World Journal of Engineering Research and Technology

WJERT

www.wjert.org

Impact Factor Value: 5.924

α-ZERO SETS AND THEIR PROPERTIES IN TOPOLOGY

Govindappa Navalagi*

Department of Mathematics, KIT Tiptur-572202, Karnataka, India.

Article Received on 22/09/2020

Article Revised on 12/10/2020

Article Accepted on 02/11/2020

*Corresponding Author Govindappa Navalagi Department of Mathematics, KIT Tiptur-572202, Karnataka, India.

ABSTRACT

In 1990, Malghan et al. have defined and studied the concepts of almost p-regular, p-completely regular and almost p-completely regular spaces. In 1997 & 2004, Malghan et al. have defined and studied the concepts of almost s-completely regular spaces and s-completely regular spaces. In 2010, Navalagi introduced the concepts

of pre-zero sets and co-pre-zero sets to characterize the concepts of p-completely regular spaces and almost p-completely regular spaces. In this paper, we offer some new concepts of α -zero sets, co- α -zero sets, α -completely regular spaces and almost α -completely regular spaces. We also characterize their basic properties via α -zero sets.

INTRODUCTION

In the literature zero sets and co-zero sets due to Gilman and Jerison.^[9] were used to characterize the concepts like completely regular spaces and almost completely regular spaces by Singal, Arya and Mathur in topology (See 21 & 22). In,^[11] and,^[12] Malghan et al have defined and studied the concepts of semi-zero sets and co-semi-zero sets in topology to characterize the properties of s-completely regular spaces and almost s-completely regular spaces using semicontinuous functions due to N.Levine,^[10] In,^[17] Navalagi has defined and studied the concepts pre-zero sets and co-pre zero sets in topology by using precontinuous functions due to Mashhour et al,^[14] to characterize the properties of p-completely regular spaces and almost p-completely regular spaces due to Malghan et al,^[13] In this paper, present author define and study the α -zero sets and co- α -zero sets using α -continuous functions due to Mashhour et al,^[15] to characterize the properties of newly introduced spaces, α -completely regular spaces and almost α -completely regular spaces.

www.wjert.org

Preliminaries

Throughout this paper, we let (X, τ) and (Y,σ) be topological spaces (or simply X and Y be spaces) on which no separation axioms are assumed unless explicitly stated.Let A be a subset of a space X. Let Cl(A) and Int(A) denote the closure and the interior of subset A.

We need the following definition and results in the sequel of the paper.

DEFINITION 2.1: A subset A of a space X is said to be:

- (i) Preopen^[14] if $A \subset Int Cl(A)$.
- (ii) Semiopen^[10] if $A \subset Cl$ Int(A).
- (iii)Regular open^[23] if A = Int Cl(A).
- (iv) α -open^[18] if A \subset Int Cl Int(A).

(v) δ -open set^[24] if for each $x \in A$, there exists a regular open set G such that $x \in G \subset A$.

The complement of a preopen (resp. semiopen, regular open, α -open, δ -open) set of a space X is called preclosed,^[6] (resp. semiclosed,^[2] regular closed,^[23] α -closed,^[15] δ -closed,^[24]) set. The family of all preopen (resp. semiopen, regular open, α -open and δ -open) sets of X is denoted by PO(X) (resp. SO(X), RO(X), α O(X) and δ O(X)) and that of preclosed (resp. semiclosed, regular closed, α -closed, β -closed and δ -closed) sets of X is denoted by PF(X) (resp. SF(X), RF(X), α F(X) and δ F(X))

DEFINITION 2.2: A function $f X \rightarrow Y$ is called

- 1. Precontinuous^[14] if the inverse image of each open set U of Y is preopen set in X.
- 2. Semicontinuous^[10] if the inverse image of each open set U of Y is semiopen set in X.
- 3. α -Continuous^[15] if the inverse image of each open set U of Y is α -open set in X.

DEFINITION 2.3: A space X is said to be

- (i) P-regular^[6] if for each closed set F and each point x not in F, there exist disjoint preopen sets U and V such that $x \in U$ and $F \subset V$.
- (ii) P-completely regular^[13] (resp. s-completely regular^[11]) if for each closed set F and each point x ∈ (X \ F), there exists a precontinuous (resp.a semicontinuous) function f : X→
 [0,1] such that f(x) = 0 and f(y) = 1 for each y∈ F.

- (iii) almost p-completely regular^[13] (resp. almost s-completely regular^[12]) if for each regular closed set F and each point $x \in (X \setminus F)$, there exists a precontinuous(resp. a semicontinuous) function $f: X \rightarrow [0,1]$ such that f(x) = 0 and f(y) = 1 for each $y \in F$.
- (iv) Submaximal^[3] if every dense subset of it is open (i.e. if $PO(X) = \tau[8]$).
- (v) An extremally disconnected (E.D.)^[25] if closure of each open set is open in it (i.e. if $A \in \tau$ for each $A \in RF(X)$.
- (vi) α -space^[7] if every α -open set of X is open in X(i.e. $\tau = \alpha O(X)$).
- (vii) α -regular^[4] if for every closed set F and a point $x \notin F$, there exist disjoint α -open sets A and B such that $x \in A$ and $F \subset B$.

It is well-known that a subset A of a space X is called a zero set^[9] if there exists a continuous functions f: $X \rightarrow \mathbf{R}$ such that $A = \{x \in X \mid f(x) = 0\}$. The complement of a zero set of a space X is called a co-zero set of X.

REMARK 2.4: If f: X \rightarrow **R** is continuous function may be denoted by Z(f). Thus, we write $Z(f) = \{x \in X \mid f(x) = 0\}$. Thus, Z(f) is a zero set of X. Therefore, it is clear that if A is a zero set in X then it can be expressed as A = Z(f), where f is continuous function.

DEFINITION 2.5: A subset A of a space X is said to be semi-zero set^[11] of X if there exists a semicontinuous function $f : X \to \mathbf{R}$ such that $A = \{x \in X \mid f(x) = 0\}$

DEFINITION 2.6: A subset A of a space X is said to be co-semizero set^[11] of X if its complement is a semi-zero set.

REMARK 2.7: If f: X \rightarrow **R** is semicontinuous function may be denoted by SZ(f). Thus, we write SZ(f) = {x \in X | f(x) = 0}. Thus, SZ(f) is a semi-zero set of X. Therefore, it is clear that if A is a semi-zero set in X then it can be expressed as A = SZ(f), where f is semicontinuous function.

DEFINITION 2.8: A subset A of a space X is said to be pre-zero set[17] of X if there exists a precontinuous function $f: X \rightarrow \mathbf{R}$ such that $A = \{ x \in X | f(x) = 0 \}$.

DEFINITION 2.9: A subset A of a space X is said to be co-prezero set [17] of X if its complement is a pre-zero set.

www.wjert.org

REMARK 2.10: If f: $X \rightarrow \mathbf{R}$ is precontinuous function may be denoted by PZ(f). Thus, we write PZ(f) = { $x \in X | f(x) = 0$ }. Thus, PZ(f) is a pre-zero set of X. Therefore, it is clear that if A is a pre-zero set in X then it can be expressed as A = PZ(f), where f is precontinuous function.

RESULT 2.14^[15]: If A is preopen set in X and B is an α -open set in X, then A \cap B is an α -open set in the subspace (A, $\tau_{|A}$).

RESULT 2.15^[20]: If A is semiopen set and B is an α -open set in X, then A \cap B is an α -open set in the subspace (A, $\tau_{|A}$).

1. α-ZERO SETS

We define the following.

DEFINITION 3.1: A subset A of a space X is said to be α -zero set of X, if there exists a α continuous function f: X \rightarrow **R** such that A = { x \in X | f(x) = 0}.

A subset A of a space X is said to be $co-\alpha$ -zero set of X if its complement is α -zero set.

NOTE 3.2: Every zero set in X is a α -zero set in X.

REMARK 3.3: Let X be a space. If f: $X \to \mathbf{R}$ is a α -continuous function then the set $\{x \in X | f(x) = 0\}$ is a α -zero set. If g: $X \to \mathbf{R}$ is also a α -continuous function then $\{x \in X | g(x) = 0\}$ is also a α -zero set of X.

REMARK 3.4: If f: X \rightarrow **R** is α -continuous function may be denoted by $\alpha Z(f)$. Thus, we write $\alpha Z(f) = \{x \in X \mid f(x) = 0\}$. Thus, $\alpha Z(f)$ is a α -zero set of X. Therefore, it is clear that if A is a α -zero set in X then it can be expressed as A = $\alpha Z(f)$, where f is α -continuous function.

In view of Remark- 2.4,2.7,2.10 and 3.4, we have : zero set $\rightarrow \alpha$ -zero set \rightarrow semi-zero set & Zero set $\rightarrow \alpha$ -zero set \rightarrow pre-zero set, since continuity $\rightarrow \alpha$ -continuity \rightarrow semi-continuity & continuity $\rightarrow \alpha$ -continuity \rightarrow pre-continuity. **LEMMA 3.5:** If X is a α - space then a function f: X \rightarrow Y is α -continuous then the inverse image of each member of a basis for Y is α -open set in X.

LEMMA 3.6: Let X be a α - space. A function f: X \rightarrow **R** is precontinuous iff for each b \in **R** both the sets f⁻¹(b, ∞) and f⁻¹(- ∞ , b) are α -open sets.

LEMMA 3.7: Let X be an α - space then the following are equivalent:

- (i) F: $X \rightarrow \mathbf{R}$ is α -continuous.
- (ii) For each $b \in \mathbf{R}$, $f^{-1}(-\infty, b)$ and $(-f)^{-1}(-\infty, -b)$ are α -open sets in X.

(iii) For each $b \in \mathbf{R}$, $f^{-1}(b,\infty)$ and $(-f)^{-1}(-b,\infty)$ are α -open sets in X.

PROOF: Since (b, ∞) and $(-\infty, b)$ are subbasic open sets for the usual topology on R, thus the proof follows from Lemma – 3.6 above.

We need the following.

LEMMA 3.8: Let X be an α - space Let f, g: X \rightarrow **R** are α -continuous then,

- (i) $|f|^{\alpha}$ is α -continuous for each $\alpha \ge 0$.
- (ii) (af + bg) is α -continuous for each pair of reals a and b.
- (iii) f. g is α -continuous.
- (iv) 1/f is α -continuous whenever $f \neq 0$ on X.

These results can be proved by using the proofs of Lemmas: 2.5, 2.6 and 2.7. See [5, p.84].

LEMMA 3.9: If X is an α - space and if { $f_i : X \to \mathbf{R}$ }_{i=1}^k is a finite family of α -continuous functions, then the functions M, m: X $\to \mathbf{R}$ defined by M(x) = Max { $f_i(x)$ }^k_{i=1} and m(x) = Min { $f_i(x)$ }_{i=1}^k are also α -continuous.

Proof is straight forward and hence omitted.

LEMMA 3.10: In an α -space X, the following statements hold for real valued functions:

(i) If A is a α -zero set in X then there exists a α -continuous function $g : X \rightarrow \mathbf{R}$ such that $g(x) \ge 0$ for each $x \in X$ and $A = \alpha Z(g)$.

- (ii) If A is a α -zero set in X then there is a α -continuous function $h : X \rightarrow [0,1]$ such A = $\alpha Z(h)$.
- (iii) Finite union of α -zero sets in X is a α -zero set in X.
- (iv) Finite intersection of α -zero sets in a α -zero set in X.
- (v) If $a \in R$ and $f: X \to \mathbf{R}$ is a α -continuous function, then the sets $A = \{x \in X \mid f(x) \ge a\}$ and B = $\{x \in X \mid f(x) \le a\}$ are α -zero sets in X.
- (vi) If $a \in R$ and $f : X \to \mathbf{R}$ is a α -continuous function then the sets $A = \{x \in X \mid f(x) < a\}$ and $B = x \in X \mid f(x) > a\}$ are co- α -zero sets in X.

These results can be proved by using Lemma- 2.8 and 2.9. See [19, p. 18]. Next, we give the following.

THEOREM 3.11: If A and B are disjoint α -zero sets of an α - space X, there exist disjoint co- α -zero sets U and V such that A \subset U and B \subset V. We, prove the following.

THEOREM 3.12: In an α -space X every α -zero (resp. co- α -zero) set is α -closed (resp. α -open) set.

PROOF: If A is α -zero set in X then by Lemma -3.10, we have $A = \alpha Z(g)$, where $g : X \to \mathbf{R}$ is α -continuous and $g(x) \ge 0$ for all $x \in X$. Then, g(x) = 0 for all $x \in A$. Hence, $g^{-1}(\{0\}) = A$. Since $\{0\}$ is closed in \mathbf{R} and g is α -continuous, it follows that A is α -closed set in X. The second part is proved similarly.

2. a-COMPLETE REGULARITY AND a-ZERO SETS

We, need the following.

DEFINITION 4.1 [16]: Let A be a subset of a space X. Then a subset V of a space X is said to be a α -neighbourhood of A if there exist a α -open set U of X such that $A \subset U \subset V$.

If $A = \{x\}$ for some $x \in X$ then V in the above definition is the α -neighbourhood of the point x.

DEFINITION 4.2: A space X is said to be α -completely regular if for each closed set F and each point $x \in (X \setminus F)$, there exists a α -continuous function $f : X \rightarrow [0,1]$ such that f(x) = 0 and f(y) = 1 for each $y \in F$.

Clearly, every completely regular space is α -completely regular, every α -completely regular space is s-completely regular space as well as p-completely regular space and every α -completely regular space is α -regular space.

Next, we prove the following.

THEOREM 4.3: Every preopen subspace of an α -completely regular space is α -completely regular.

PROOF: Let X be an α -completely regular space and Y be an preopen subspace of X.Let F be a closed set in Y and $x \in Y$ such that $x \notin F$.Hence, $x \notin Cl_X(F)$.Since X is α -completely regular, there exists a α -continuous function $f:X \rightarrow [0,1]$ such that f(x) = 0 and f(y) = 1 for each $y \in Cl_X(F)$. Since the restriction of a α -continuous function to a preopen subspace is α -continuous in view of Result 2.14 and by Th.1.3 in [15], it follows that $f/Y : Y \rightarrow [0,1]$ is α -continuous such that (f/Y)(x) = 0 and (f/Y)(y) = 1 for each $y \in F$. Hence Y is α -completely regular.

On similar lines of Th.4.2 above and Result-2.15 [20], one can prove the following.

THEOREM 4.4: Every semiopen subspace of an α -completely regular space is α -completely regular.

THEOREM 4.5: Every neighbourhood of a point in an α -space α -completely regular space X contains a α -zero set α -neighbourhood of the point.

PROOF: Let x_o be a point of an α -space α -completely regular space X and N be a neighbourhood of x_o . Then there exists a α -continuous function $f: X \rightarrow [0,1]$ such that $f(x_o) = 0$ and f(x) = 1 for each $x \in X \setminus N$. Then, $V = \{ x \in X \mid f(x) \ge \frac{1}{2} \}$, then V is a α -zero set α -neighbourhood of x_o such that $V \subset N$, as $x_o \in \{ x \in X \mid f(x) < \frac{1}{2} \}$ is α -open by above Lemma- 3.10 above.

Now, we need the following.

DEFINITION 4.6 [1]: A family σ of subsets of a space X is a net for X if each open set is the union of a family of elements of σ .

www.wjert.org

Now, we give the following.

THEOREM 4.7: For an α -space X, the following statement are equivalent

- 1. X is α -completely regular space.
- Every closed set A of X is the intersection of α-zero sets which are α- neighbourhoods of A.
- 3. The family of all co- α -zero sets of X is a net for the space X.

PROOF. (i) \Rightarrow (ii) : Let A be a closed set in X and $x \notin A$. Then from (i), there is a α continuous function $f_x : X \rightarrow [0,1]$ such that $f_x(x) = 0$ and $f_x(A) = \{1\}$. Let $G = \{y \in X \mid f_x(y) \ge 1/3\}$ and $H_x = \{y \in X \mid f_x(y) < 1/3\}$. Then, $A \subset H_x \subset G_x$, where H_x is α -open and G_x is α zero set which is α -neighbourhood of A. Further, $A = \bigcap_{x \notin A} G_x$.

(ii) \Rightarrow (iii): Let G be an open set of X. Then, X \ G is closed set in X. Let X \ G = $\bigcap \{B_{\lambda} \mid \lambda \in \wedge\}$, where B_{λ} is α -zero set α -neighbourhood of X \ G, for each $\lambda \in \wedge$. Hence, G = $\cup \{X \setminus B_{\lambda} \mid \lambda \in \wedge\}$, where X \ B_{\lambda} is a co- α -zero for each $\lambda \in \wedge$. Hence, (iii) holds.

(iii) \Rightarrow (i) : Let A be a closed set and $x_o \in X \setminus A$. Then, from (iii), as $X \setminus A$ is open there is a co- α -zero set U such that $x_o \in U \subset X \setminus A$. Let $U = X \setminus \alpha Z(g)$, for some α -continuous function $g : X \rightarrow [0,1]$. As $x_o \notin \alpha Z(g)$, |g(x)| = r > 0. If we define, $f : X \rightarrow [0,1]$ by $f(x) = Max\{0, 1-r^{-1}|g(x)|\}$ for some $x \in X$, then f is α -continuous by Lemma -3.9 and 3.10 above and $f(x_o) = 0$ and f(x) = 1 for $x \in A$. Hence, X is α -completely regular space.

3. ALMOST *a*-COMPLETE REGULARITY AND *a*-ZERO SETS

In this section, we characterize the almost p-completely regular spaces using the concepts of pre-zero sets and co-prezero sets in the following.

We define the following.

DEFINITION 5.1: A space X is said to be almost α -completely regular if for each regular closed set F and each point $x \in (X \setminus F)$, there exists a α -continuous function $f : X \rightarrow [0,1]$ such that f(x) = 0 and f(y) = 1 for each $y \in F$.

Obviously every almost completely regular space is almost α -completely regular and every α -completely regular space is almost α -completely regular.

We, prove the following.

THEOREM 5.2: A space X is almost α -completely regular iff for each δ -closed set F and a point $x \in (X \setminus F)$, there is a α -continuous function $f : X \rightarrow [0,1]$ such that f(x) = 0 and $f(F)=\{1\}$.

PROOF: Let X be almost α -completely regular space and let A be a δ -closed set not containing a point x. Then there exists an open set G containing x such that Int Cl(G) $\cap A = \emptyset$.Now, (X-Int Cl(G)) is a regular closed set not containing x. Since X is almost α -completely regular, there exists a α -continuous function f : X \rightarrow [0,1] such that f(x) = 0 and f(X-Int Cl(G)) = {1}.Since A \subset (X-Int Cl(G)), it follows that f(A) = {1}.

Converse follows immediately since every regular closed set is δ -closed.

THEOREM 5.3: For an α - space X the following are equivalent:

- (i) X is almost α -completely regular space.
- (ii) Every δ -closed subset A of X is expressible as the intersection of some α -zero sets which are α -neighbourhood of A.
- (iii)Every δ -closed subset A of X is identical with the intersection of all α -zero sets which are α -neighbourhoods of A.
- (iv)Every δ -open subset of X containing a point contains a co- α -zero set containing that point.

PROOF. (i) \Rightarrow (ii) : Let X be an almost α -completely regular space. Let A be a δ -closed set and $x \notin A$. Then there exists a α -continuous function f_x on X into [0,1] such that $f_x(x)=0$ and $f_x(A) = \{1\}$ by Theorem -2.6. Let $G_x = \{y \in X \mid f_x(y) \ge 2/3\}$ for every $x \notin A$; G_x is α neighbour-hood of A. Lastly, $A = \bigcap_{x \notin A} G_x$: We have $A \subset G_x$, for each $x \notin A$, which implies that $A \subset \bigcap_{x \notin A} G_x$. Further, we claim that $\bigcap_{x \notin A} G_x \subset A$: Let $z \notin A$. This implies that there is a α -continuous function $f_z : X \rightarrow [0,1]$ such that $f_z(z) = 0$ and $f_z(A) = \{1\}$. Also, $G_z = \{y \in X \mid f_z(y) \ge 2/3\}$. Now, $f_z(z) = 0 < 2/3$. Therefore, $z \notin G_z$. This implies that $z \notin \bigcap_{x \notin A} G_x$. Therefore, $z \notin A \Rightarrow z \notin \bigcap_{x \notin A} G_x$. Therefore, $\bigcap_{x \notin A} G_x \subset A$. Hence, $A = \bigcap_{x \notin A} G_x$. Therefore, (i) \Rightarrow (ii) is true.

(ii) \Rightarrow (iii): Let us suppose that (ii) holds. Let $A = \bigcap \{G_{\lambda} \mid \lambda \in \wedge\}$, where G_{λ} is a α -zero set which is α -neighbourhood of A for each $\lambda \in \wedge$. Let ρ be the family of all α -zero sets which are α -neighbourhoods of A. Therefore, $\{G_{\lambda} \mid \lambda \in \wedge\} \subset \rho$. Therefore, $\bigcap_{B \in \rho} B \subset \bigcap_{\lambda \in \wedge} G_{\lambda} \Rightarrow \bigcap_{B \in \rho} B \subset A$. Next, we prove that $A \subset \bigcap_{B \in \rho} B$: Now, B is a α -zero set which is α -neighbourhood of A for each $B \in \rho$ which implies that $A \subset \bigcap_{B \in \rho} B$. Therefore, $A = \bigcap_{B \in \rho} B$. Thus, (iii) holds.

(iii) \Rightarrow (iv): Suppose (iii) holds.Let G be a δ -open set and $x \in G$. Then, $X \setminus G$ is δ -closed set and $x \notin X \setminus G$. This implies that $X \setminus G = \bigcap_{\lambda \in} \land B_{\lambda}$ where $\{B_{\lambda} \mid \lambda \in \land\}$ is family of all α -zero sets which are α -neighbourhoods of $X \setminus G$. Now, $x \notin X \setminus G \Rightarrow x \notin B_{\lambda \circ}$ for some $\lambda_{\circ} \in \land$, which implies that $x \in X \setminus B_{\lambda \circ}$. Also, we have $X \setminus G = \bigcap_{\lambda \in} \land B_{\lambda} \Rightarrow G = X \setminus \bigcap_{\lambda \in} \land B_{\lambda} = \bigcup_{\lambda \in} \land (X \setminus B_{\lambda})$. Therefore, $(X \setminus B_{\lambda \circ}) \subset \bigcap_{\lambda \in} \land (X \setminus B_{\lambda}) = G$. Therefore, $x \in X \setminus B_{\lambda \circ} \subset G$. Since $B_{\lambda \circ}$ is α -zero set, $X \setminus B_{\lambda \circ}$ is a co- α -zero set. Therefore, (iv) holds.

(iv) \Rightarrow (i): Suppose (iv) holds. Now, to prove that X is almost α -completely regular space : Let A be a δ -closed set and $x_0 \notin A$. Then X\A is a δ -open set containing x_0 . Then by (iv), there exists a co- α -zero set U such that $x_0 \in U \subset X \setminus A$. Thus, X\U is a α -zero set. Therefore, there exists a α -continuous function $f : X \rightarrow [0,1]$ such that X\U = $\alpha Z(f)$. Hence, X\U = $\alpha Z(f)$ = { $x \in X \mid f(x) = 0$ }. As $x_0 \in U$, it follows that $f(x_0) \neq 0$. Hence, $\mid f(x_0) \mid = r > 0$. Now, we define g : X $\rightarrow [0,1]$ by g(y) = Min{ 1, $\frac{1}{r} \mid f(y)$ }, for each $y \in X$. Then g is α -continuous function. Also, $g(x_0) = 1$ and g(z) = 0, for each $z \in A$. Let h = 1/g. As X is an α -space, by Lemma- 3.8, h: X \rightarrow [0,1] is α -continuous such that $h(x_0) = 0$ and $h(a) = \{1\}$.Hence, X is almost α -completely regular. Hence the theorem.

REFERENCES

- 1. A.V.Arkhangel'ski and V.I.Ponomerov, Fundamentals of General Topology, Hindustan Publishing Company, Delhi, 1988.
- N.Biswas, On characterizations of semicontinuous functions, Atti. Accad. Naz.Lincei. Rend.Cl.Sci.Fis. Mat. Natur., 1970; 48(8): 399-400.
- 3. N.Bourbaki, General Topology, Addison-Wesley, Mass, 1966.

- 4. R.Devi, K.Balachandran and H.Maki, Generalized α-closed maps and α-generalized closed maps, Indian J.Pure Appl.Math., Jan-1998; 29(1): 37-49.
- 5. James Dugundji, General Topology, Allyan & Bacon Company, 1966.
- S.N.El-Deeb, I.A.Hasanein, A.S.Mashhour and T.Noiri, On p-reguar spaces, Bull. Math. R.S.Roumanie, N.S., 1983; 27(75): 311-315.
- Giovanni Lo Faro, On strongly α-irresolute mappings, Indian J.Pure Appl.Math., Feb-1987; 18(1): 146-151.
- M.Ganster, Preopen sets and Resolvable spaces, Kyungpook Math. J., 1987; 27(2): 134-143.
- L Gillman and M.Jerison, Rings of continuous functions, D.Van Nostrand Company. Inc.Princeton, New Jersey, 1960.
- N.Levine, Semiopen sets and semicontinuous mappings in topology, Amer. Math. Monthly, 1963; 70: 36-41.
- S.R.Malghan, S.S.Benchalli and Govindappa Navalagi, s-completely regular spaces, Journal Tripura Math.Soc., 2004; 6: 67-74.
- 12. S.R.Malghan, S.S.Benchalli and Govindappa Navalagi, Almost s-completely regular spaces, Jour. of Indian Math.Soc., 1997; 64(1-4): 85-95.
- 13. S.R.Malghan and G.B.Navalagi, Almost p-regular, p-completely regular and almost p-completely regular spaces, Bull. Math.R.S.Roumanie N.S., 1990; 32(82): 317-326.
- 14. A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 1982; 53: 42-52.
- 15. A.S.Mashhour, I.A.Hasanein and S.N.El-Deeb,On α-continuous and α-open mapping, Acta Math.Hungar., 1983; 41: 213-218.
- Govindappa Navalagi α-Neighbourhoods in topological spaces, Pacific –Asian Journal of Mathematics, 2009; 3(1-2): 177-186.
- Govindappa Navalagi, Pre-zero sets and their properties, International Journal of General Topology, 2010; 3(1-2) 37-43.
- 18. O.Njastad, On some classes of Nearly open set, Pacific J.Math., 1965; 15: 961-970.
- 19. A.R.Pears, Dimension theory of general spaces, Cambridge Univ. Press, 1975.
- I.L.Reilly and M.K.Vamanamurthy, Connectedness anf strong semicontinuity, Casopis Pro Pestovani, Matematematik, roc, 1984; 109: 261-265.
- M.K.Singal and S.P.Arya, Almost normal and Almost completely regular spaces, Glasnik Mat., 1970; 5(25): 141-152.

- 22. M.K. Singal and Asha Mathur, A note on almost completely regular spaces, Glasnik Mat., 1971; 6(26): 345-350.
- 23. M.H.Stone Applications of theory of Boolean rings to general topological spaces, Trans. Amer.Math. Soc., 1937; 41: 375-381.
- 24. N.V.Velicko, H-closed spaces, Mat.Sb., 1966; 70(112): 98-121.
- 25. S.Willard, General Topology, Addison-Wesley, Mass, 1970.