ into the inequality constraint   h < h(x)< ĥ, imposing strict positivity 

conditions on those slacks by incorporating them into logarithmic barrier terms  as follows; 

Min f(x)   

Subject to g(x) = 0 

-s – z + ĥ – h = 0      

-h(x) – z + ĥ = 0 

Into logarithmic barrier term as                                          

Min f(x)- µ
k  

 

Subject to g(x) = 0 

-s – z + ĥ – h = 0      

-h(x) – z + ĥ = 0   

“s” > 0; “z” > 0     

 

Where, k is the iteration count or number and p the number of interconnected systems for one 

pool.. Solving these equality constraints (Wu, et al 2012, and Ling, 2007), we apply vectors 

of lagrangian multipliers called Dual-Variables “” “π” and “v” together with the Newton 

method 

Lµ(y) = f(x)- µ
k  

Σ(in si+in zi) -λ
T
gx- π

T 
(s-z+h-h) - V

T 
(-h (x) – z + h). (3.2) 

 

3.2 Optimality Conditions 

A local minimiser of (3.1) is expressed in terms of stationary point of  Lx (y) satisfying the 

Karush- Kuhn Tucker (KKT)  optimality conditions for the NLP problem (2.4) (Torren and 

Quintana, 2001) as  

 

 

 

i =1 

^ 

(3.1) 
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   s π 

                      zv        

 y1(y) = s + z – ĥ + h    =0                            (3.3) 

   h(x) + z - ĥ 

                    xf(x) – Jg(x)
T
  + Jh (x)

T
v- g(x) 

 

V= v + π for simplification  

 

Where l or L is local minimizer 

 

Strict feasibility starting point is not mandatory for Primal Dual Interior Point technique but 

the condition (s, z)>0 and ( , v) >0 must be satisfied at every point in order to define the 

barrier term (Capitanescu and Wehenkel, 2012). The algorithm terminates when the Primal 

and Dual infeasibilities and the complementary gap fall below pre-determined tolerance 

otherwise, with (s, z)>0 and (, v) > 0 a new estimate y
k
 is computed using one step of 

Newton method to find zeroes (the roots) of the NL functions. 

 

3.3 Estimating New Point (Y
k
) 

3.3.1 Computing Newton Direction or Step Size Y 

The Newton direction is obtained by solving. Newton method (Tinney and Hart, 2007) with 

large sparse coefficient matrix (Geletu et al, 2011), with step size column matrix as below 

(Molzahn et al, 2013):-     

         0 s 0 0 0  s  rs 

 0 v z z 0 0  z  rz 

 1 1 0 0 0 0    r          

 0 1 0 0 Jh 0  v  rv 

 0 0 0 Jh
T 


2

x l -Jg
T
  x  rx 

 0 0 0 0 -Jg 0    r 

 

(Tinney and Hart, 2007) 

 

 

 

 

^ 

^ 

^ 

^ 

(3.5) = 
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rs = -s + 
k
e 

 rz = -zv + 
k
e 

 r = -s –z + ĥ – h 

 rv = -h (x) - z + ĥ             

 rx = -x f(x) + Jg (x)
T
 - Jh (x)

T
v 

 r = g(x) 

Where:  

 

Where, 
2

x l is the combination of Hessians of objective and constraints functions. 
2

x l(y) 

= 
2

x f(x) - 
2

xgj(x)j + 
2

x hj (x) vj                                                        (3.7)               

 

Where “l” is local minimiser a function of differentiation, 
2

xf(x) is  the Hessian or 2nd 

differentiation of objective function  w.r.t.x, 
2

x g(x) is the Hessian or 2nd differentiation of 

equality constraint function w.r.t.x, 
2

x h (x) is the Hessian or 2nd differentiation of 

inequality constraint function w.r.t. x, xf(x) is the first differentiation of objective function  

w.r.t.x, Jg(x) is the first differentiation or Jacobian value of equality constraint w.r.t.x. Jh(x) 

is the first differentiation or Jacobian value of inequality constraint w.r.t.x. In the 

computation of Y, factorisation of the coefficient matrix (3.5) is much more expensive.  

 

3.3.2   Computing Step Length Parameter (    

The scalars 
k

P€ (0,1) and 
k

D€ (0,1) are step length parameters called damping factor. 

They improve convergence and keep non-negative variables strictly positive. k is the iteration 

counts.  


k

P= min [1, γ min{-si
k
/si/si<0, -zi

k
/zi/zi<0}]                          

 
k

D= min[1, γ min {-i
k
/i/i<0, -vi

k
/vi/Vi<0}]                           

 

The scalar γ (0,1) is a safety factor which ensures that the next point will satisfy the strict 

positivity conditions; typical constant values, γ
O
   = 0.25. γ

 k
 = 0.99995. 

 

 

 

 

 

^ 

(3.6) 

 

 (3.8) 
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3.3.3 Updating Variables 

3.3.3.1Updating control variable(s) and primal variables  

X1
k
 = X1

k-1 
+  p

k
 X1

k-1 
2 control  

X2
k
 = X2

k-1
 + p

k
 X2

k-1 
variables

 

S
k
 = S

k-1
 + p

k
  S

k-1 

Z
k
 = Z

k-1
 + 

k
p Z

k-1    
    

3.3.3.2 Updating dual variables and lagrange multiplier 


k
 = 

k-1
 + 

k
D

k-1 

V
k
 = V

k-1
 + 

k
DV

k-1 


k
 = 

k-1
 + 

k
D

 k-1
 

 

3.4 Reducing The Barrier Parameter (Μ
k
)   

The scalar μ
k
 is the barrier parameter or complementary gap which ensures the feasible 

point X exist within the feasible region (Lage et al, 2009) and it is obtained by 

μ
k +1  = 


k
 

k      
        (3.10) 

Where 
k
 is chosen = max (0.99

k-1
/2; 0.1) and it is called the Centering Parameters  

With 
0
 = (0.2 fixed) and µ

O 
= (0.1 fixed) 


k
 = (S

k
)
T


k
 + (Z

k
)
T
V

k                                                                                     
               (3.11) 

μ
k
 is computed first, only if iteration (1) fails, then μ

1
 and Y

1
 is used to form iteration (2) as 

Y
0
 and μ

0 

 

(given) are used to form iteration (1)  

3.5 Testing For Convergence 

Interior-Point (IP) Iterations Are Considered Terminated Whenever 

V1
k
 = max [max{h-h(x); h(x) – ĥ }, ], 

V2
k
 =  

Since 2 & 2 are vectors of lagrangian multipliers,  

they have no vector addition and so denominator reduces to 1 + 2 

V3
k
 =                  

V4
k
 =        

 (3.9)  

 (3.12) 
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Typically,  V1
k
 and V2

k
  ξ 1 = 10

-4
, or < ξ1

 

 
            V3 

k
 and V4

k
 ξ 2 = 10

-2
ξ 1 (i.e. 10

-6
) , or < ξ2, 


k
< ξ or ξ x = 10

-12
, is satisfied 

Generally, ξ1 = 10
-8

 is chosen for quadratic functions with 2 variables. 

If V
k

1, V
k
2 and V

k
3 are satisfied, then primal feasibility, scaled dual feasibility and 

complementary condition are satisfied which means that iterate K is a Karush Khun Turker 

(KKT) point of accuracy. 

 

When numerical problems prevent verifying this condition, the algorithm stops as soon as 

feasibility of the equality constraint is achieved along with a very small fractional change in 

the objective value and negligible changes in the variables. The typical tolerances are ξ 1= 10
-

4
, ξ 2 = 10

-2
 ξ 1 and ξ = 10

-12. 

 

3.6   Primal-Dual Interior-Point Technique Numerical Algorithms 

Step 0: (Initialisation) 

Set K = 0, define μ
0
 and choose a starting point Y

0
 that satisfies the strict positivity 

conditions. 

 

Step 1: (Compute Newton Direction) 

Form the Newton System at the current point and solve for the Newton Direction. 

Step 2: (Update Variables) 

Compute the step lengths in the Newton direction and update the primal and dual variables. 

Step 3: (Test for Convergence) 

If the new point satisfies the convergence criteria, stop. Otherwise, set K = K + 1, update the 

barrier parameter μ
k
 and return to step 1. 

 

3.6.1 Implementation of the Algorithms of Primal-Dual Interior–Point Technique  

3.6.1.1 Step Zero (0), Choosing an initial point 

Starting point needs only to meet the strict positivity conditions, IP method performs better if 

some initial heuristics are used, for instance, X
0
 is between the upper and the lower limits of 

the bounded variables. 
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3.6.1.1.1 Initial point for two variables with quadratic inequality constraint h < h (x) < 

ĥ)    

            X1   

X
0
 =          =   ĥ - h 

            X2           

 

X
0

i are tested by substituting them into h (x) without considering constant term. 

Example, if h (x) is, 1< X1
2 

+ X2
2 

– 6x1 – 2x2 + 10 < 4, 

Heuristically picking X1 as 5 and X 2 as 4 and substituting them into above inequality 

ignoring constants gives 3 equals the range (4 - 1) of the inequality. 

  5 

X
0
 =         = 3   

            4             

 

3.6.1.1.2 Initialising primal slack variables   (S
0 

and
 
Z

0
) 

S
0
= min [max{γ

o
h

, h(X

0
) – h min }, (1-γ

0
) h


] 

S
0
 = min [max {0.25h


, h(X

0
) – h min}; 0.75h


] 

Where: h

 = h max –h min 

γ
0
 = 0.25                (3.13) 

1 - γ
0
 = 0.75      

h(X
0
) = values of X

0
 including constant  

Z
0
 = h


 - S

0     
 

 

3.6.1.1.3 Initialising dual variables (
0
, V

0
) 


0
 = 

0
 (S

0
)
-1

 e (e is diagonal I of matrix) 


0
 =0.1(S

0
)
-1       

 

V
0
 = 

0
 (Z

0
)
-1

 e - 
0     

 

 


0 

= 0 (since the power balance of steady state system is passive). 

Convergence of the initial point is tested and if it fails then:  

 

3.6.1.2 Step one (1), Computing Newton direction Y    

With 
o
 defined and initial point Y

o
 obtained; Newton method (3.5), is formed and Newton 

direction computed with (3.6) and (3.7) of (3.5) 

 

 (3.14) 
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3.6.1.2 .1 For two variables with quadratic constraint  

With 
o
 defined and initial point Y

o
 obtained; Newton method (3.5), formed and Newton 

direction computed with (3.6) and (3.7) of (3.5).Factorisation starts from row 3 of (3.5) where 

s is substituted for -z and applied to row 1, then row 2, row 4 and with row 4, row 5 and 

row 6 are factorised and finally row 6 and row 7 are simultaneously factorised to obtain X1 

and X2 before backward substitutions. 

   

3.6.1.3 Step two (2), Updating variables (Y
k
)
 
with step length parameter “” (3.8) .  Y

1 = 

Y
O +
Y

o
 

Newton direction Y is computed from (3.5) and variables are updated from (3.9) 

 

3.6.1.4 Step three (3), Testing for convergence 

If the new point satisfies the convergence criteria, stop. Otherwise, set K= K + 1, update the 

barrier parameter 
k
 and return to step 1.  

 

IV Result and Analysis 

4.1 min x1
2
 + x2

2
 - 4 x1 - 8 x2 + 20 (Nagrath and Kothari, 2010) 

subject to x1
2
 + x2

2
 - 2 x1 - 2 x2 – 2 = 0 

1 < x1
2
 + x2

2 
– 6x1 – 2x2 + 10 < 4 

 

Step 0: Initialisation 

Heuristically X1 and X2
 
are chosen   as follows: 

ĥ   - h = h(x) 

4 – 1 = 3 = h(x) 

 

To choose (X1, X2) to give 3 we have              

X
0
 
=     

=  

s
0
 = 1min [max {0.25 x 3, 13-1}, 0.75 x 3] 

= min [12, 2.25] 

s
0
 =   2.25 

 

Note after obtaining x
0
 from h(x) as 3, subsequent h(x) includes the constant term in the 

inequality, which is10 to give 13. 

z
0
 = h


 - s

o
, i.e 3-2.25=0.75 
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=(S
0
)
-1

e where e = diagonal 1 

= 0.1 (2.25)
-1

 

= 0.0444 

v
0
 = (Z

0
)
-1

e - 
0
 

v
0
 = 0.1333 – 0.0444, i.e, 0.0889 

V
O 

= (Z
0
)
-1

e = 0.1333 


0
 = 0 (for passive power balance) i.e steady state condition. 

 


0
 = 0.1, 

0
 = 0.2 (fixed), γ

0
 = 0.25 and other γ

k
 = 0.99995, E = 10

-8
 other  

k
 = 0.1 

xf(x)   =   2x1 – 4   ;             x
2
f(x)   =     2    0 

       2x2 – 8             0    2 

Jg(x) = {2x1 – 2; 2x2 – 2};      x
2
g(x) =         2    0 

0 2 

Jh(x) = {2x1 – 6; 2x2 – 2};      x
2
h(x) =            2      0 

  0      2 

    
2

xl
0
 =     2.17778      0  

0 2.17778 

 

Where 
2

xl = 
2

xf(x) - j
2
xgj(x) + Vj

2
xhj(x) 

Therefore, Y
0
 is initialised as 

 s
0
  2.2500 

 z
0
  0.7500 

 
0
  0.0444  f(x

0
) = 9 

Y
0
 = v

0
 = 0.0889  g(x

0
) = 21 

 x1
0
  5.0000  h(x

0
) = 13 

 x2
0
  4.0000 

 
0
  0.0000 

 

Testing for convergence, 

V1
0
 = 21>10

-8 

V2
0
 = 0.8585 > 10

-8 

V3
0
 = 0.0205 > 10

-8 

Not converged. (Convergence failed) 

 

p 

j=1 

 

^ 
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ITERATION I: With Y
0
 and 

0
 known, Newton System is formed and solved as follows 

 0.0444,    0 2.2500  0 0 0 0         s
o
        0.0000 

0     0.0889 0.7500       0.7500 0 0 0 z
o
        0.0000 

1 1 0  0 0 0 0 
o
        0.0001 

0 1 0  0 4 6 0 v
o
 =     -9.7500 

0 0 0  4      2.1778 0 -8 x1
o
        -6.3550 

0 0 0  6 0   2.1778 -6 x2
o
         0.5334 

0 0 0  0 -8 -6 0 
o
  21 

From (row 3) s
O
 = -z

O
 

From (row 1) -0.0444z 
O
+ 2.25

O
 = 0.0001 

 =    


O  

 = 0.01973z
O
 + 0.00004     

From (row 2) 0.1037 z + 0.75v
o
 = -0.00003 

 =   

z
O 

= -7.2324v
o
 –0.00029 

in row (4) v
o
 = 9.7497 + 4x1

o
+ 6x2

o 

            7.2324 

v
o
 = 1.3484+0.5532x1

o
+0.8298x2

o 

in row (5) 4.3901x1
o
 + 3.3184x2 – 8

o
 = -11.7418 

in row (6) 3.3184x1
o
 + 7.1554x2

o
 – 6 

o
= -8.6218 

from row (5) 
o
 = 11.7478 + 4.3901x1

o
 + 3.3184x2

o 

         8 

 

Substituting 
o
 into row (6) gives   0.0262x1

o
 + 4.6672x2

o
 = 0.1881  

Row (7) is   8x1
o
 – 6x2

o
    = 21 

Then x1
o
 = -2.6665, x2

o 
= 0.0553 


o
 from, row (5) = 0.02827 


o
 from, row (6) = 0.02815 


o 
mean is 0.0282 

v
o 
= -0.0808 

z
o 
= 0.5841 
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s
o
 = -0.5841 


o
 = 0.0115 

 p
1
 = D

1
 = 1 

Y
0
 =  s

0
  -0.5841 

  z
0
  0.5841 

  
0
  0.0115 

  v
0
 = -0.0808 

  x1
0
  -2.6665  

  x2
0
  0.0553 

  
0
  0.0282 

Y
1
                  1.6659   

  1.3341 

  0.0560   f(x
1
) = 0.1143 

  0.0081   g(x
1
) = 7.1131 

  2.3335   h(x
1
) = 9.7290 

  4.0553 

  0.0282 

 

Testing for convergence: 

V1
1
 = 7.1131 > 10

-8 

V2
1
 = 0.1023 > 10

-8 

V3
1
 = 0.0183 > 10

-8 

V4
1
 = 7.9742 > 10

-8 

Convergence fail 


1
 = 

1


1
 from (3.10), while 

1 
is from (3.11), 

 = 0.1 x 0.1041 = 0.0104 

 

ITERATION 2 

With Y
1
 and 

1
 the next Newton System is formed, from where Newton directions are 

computed, and variables updated with convergence tested as  

V1
2
 = 3.1720 >10

-8 

V2
2
 = 0.0900 >10

-8 

V3
2
 = 2.2640 x 10

-6
 >10

-8 
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V4
2
 = 0.1198 >10

-8
, 

Resulting in failure of the system to converge after iteration 2. Although this process 

continues until at 8 IP iteration, the system converges with x1 = 2.0000 and x2 = 2.7721 

 

Where V1
8
 = 2.8499 x 10

-10
 < 10

-8 

 

5.1 DISCUSSION OF RESULTS 

Generally, the work reveals that Primal-Dual IP load flow technique optimisation handles 

power generation dispatches of different power pools with power pool 1 optimally, generates 

2.0000p.u of power, while pool 2 optimally, generates 2.7721p.u.of power for the entire 

system stability. 

 

5.2 SUMMARY OF FINDINGS 

1 Other techniques solve load flow separately on two different power pools, while PD-IP 

technique solves them together or at the same time.Equality constraint and Inequality 

constraint, while the PD-IP technique solves load flow problems containing both 

constraints at the same time. 

2 Number of Iterations to convergence (solution) to load flow problems of two variables are 

always so many for the other techniques while PD-IP technique often converges to 

solution wthin eight iterations 

 

5.3 CONTRIBUTIONS TO KNOWLEDGE 

PD-IP technique is the only load flow solution method that solves two variables, that is two 

different power pools simultaneously and also problems containing equality and inequality 

constraints.  

 

5.4 RECOMMENDATIONS 

For the technique‟s merits over others, intense efforts is needed to study deeper into the 

technique by making it accessible to various Institutions of learning and to Electricity 

Industries. 
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