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ABSTRACT 

In 1990, Malghan et al. have defined and studied the concepts of 

almost p-regular, p-completely regular and almost p-completely 

regular spaces. In 1997 & 2004, Malghan et al. have defined and 

studied the concepts of almost s-completely regular spaces and s-

completely regular spaces. In 2010, Navalagi introduced the concepts  

of pre-zero sets and co-pre-zero sets to characterize the concepts of p-completely regular 

spaces and almost p-completely regular spaces. In this paper, we offer some new concepts of 

-zero sets, co--zero sets, -completely regular spaces and almost -completely regular 

spaces. We also characterize their basic properties via -zero sets.  

 

INTRODUCTION 

In the literature zero sets and co-zero sets due to Gilman and Jerison.
[9]

 were used to 

characterize the concepts like completely regular spaces and almost completely regular 

spaces by Singal, Arya and Mathur in topology (See 21 & 22). In,
[11]

 and,
[12]

 Malghan et al 

have defined and studied the concepts of semi-zero sets and co-semi-zero sets in topology to 

characterize the properties of s-completely regular spaces and almost s-completely regular 

spaces using semicontinuous functions due to N.Levine,
[10]

 In,
[17]

 Navalagi has defined and 

studied the concepts pre-zero sets and co-pre zero sets in topology by using precontinuous 

functions due to Mashhour et al,
[14]

 to characterize the properties of p-completely regular 

spaces and almost p-completely regular spaces due to Malghan et al,
[13]

 In this paper, present 

author define and study the -zero sets and co--zero sets using -continuous functions due 

to Mashhour et al,
[15] 

to characterize the properties of newly introduced spaces, -completely 

regular spaces and almost -completely regular spaces. 
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Preliminaries 

Throughout this paper, we let (X, ) and (Y,) be topological spaces (or simply X and Y be 

spaces) on which no separation axioms are assumed unless explicitly stated.Let A be a subset 

of a space X. Let Cl(A) and Int(A) denote the closure and the interior of subset A. 

 

We need the following definition and results in the sequel of the paper. 

 

DEFINITION 2.1: A subset A of a space X is said to be: 

(i) Preopen
[14]

 if A  Int Cl(A). 

(ii) Semiopen
[10]

 if A  Cl Int(A). 

(iii)Regular open
[23]

 if A = Int Cl(A).  

(iv) -open
[18]

 if A  Int Cl Int(A). 

(v) -open set
[24]

 if for each xA,there exists a regular open set G such that xG  A. 

 

The complement of a preopen (resp. semiopen, regular open, -open, -open) set of a space 

X is called preclosed,
[6]

 (resp. semiclosed,
[2]

 regular closed,
[23]

 -closed,
[15]

 -closed,
[24]

) set. 

The family of all preopen (resp. semiopen, regular open, -open and -open) sets of X is 

denoted by PO(X) (resp. SO(X), RO(X), O(X) and O(X)) and that of preclosed (resp. 

semiclosed, regular closed, -closed, -closed and -closed) sets of X is denoted by PF(X) 

(resp. SF(X), RF(X), F(X) and F(X)) 

 

DEFINITION 2.2: A function f X Y is called 

1. Precontinuous
[14]

 if the inverse image of each open set U of Y is preopen set in X. 

2. Semicontinuous
[10]

 if the inverse image of each open set U of Y is semiopen set in X. 

3. -Continuous
[15]

 if the inverse image of each open set U of Y is -open set in X. 

 

DEFINITION 2.3: A space X is said to be 

(i) P-regular
[6]

 if for each closed set F and each point x not in F, there exist disjoint preopen 

sets U and V such that x  U and FV. 

(ii) P-completely regular
[13]

 (resp. s-completely regular
[11]

) if for each closed set F and each 

point x  (X \ F), there exists a precontinuous (resp.a semicontinuous) function f : X 

[0,1] such that f(x) = 0 and f(y) = 1 for each y F. 
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(iii) almost p-completely regular
[13]

 (resp. almost s-completely regular
[12]

) if for each regular 

closed set F and each point x  (X \ F), there exists a precontinuous(resp. a 

semicontinuous) function f : X[0,1] such that f(x) = 0 and f(y) = 1 for each yF. 

(iv) Submaximal
[3]

 if every dense subset of it is open (i.e. if PO(X) = [8]). 

(v) An extremally disconnected (E.D.)
[25]

 if closure of each open set is open in it ( i.e. if A  

 for each A  RF(X). 

(vi) -space
[7]

 if every -open set of X is open in X(i.e.  = O(X)). 

(vii) -regular
[4]

 if for every closed set F and a point x F,there exist disjoint -open sets A 

and B such that xA and F B. 

 

It is well-known that a subset A of a space X is called a zero set
[9] 

if there exists a continuous 

functions f: X  R such that A = {x X | f(x) = 0}. The complement of a zero set of a space 

X is called a co-zero set of X. 

 

REMARK 2.4: If f: XR is continuous function may be denoted by Z(f). Thus, we write 

Z(f) = {x X | f(x) = 0}. Thus, Z(f) is a zero set of X. Therefore, it is clear that if A is a zero 

set in X then it can be expressed as A = Z(f), where f is continuous function. 

 

DEFINITION 2.5: A subset A of a space X is said to be semi-zero set
[11]

 of X if there exists 

a semicontinuous function f :X  R such that A = {x X | f(x) = 0} 

 

DEFINITION 2.6: A subset A of a space X is said to be co-semizero set
[11]

 of X if its 

complement is a semi-zero set. 

 

REMARK 2.7: If f: XR is semicontinuous function may be denoted by SZ(f). Thus, we 

write SZ(f) = {x X | f(x) = 0}. Thus, SZ(f) is a semi-zero set of X. Therefore, it is clear that 

if A is a semi-zero set in X then it can be expressed as A = SZ(f), where f is semicontinuous 

function. 

 

DEFINITION 2.8: A subset A of a space X is said to be pre-zero set[17] of X if there exists 

a precontinuous function f :X  R such that A = { x X | f(x) = 0}. 

 

DEFINITION 2.9: A subset A of a space X is said to be co-prezero set [17] of X if its 

complement is a pre-zero set. 
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REMARK 2.10: If f: XR is precontinuous function may be denoted by PZ(f). Thus, we 

write PZ(f) = {x X | f(x) = 0}. Thus, PZ(f) is a pre-zero set of X. Therefore, it is clear that if 

A is a pre-zero set in X then it can be expressed as A = PZ(f), where f is precontinuous 

function. 

 

RESULT 2.14
[15]

: If A is preopen set in X and B is an -open set in X, then AB is an -

open set in the subspace (A,|A). 

 

RESULT 2.15
[20]

: If A is semiopen set and B is an -open set in X, then AB is an -open 

set in the subspace (A,|A). 

 

1. -ZERO SETS 

We define the following. 

 

DEFINITION 3.1: A subset A of a space X is said to be -zero set of X, if there exists a -

continuous function f: X  R such that A = { x  X | f(x) = 0}. 

 

A subset A of a space X is said to be co--zero set of X if its complement is -zero set. 

 

NOTE 3.2: Every zero set in X is a -zero set in X. 

 

REMARK 3.3: Let X be a space. If f: X  R is a -continuous function then the set {x  X 

| f(x) = 0} is a -zero set. If g: X  R is also a -continuous function then {x  X | g(x) = 0} 

is also a -zero set of X. 

 

REMARK 3.4: If f: XR is -continuous function may be denoted by Z(f). Thus, we 

write Z(f) = {x X | f(x) = 0 }. Thus, Z(f) is a -zero set of X. Therefore, it is clear that if 

A is a -zero set in X then it can be expressed as A = Z(f), where f is -continuous 

function. 

 

In view of Remark- 2.4,2.7,2.10 and 3.4, we have : zero set -zero setsemi-zero set & 

Zero set -zero set  pre-zero set, since continuity -continuity semi-continuity & 

continuity  -continuity pre-continuity. 
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LEMMA 3.5: If X is a - space then a function f: X Y is -continuous then the inverse 

image of each member of a basis for Y is -open set in X. 

 

LEMMA 3.6: Let X be a - space. A function f: X  R is precontinuous iff for each bR 

both the sets f
-1

(b, ) and f
-1

 (- , b) are -open sets.  

 

LEMMA 3.7: Let X be an - space then the following are equivalent: 

(i) F: X R is -continuous. 

(ii) For each b  R, f
-1

(-, b) and (-f)
-1

 (-,-b) are -open sets in X. 

(iii) For each b  R, f
-1

(b,) and (-f)
-1

(-b, ) are -open sets in X. 

 

PROOF: Since (b, ) and (-, b) are subbasic open sets for the usual topology on R, thus the 

proof follows from Lemma – 3.6 above. 

 

We need the following. 

 

LEMMA 3.8: Let X be an - space Let f, g: X R are -continuous then, 

(i) |f |

 is -continuous for each   0. 

(ii) (af + bg) is -continuous for each pair of reals a and b. 

(iii) f. g is -continuous. 

(iv) 1/ f is -continuous whenever f  0 on X. 

 

These results can be proved by using the proofs of Lemmas: 2.5, 2.6 and 2.7. See [5, p.84]. 

 

LEMMA 3.9: If X is an - space and if { fi : X  R 
k

i 1}   is a finite family of -continuous 

functions, then the functions M, m: X R defined by M(x) = Max 1)}({ i
k

i xf  and m(x) = 

Min 
k

ii xf 1)}({   are also -continuous. 

 

Proof is straight forward and hence omitted. 

 

LEMMA 3.10: In an -space X, the following statements hold for real valued functions: 

(i) If A is a -zero set in X then there exists a -continuous function g : X R such that 

g(x)  0 for each x  X and A = Z(g). 
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(ii) If A is a -zero set in X then there is a -continuous function h : X [0,1] such A = 

Z(h). 

(iii) Finite union of -zero sets in X is a -zero set in X. 

(iv) Finite intersection of -zero sets in a -zero set in X. 

(v) If a  R and f :X R is a -continuous function, then the sets A={xX | f(x)  a} and B 

= { x  X | f(x )  a} are -zero sets in X. 

(vi) If a  R and f :X R is a -continuous function then the sets  A = {x  X | f(x ) < a} 

and B = x  X | f(x) > a} are co--zero sets in X. 

 

These results can be proved by using Lemma- 2.8 and 2.9. See [19, p. 18]. Next, we give the 

following. 

 

THEOREM 3.11: If A and B are disjoint -zero sets of an - space X, there exist disjoint 

co--zero sets U and V such that A  U and B  V. We, prove the following. 

 

THEOREM 3.12: In an -space X every -zero ( resp. co--zero) set is -closed ( resp. -

open) set. 

 

PROOF: If A is -zero set in X then by Lemma -3.10, we have A = Z(g), where g : X  R 

is -continuous and g(x)  0 for all x  X. Then, g(x) = 0 for all x  A. Hence, g 
-1

({0}) = A. 

Since {0} is closed in R and g is -continuous, it follows that A is -closed set in X. The 

second part is proved similarly. 

 

2. -COMPLETE REGULARITY AND -ZERO SETS 

We, need the following. 

 

DEFINITION 4.1 [16]: Let A be a subset of a space X. Then a subset V of a space X is said 

to be a -neighbourhood of A if there exist a -open set U of X such that A  U  V. 

 

If A = {x} for some x  X then V in the above definition is the -neighbourhood of the point 

x. 

 

DEFINITION 4.2: A space X is said to be -completely regular if for each closed set F and 

each point x  (X \ F), there exists a -continuous function f : X [0,1] such that f(x) = 0 

and f(y) = 1 for each y F. 
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Clearly, every completely regular space is -completely regular, every -completely regular 

space is s-completely regular space as well as p-completely regular space and every -

completely regular space is -regular space. 

 

Next, we prove the following. 

 

THEOREM 4.3: Every preopen subspace of an -completely regular space is -completely 

regular. 

 

PROOF : Let X be an -completely regular space and Y be an preopen subspace of X.Let F 

be a closed set in Y and xY such that xF.Hence, x ClX(F).Since X is -completely 

regular, there exists a -continuous function f:X[0,1] such that f(x) = 0 and f(y) = 1 for 

each y ClX(F). Since the restriction of a -continuous function to a preopen subspace is -

continuous in view of Result 2.14 and by Th.1.3 in [15], it follows that f/Y : Y  [0,1] is -

continuous such that (f/Y)(x) = 0 and (f/Y)(y) = 1 for each yF. Hence Y is -completely 

regular. 

 

On similar lines of Th.4.2 above and Result-2.15 [20], one can prove the following. 

 

THEOREM 4.4: Every semiopen subspace of an -completely regular space is -

completely regular. 

 

THEOREM 4.5: Every neighbourhood of a point in an -space -completely regular space 

X contains a -zero set -neighbourhood of the point. 

 

PROOF: Let xo be a point of an -space -completely regular space X and N be a 

neighbourhood of xo. Then there exists a -continuous function f : X[0,1] such that f(xo) = 

0 and f(x) = 1 for each x X\N. Then, V = { x  X | f(x)  ½}, then V is a -zero set -

neighbourhood of xo such that V  N, as xo  { x  X | f(x) < ½} is -open by above 

Lemma- 3.10 above. 

 

Now, we need the following. 

 

DEFINITION 4.6 [1]: A family  of subsets of a space X is a net for X if each open set is 

the union of a family of elements of . 
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Now, we give the following. 

 

THEOREM 4.7: For an -space X, the following statement are equivalent 

1. X is -completely regular space. 

2. Every closed set A of X is the intersection of -zero sets which are - neighbourhoods of 

A. 

3. The family of all co--zero sets of X is a net for the space X. 

 

PROOF. (i)(ii) : Let A be a closed set in X and x A. Then from (i), there is a -

continuous function fx : X [0,1] such that fx(x) = 0 and fx(A) = {1}. Let G = {y  X | fx (y) 

 1/3} and Hx = {y X | fx(y) < 1/3}. Then, A  Hx  Gx, where Hx is -open and Gx is -

zero set which is -neighbourhood of A. Further, A = xAx G . 

 

(ii) (iii): Let G be an open set of X. Then, X \ G is closed set in X. Let X \ G = 

}|{ B , where B is -zero set -neighbourhood of X \ G, for each   . Hence, G = 

{X\B |  }, where X \ B is a co--zero for each   . Hence, (iii) holds. 

 

(iii)  (i) : Let A be a closed set and xo  X \ A. Then, from (iii), as X \ A is open there is a 

co--zero set U such that xo  U  X \ A. Let U = X \ Z(g), for some -continuous function 

g : X [0,1]. As xo  Z(g), | g(x) | = r > 0. If we define,  f : X  [0,1] by f(x) = Max{ 0, 1-r 

-1
|g(x)|} for some x X, then f is -continuous by Lemma -3.9 and 3.10 above and f(xo) = 0 

and f(x) = 1 for x  A. Hence, X is -completely regular space. 

 

3. ALMOST -COMPLETE REGULARITY AND -ZERO SETS 

In this section, we characterize the almost p-completely regular spaces using the concepts of 

pre-zero sets and co-prezero sets in the following. 

 

We define the following. 

 

DEFINITION 5.1: A space X is said to be almost -completely regular if for each regular 

closed set F and each point x  (X \ F), there exists a -continuous function f : X[0,1] such 

that f(x) = 0 and f(y) = 1 for each yF. 

 



Govindappa.                                  World Journal of Engineering Research and Technology 

 

 

 

www.wjert.org                         ISO 9001 : 2015 Certified Journal       

 

124 

Obviously every almost completely regular space is almost -completely regular and every 

-completely regular space is almost -completely regular. 

 

We, prove the following. 

 

THEOREM 5.2: A space X is almost -completely regular iff for each -closed set F and a 

point x  (X \ F), there is a -continuous function f : X [0,1] such that f(x) = 0 and 

f(F)={1}. 

 

PROOF: Let X be almost -completely regular space and let A be a -closed set not 

containing a point x.Then there exists an open set G containing x such that Int Cl(G)A = 

.Now, (X-Int Cl(G)) is a regular closed set not containing x. Since X is almost -

completely regular, there exists a -continuous function f : X [0,1] such that f(x) = 0 and 

f(X-Int Cl(G)) = {1}.Since A  (X-Int Cl(G)), it follows that f(A) = {1}. 

 

Converse follows immediately since every regular closed set is -closed. 

 

THEOREM 5.3: For an - space X the following are equivalent: 

(i) X is almost -completely regular space. 

(ii) Every -closed subset A of X is expressible as the intersection of some -zero sets which 

are -neighbourhood of A. 

(iii)Every -closed subset A of X is identical with the intersection of all -zero sets which are 

-neighbourhoods of A. 

(iv) Every -open subset of X containing a point contains a co--zero set containing that 

point. 

 

PROOF. (i) (ii) : Let X be an almost -completely regular space. Let A be a -closed set 

and x A. Then there exists a -continuous function fx on X into [0,1] such that fx(x)= 0 and 

fx(A) = {1} by Theorem -2.6. Let Gx = {y X | fx(y)  2/3} for every xA; Gx is -

neighbour-hood of A. Lastly, A = xA Gx : We have A  G x, for each x A, which implies 

that A  xA Gx. Further, we claim that xA Gx  A : Let z  A. This implies that there is a 

-continuous function fz : X  [0,1] such that fz(z) = 0 and fz(A) = {1}. Also, Gz = {yX | 

fz(y) 2/3}.Now, fz(z) = 0 < 2/3. Therefore, z Gz. This implies that z xA Gx. Therefore, 
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z  A  z xA Gx. Therefore, xA Gx  A. Hence, A = xA Gx. Therefore, (i)  (ii) is 

true. 

 

(ii)  (iii): Let us suppose that (ii) holds. Let A =  {G |   }, where G is a -zero set 

which is -neighbourhood of A for each  . Let  be the family of all -zero sets which 

are -neighbourhoods of A. Therefore, {G | }  . Therefore, B B   G  

B B  A. Next, we prove that A  B B: Now, B is a -zero set which is -

neighbourhood of A for each B  which implies that A   B B. Therefore, A =  B B. 

Thus, (iii) holds. 

 

(iii)  (iv): Suppose (iii) holds.Let G be a -open set and x G. Then, X \ G is -closed set 

and x X \ G. This implies that X\G =  B where {B |   } is family of all -zero 

sets which are -neighbourhoods of X\G. Now, x X\G  x Bo for some o  , which 

implies that x  X\Bo. Also, we have X\G = B  G = X \ B =  (X\B). 

Therefore, (X\Bo)    (X\B) = G. Therefore, x X\Bo  G. Since Bo is -zero set, 

X\Bo is a co--zero set. Therefore, (iv) holds. 

 

(iv)  (i): Suppose (iv) holds. Now, to prove that X is almost -completely regular space : 

Let A be a -closed set and xo A. Then X\A is a -open set containing xo. Then by (iv), 

there exists a co--zero set U such that xo  U  X\A. Thus, X\U is a -zero set. Therefore, 

there exists a -continuous function f : X [0,1] such that X\U = Z(f). Hence, X\U = Z(f) 

= { xX | f(x) = 0}. As xo  U, it follows that f(xo)  0. Hence, | f(xo) | = r > 0. Now, we 

define g : X  [0,1] by g(y) = Min{ 1, )}(1 yf
r

, for each y  X. Then g is -continuous 

function. Also, g(xo) = 1 and g(z) = 0, for each z A. Let h = 1/g. As X is an -space, by 

Lemma- 3.8, h: X[0,1] is -continuous such that h(xo) = 0 and h(a) = {1}.Hence, X is 

almost -completely regular. Hence the theorem. 
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