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ABSTRACT 

This paper considers new families of orthogonal binary matrices which 

are similar to orthogonal binary Walsh-Hadamard matrices. It is shown 

that beyond Walsh-Hadamard matrices, additional orthogonal binary 

square matrices of size N = 2
n
 (n = 3, 4, 5, …) exist. The total amount 

of these binary orthogonal matrices increases quickly with an 

increasing value of N. This paper presents the matrix formation rules  

for these families. The results of this paper apply to CDMA communication and telemetric 

systems. 

 

KEYWORDS: Binary orthogonal matrices, binary signals, binary sequences, CDMA, 

Walsh-Hadamard matrices. 

 

INTRODUCTION 

Orthogonal binary functions were first introduced by J. L. Walsh in 1923.
[1]

 These orthogonal 

binary functions are widely used in discrete signals theory.
[2],[3]

 In practice, binary signals 

utilizing Walsh functions are used in CDMA wireless communication systems.
[4],[9]

 

 

As is well known, orthogonal binary Walsh functions exist only for N = 2
n
, where n = 1, 2, 3, 

… . Walsh functions can be represented as Walsh-Hadamard (WH) matrices HN, 

                                                           HN = , (1) 

wjert, 2021, Vol. 7, Issue 5, 301-322. 

World Journal of Engineering Research and Technology 

WJERT 

www.wjert.org 

ISSN 2454-695X Review Article 

Impact Factor Value: 5.924 

*Corresponding Author 

A. V. Titov 

Retired, Mays Landing, 

USA, Formerly Associate 

Professor, Electrotechnical 

University LETI in St. 

Petersburg, Russia.  



www.wjert.org                         ISO 9001 : 2015 Certified Journal       

Titov et al.                                      World Journal of Engineering Research and Technology 

  

 
 

  
 

 

Where HN=1 =   is the single or elementary matrix:   

N=1  

H1 =  

For N = 2
n
 (n = 1, 2), WH matrices HN (1) have the following form: 

N=2 (n = 1)  

H2 =  = , 

 N = 4 (n = 2)  

    G↓ 

                           (2) 
 H4 =  = 

 

 G1 

 G2 

G3. 

 

It is also possible to represent the same WH matrices in another way, namely, 

HN =  H2⊗H2⊗ … H2⊗H1 = (H2⊗)
n⊗H1 = (H2⊗)

n
, 

           (3) 

 

Where matrix H2 is the Hadamard matrix of order 2 (N=2) (2) 

H2 =  = . 

 

The symbol “⊗” is called the symbol of Kronecker multiplication (Kronecker product) and is 

defined in.
[5]

 In equation 3, the notation (H2⊗)
n
 means applying the Kronecker multiplication 

procedure n times.  

 

The matrix HN (3) is formed in a step-by-step (n steps) process of Kronecker multiplications 

of the elementary matrix H1 by the Hadamard order 2 matrix H2 (2). In matrix HN, the 

sequence length corresponds to the row length, and the number of rows corresponds to the 

number of sequences. During this procedure (3), the sequence length and the number of rows 

of matrices HN increase by a factor of two after each Kronecker multiplication by matrix H2. 

Orthogonal binary sequences of WH matrices consist of sequences of plus and minus signs, 

i.e., sequences of +1 and -1, of length N = 2
n
 (n = 1, 2, 3, 4, …). The length of the sequences 

defines the length of the matrix rows. And the total number of binary sequences, i.e., the 

number of rows, is also equal to N = 2
n
. 
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Notice that as the integer N increases, the number of different binary sequences of length N 

grows faster than N. The result means that for any value of N, there are some possibilities to 

create other square N x N matrices with distinguished properties. 

 

This paper will show that for any N = 2
n
 (n = 3, 4, 5, …), additional orthogonal binary 

matrices exist with size N x N and similar properties to WH matrices. The total number of 

binary orthogonal matrices grows at a rate of N = 2
n
 and equals QN = 2 

(N-(n+1))
, where QN is 

the total amount of orthogonal binary square matrices for N = 2
n 

(n = 3, 4, 5, …) including 

WH matrices. These matrices can be called an expanded family of binary orthogonal 

Hadamard matrices because all are related to Hadamard matrices for N = 4. The paper 

subsequently presents the formation rules for these matrices.  

 

The results of this paper apply to CDMA communication and telemetric systems.
[5]

  

 

FORMATION OF BINARY SEQUENCES 

All binary sequences AN,i  of pluses and minuses of length N, where N is positive integers, 

can be represented in matrix form as 

  k↓   k↓  

 

 

 

(4) 

MN,m =    =    

 0 

=  

 0 

 1  1 

 …  … 

 m-1  m-1. 

 

AN,i are the binary sequences (i = 1, 2, 3, …, m), N is the length of the binary sequences 

(number of matrix columns), m is the total number of different binary sequences with length 

N, and k is the ordering number of the matrix MN,m  row (k = 0, 1, 2, ...., m-1). 

 

When constructing a matrix MN,m (4) for any N (N = 2, 3, 4, 5, …), it is possible to use the 

most straightforward rule, namely, 

MN,m = . 
(5) 

 

By this rule, matrix MN,m consists of two parts: an upper part and a lower part. The upper part 

contains all matrix M(N-1),m rows and a plus sign at the end of each row. The lower part 

contains all matrix M(N-1),m rows and a minus sign at the end of each row. The matrix M(N-1),m 

to matrix MN,m transformation procedure increases the length of sequences (length of the 
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rows) by one element, but the total number of sequences (number of rows) doubles. Notably, 

rule (5) provides the ability to obtain all the different binary sequences of length N, 

distinguished by at least one element or the order of element sequences. 

 

For N = 1, we have the simple case: 

MN=1,m  = = H1. (6) 

   

Thus, the N = 1 matrix MN,m (4) consists of one row with one element, namely, sign “+”. 

Matrix MN=1,m is the elementary matrix; i.e., for N = 1, MN=1,m = H1 (1), (2). 

 

The following, beginning with N = 2, are examples of this rule (5).  

For N = 2, per rule (5), we have the following: 

   k↓ 

(7) 

 MN=2,m =  
 0 

 1, 

   

 
 

or 
 k↓ 

 
MN=2,m =  

 0 

  1. 

 

Thus, for N = 2, matrix MN,m (4) consists of two rows (k = 0, k = 1) with two elements in 

each row, and the number of different binary sequences m equals 2. And matrix MN=2,m is the 

orthogonal binary WH matrix; i.e., MN=2,m = H2  (1), (2). 

For N = 3, per (5), we have the following: 

 

 

 

  

k↓ 

(8) 

 MN=3,m =  =  

 

0 

1 

2 

3. 
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For N = 4, per (5), we have the following:    

   k↓ 

 

                                  (9) 

 

 

 

MN=4,m =  =   

 

0 

1 

2 

3 

4 

5 

6 

7. 

   

Thus, for N = 4, there are eight different binary sequences with length N = 4. And the 

sequences with k = 0, k = 5, k = 6, and k = 3 (9) are the sequences of the WH orthogonal 

matrix for N = 4 (1), (2). Using the same rule (5), one can construct matrices MN,m for any 

value of N, where N is a positive integer. 

 

Equations (6), (7), (8), and (9) illustrate that the number of different binary sequences mN 

grows much faster than N. By analyzing the matrices MN,m construction procedure for N = 2, 

3, and 4 (7) (8) (9), one may observe that rule (5) may be used to form matrices MN,m that 

include all of the possible different binary sequences for the current value of N. At least one 

element distinguishes the different binary sequences or they are distinguished by the order of 

elements inside the sequences. As a function of N, the total value of these different sequences 

is defined as mN = f(N) = 2
N-1

. Notice that the value mN = 2
N-1 

corresponds to the binary 

sequences with the sign “+” as the first element of the sequences. 

 

For binary sequences where the first element is a plus, for any integer N, there usually exist 

“mirror” alternative sequences where all the signs of matrix sequences AN,i are changed to 

the opposite signs, i.e., plus signs replace the minus signs and minus signs replace the plus 

signs. 

 

In this paper, we only use the sequences where the plus sign is the first element. In this 

scenario, the maximum number of different sequences equals mN = f(N) = 2
N-1 

for any N 

where N is a positive integer. 
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As detailed above, it is possible to build matrices MN,m using rule (5) for any value of N (N = 

2, 3, 4, 5, ….). Because the total amount of binary sequences mN = 2
N-1

 increases so fast with 

N (for example, for N= 4, 5, 6, 7, and 8, the values of mN are 8, 16, 32, 64, and 128 

respectively), the matrix construction procedure following rule (5) is time-consuming. And 

after the construction of matrix MN,m, it is necessary to find sequences inside the matrix that 

have unique properties (e.g., to find the orthogonality of the sequences). This procedure is 

quite time-consuming. 

 

This paper considers an alternative approach for constructing binary sequences for N = 2
n
 

(n = 2, 3, 4, 5, …). The alternate approach simplifies the construction procedure of matrix 

MN,m with the automatic separation of all sequences on orthogonal binary matrices with the 

size N x N. This approach is based on matrix circular rotation procedures (Appendix 1).    

 

ORTHOGONAL BINARY MATRICES  

It is possible to simplify the construction procedure of matrices MN,m (5) for N = 2
n
 by using 

Kronecker multiplication (3) by following a circular rotation of the matrix sequences 

(Appendix 1). 

 

Only two sequences exist with the length N = 2 (7) and matrix MN,m is a WH orthogonal 

binary matrix, i.е., MN=2,m = НN=2 (1), (2). 

 

For N = 4 (9), instead of using rule (5), it is possible to perform a Kronecker multiplication of 

matrix MN=2,m by matrix H2 (3) followed by a circular rotation of the matrix sequences. After 

the Kronecker multiplication of matrix MN=2,m by matrix Н2, we obtain:  

    k↓ 

(10) 
 HN=4 = H2 ⊗ MN=2,m =   =  = 

 

0 

1 

2 

3. 

 

 

Matrix HN=4 is a WH matrix for N = 4 (1), (2).  
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Then, using the synchronized circular rotation procedure on the right half of matrix HN=4 (10) 

on step R = 1 (Appendix 1), we obtain one more orthogonal matrix:    

    k↓ 

(11) 
 HN=4

(↑R/R=1)
 =   = 

 

0 

1 

2 

3. 

Notice that matrix MN=4,m (9) consists of the identical eight binary sequences as in matrices 

(10) and (11). 

 

For convenience, matrices (10) and (11) will be enumerated. Matrix HN=4 will be enumerated 

as matrix number one and marked as HN=4
(1)

. Matrix НN=4
(↑R/R=1)

 will be enumerated as matrix 

number two and marked as HN=4
(2)

 for N=4. I.e.,  

  HN=4
(1)

 = HN=4, 

(12) 

  HN=4
(2)

 = НN=4
(↑R/R=1)

. 

Matrix number one HN=4
(1)

 is the Walsh-Hadamard matrix HN for N = 4 (1), (2). Matrix 

number two HN=4
(2)

 is identical to the orthogonal Hadamard back-circulant matrix for N = 

4.
[6]

 Thus, matrices (10) and (11) are different types of Hadamard binary orthogonal matrices 

for N = 4.  

 

Notice that both matrices, HN=4
(1)

 and HN=4
(2)

 (10), (11), and (12), are independent orthogonal 

binary matrices. By definition of independent orthogonal binary matrices, this result means 

that the binary sequences inside each of these binary matrices are orthogonal, but the binary 

sequences belonging to other matrices are not orthogonal. As above, for N=4, only eight (mN 

= 2
N-1

 = 8) different binary sequences exist with different elements or different orders of 

pluses and minuses inside the sequences (9). Except for these eight sequences, no other 

binary sequences exist for N=4. And as shown, all of these eight binary sequences can be 

divided into two independent orthogonal matrices HN=4
(1)

 and HN=4
(2)

 of size N x N (10), (11), 

and (12). The orthogonal matrices HN=4
(1)

 and HN=4
(2)

 consist only of different sequences; i.e., 

these matrices have no identical sequences. 

 

Thus, by using the Kronecker multiplication of matrix H2 by matrix MN=2,m (10) and 

following a synchronized rotation procedure of matrix sequences (11) (Appendix 1), it is 

possible to obtain two independent orthogonal square matrices for N = 4 (10), (11) and (12). 
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In this case, the procedure automatically separates matrix MN=4,m (9) into two orthogonal 

binary square matrices with size N = 4. These are matrix number one HN=4
(1)

, and matrix 

number two HN=4
(2)

. 

 

Orthogonal binary matrices HN=4
(1)

 and HN=4
(2)

 have different properties. Binary signals 

corresponding to unique groups (groups G1, G2, G3) (2) of matrix number one HN=4
(1)

 

sequences, i.e., WH matrix sequences, have zero cross correlation properties that apply to 

periodic signals.
[8]

 Orthogonal binary sequences of matrix two HN=4
(2)

, i.e., the Hadamard 

back-circulant matrix for N = 4, do not have this property. However, the sequences of matrix 

HN=4
(2)

 do have other interesting properties. The first property is that aperiodic binary signals 

corresponding to these sequences are Barker coded signals for N = 4.
[7]

 And second property 

is that autocorrelation functions of periodic signals corresponding to all these sequences are 

perfect.
[4]

 

 

Consider the case when N = 8. There are several different ways to construct binary sequences 

for N = 8, including (5).                    

 

According to the following steps, we will use an approach to progress from N = 4 to N = 8.  

1. In the first step, perform the Kronecker multiplication of matrices HN=4
(1)

 and HN=4
(2)

 

(10), (11), and (12) by matrix H2: 

 

HN=8
(1)

 = H2 ⊗ HN=4
(1)

 =    , 

(13) 
 

 
HN=8

(2)
 = H2 ⊗ HN=4

(2)
 =   . 

 

Matrix HN=8
(1)

 is the WH matrix of size N=8, i.e., HN=8
(1)

 = HN=8, represented in Appendix 2. 

Matrix HN=8
(2)

 is also represented in Appendix 2. 

 

Square binary matrices HN=8
(1)

 and HN=8
(2)

 with size N=8 are orthogonal because binary 

matrices HN=4
(1)

 and HN=4
(2)

 are orthogonal matrices (10), (11), and (12). Also, the binary 

matrices HN=8
(1)

 and HN=8
(2)

 consist of different binary sequences, and no other similar binary 

sequences exist inside these matrices. 
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2. In the second step, use the circular rotation procedure between matrices to rotate the 

second (right) part of the matrices between matrices HN=8
(1)

 and HN=8
(2)

 (Appendix 1). The 

procedure results in two more binary matrices: 

 
HN=8

(1/2)
 = , 

(14) 
 

 
HN=8

(2/1)
 = . 

 

 

These two matrices are represented in Appendix 2. Observe that these matrices are 

orthogonal square matrices with size N = 8 because of the orthogonality of matrices HN=4
(1)

 

and HN=4
(2)

 sequences and because the matrices sequences are binary (Appendix 1). Matrices 

HN=8 
(1/2)

 and HN=8 
(2/1)

 are independent binary orthogonal square matrices, i.e., all of the 

binary sequences inside each matrix are orthogonal, but the sequences in the different 

matrices are not orthogonal. The matrices (14) will be enumerated as the matrix number three 

and matrix number four, respectively: 

 HN=8
(3)

 = HN=8
(1/2)

, 
(15) 

 HN=8
(4)

 = HN=8
(2/1)

. 

 

There is one more noteworthy feature of all four matrices HN=8
 (1)

, HN=8
(2)

, HN=8
(3)

, and HN=8
(4)

 

(13), (14), and (15). All of the binary sequences in these matrices are different in elements or 

by different orders of pluses and minuses (Appendix 2). 

 

3. In the third step, construct new matrices from the four matrices HN=8
(1)

, H N=8
(2)

, HN=8
(3)

 

and, HN=8
(4)

, using the synchronized rotation of matrices sequences (Appendix 1), i. e., 

create the matrices 

 HN=8
(1) (↑R/R)

 =   , 

(16) 

 HN=8
(2) (↑R/R)

 =  , 

 HN=8
(3) (↑R/R)

 =  , 

 and HN=8
(4) (↑R/R)

 =  . 
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The total number of rotations is defined by the number of HN=4 rows and equals four 

(including R = 0). The R = 0, 1, 2, 3, where R = 0 corresponds to matrices without rotation. 

After each rotation, new matrices appear consisting of new binary sequences. All of the new 

matrices are orthogonal because matrices HN=4
(1)

 and HN=4
(2)

 are orthogonal and because all of 

the matrix sequences are binary sequences (Appendix 1). Samples of these matrices for N=8 

are represented in Appendix 2. 

 

The synchronized rotation of all four matrices HN=8
(1) (↑R/R)

, HN=8
(2) (↑R/R)

, HN=8
(3) (↑R/R)

, and 

HN=8
(4) (↑R/R)

, results in a total of 16 binary orthogonal square matrices (including R = 0) with 

size N = 8. Thus, we obtain QN=8 = 16 square orthogonal binary matrices with a sequence 

length equal to N=8. All of these matrices consist of unique binary sequences. Therefore, the 

total number of different binary sequences with length N=8 equals QN x N =16 x 8 = 128. 

This number corresponds to the maximum number of different binary sequences with length 

N = 8, namely, mN=8 = 2
N-1

 = 2
7
 = 128.  

 

Upon completing the procedure, we have a family of QN=8 = 16 binary orthogonal matrices 

for N = 8. 

a) The first two matrices (HN=8
(1)

 and HN=8
(2)

) were constructed by performing the Kronecker 

multiplication of Hadamard matrices H
(1)

N=4 and H
(2)

N=4 by matrix H2 (13).  

b) Matrices three and four (HN=8
(3)

 and HN=8
(4)

) were constructed using the circular rotation 

procedure between matrices HN=8
(1)

 and HN=8
(2)

 (14). 

c) Matrices HN=8
(5)

, HN=8
(6)

,…, HN=8
(16)

 were generated using the synchronized circular 

rotation procedure inside matrices HN=8
(1)

, HN=8
(2)

N=8, HN=8
(3)

N=8, and HN=8
(4)

 (15), (16).  

 

Because we generated all 16 binary orthogonal matrices from two different Hadamard 

matrices for N = 4, i.e., matrices HN=4
(1)

 and HN=4
(2)

, we call these matrices an expanded 

family of Hadamard orthogonal binary matrices for N = 8. This family also includes the 

binary orthogonal matrix Walsh-Hadamard (WH) HN=8 as matrix number one H N=8 
(1)

. 

 

The same procedure can be used to build all of the orthogonal binary matrices for N = 16 

using the same three general steps used to construct the matrices for N = 8 (13), (14), (15), 

and (16). 

1. In the first step, perform Kronecker multiplication to multiply all 16 orthogonal matrices 

HN=8
(1)

, HN=8
(2)

, …, HN=8
 (15)

, and HN=8
 (16)

 by matrix H2 as performed for N = 8 (13). 
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HN=16

(1)
 = H2 ⊗ HN=8

(1)
 = , 

 

(17) 

 
HN=16

(2)
 = H2 ⊗ HN=8

(2)
 = , 

                        . . . . . .              , 

                        . . . . . .              , 

and  HN=16
(16)

 = H2 ⊗ HN=8
(16)

 = . 

 

After this Kronecker multiplication procedure, there are 2
4
 = 16 binary square matrices with 

sequences of length N = 16. These square binary matrices are orthogonal binary matrices 

because all sixteen matrices HN=8
(1)

, HN=8
(2)

, …, HN=8
(16)

 are orthogonal matrices. 

2. In the second step, use the circular rotation procedure between all 16 orthogonal matrices 

(17) (Appendix 1). This procedure is similar to procedure (14) for N = 8. 

After completing this procedure, there are 2
4
 x 2

4
 = 2

8
 = 256 orthogonal binary square 

matrices with sequences of length N = 16. 

3. In the third step, create new matrices from all the 256 orthogonal square matrices using 

the synchronized rotation procedure inside the matrices (Appendix 1). This procedure is 

similar to the rotation procedure (16) for N = 8. The total number of rotations is defined 

as the number of matrix HN=8 rows and equals 8. Thus, R = 0, 1, 2, …, 7, where R = 0 

corresponds to matrices without rotation. After this procedure, each of the above 256 

orthogonal binary matrices will correspond to 8 matrices, including matrices without a 

rotation. 

 

After applying this synchronized rotation procedure to all 256 matrices, we will obtain 

2
8
 x 2

3
 = 2

11
 orthogonal binary square matrices with sequences of length N = 16. Thus, for 

N = 16, we have QN=16 = 2
11

 = 2048 orthogonal binary square matrices with sequences of 

length N = 16. All of these matrices consist of only different binary sequences with length 

N = 16. And the total number of different sequences is 2
11

 x 2
4
 = 2

15
, which corresponds to 

the maximum number of different binary sequences with length N = 16, i.e., mN = 2
N-1

 = 2
15

. 

One can use a similar procedure to create orthogonal square binary matrices for N = 32, 64, 

128, etc.  
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Thus, for N = 2
n
 (n = 3, 4, 5, …), it is possible to create additional non-WH orthogonal binary 

square matrices with different sequences of length N. The total number of additional matrices 

can be found by dividing the total number of binary sequences, mN = 2
N-1

, by the number of 

rows in the matrices, N = 2
n
. The total number of binary orthogonal square matrices for N = 

2
n 

(n = 3, 4, 5, …) is QN = 2
(N-(n+1))

. 

 

The primary properties of these orthogonal binary square matrices with size N=2
n
 (n = 3, 4, 5, 

…) are:  

a) All of the sequences inside each of the matrices are orthogonal. But sequences which 

belong to different matrices are not orthogonal. 

b) All of the matrices consist of different sequences with length N = 2
n
. Each sequence from 

the total number of sequences, mN = 2
N-1

, belongs to only one matrix. 

c) For any N = 2
n 

(n = 3, 4, 5, …), WH matrices HN
(1)

 (i.e., matrices number one) have n+1 

groups (G1, G2, ….) (Appendix 2) of sequences that correspond to n+1 groups of periodic 

signals with zero cross correlation or with zero mutual access interference (MAI).
[8]

   

d) For any N = 2
n 

(n = 3, 4, 5, …), matrices HN
(2)

 (i.e., matrices number two) have n - 1 

groups (G1, G2, ….) (Appendix 2) of sequences that correspond to n - 1 groups of 

periodic signals with zero cross correlation or with zero mutual access interference 

(MAI).
[8]

 

 

Because all of these QN = 2
(N-(n+1))

 orthogonal binary square matrices for N = 2
n 

(n = 3, 4, 5, 

…) are related with two Hadamard matrices for N = 4 (n = 2) (10), (11) and (12), we call 

these matrices an expanded family of Hadamard matrices for N = 2
n 

(n = 3, 4, 5, ….). And 

WH matrices HN = HN
(1)

 for N = 2
n
 (n = 3, 4, 5, …) are only a subset of this expanded family 

of orthogonal binary matrices. 

 

Shortened Families of Hadamard Matrices  

The total number of the expanded families of Hadamard matrices increases quickly with an 

increasing value of N. For instance, for N = 8, 16, and 32, the total number of binary 

orthogonal matrices are QN = 2
(N - (n+1))

 = 2
4
, 2

11
, and 2

26
, respectively; i.e., QN = 16, 2048, …. 

In practice, it is more convenient to use the term “shortened” family of Hadamard matrices 

for N = 2
n
 (n = 3, 4, 5, …) because of the fast growth rate. 

 

A shortened family of Hadamard matrices consists of only four binary orthogonal matrices 

for any N = 2
n 

(n = 3, 4, 5, …). One can construct these matrices in the following way:     
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 HN
(1)

 = (H2 ⊗)
n-2

 ⊗ HN=4
(1)

, 

(18) 
 HN

(2)
 = (H2 ⊗)

n-2
 ⊗ HN=4

(2)
, 

 HN
(3)

 = HN
(1/2)

, 

and HN
(4)

 = HN
(2/1)

, 

Where HN=4
(1)

 and HN=4 
(2)

 are a WH matrix and a Hadamard back-circulant matrix for N = 4, 

respectively, i.e., matrix number one and matrix number two (10), (11) and (12).  Matrices 

HN
 (3)

 = HN
 (1/2)

 and HN
 (4)

 = HN
 (2/1)

 are circular rotated matrices when the second (right) parts 

of the matrices are rotated between matrices HN
 (1)

 and HN
 (2)

 (14) (Appendix 1).  

 

The formation procedure for shortened family matrices for N = 2
n
 = 8 (n = 3) is  

 HN=8
(1)

 = (H2 ⊗)
n-2

 ⊗ HN=4
(1)

 = H2 ⊗ HN=4
(1)

 =  

(19) and   

 

HN=8
(2)

 = (H2 ⊗)
n-2

 ⊗ HN=4
(2)

 = H2 ⊗ HN=4
(2)

 = , 

Where HN=4
(1)

 is a WH matrix and HN=4
(2)

 is a Hadamard back-circulant matrix for N = 4 (10), 

(11), and (12).                   

 

After performing the circular rotation procedure (14) between matrices (19), we obtain 

 HN=8
(3)

 = HN=8
(1/2)

 =  

(20) and     

 
HN=8

(4)
 = HN=8

(2/1)
 = . 

 

Samples of matrices HN=8
(1)

, HN=8
(2)

, HN=8
(3)

, and HN=8
(4)

 are presented in Appendix 2. 

Appendix 2 also contains samples of matrices HN=8
(5)

 = HN=8
(3)

 
(↑R/R=1)

 and HN=8
(6)

 = HN=8
(3)

 

(↑R/R=2)
. 
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For the N = 2
n 

= 16 (n = 4) case, we have 

     HN=16
(1)

 = (H2 ⊗)
n-2

 ⊗ HN=4
(1)

 = H2 ⊗ (H2 ⊗ HN=4
(1)

) = H2 ⊗ = 

(21) 

 

= ,   

and   

     HN=16
(2)

 = (H2 ⊗)
n-2

 ⊗ HN=4
(2)

 = H2 ⊗ (H2 ⊗ HN=4
(2)

) = H2 ⊗ = 

 

= ,   

Where HN=4
(1)

 is a WH matrix and HN=4
(2)

 is a Hadamard back-circulant matrix for N = 4 (10), 

(11), and (12). 

 

After performing a circular rotation of the second (right) parts of the matrices (14), we have 

 HN=16
(3)

 = HN=16
(1/2)

 =  = , 

(22) and  

 

HN=16
(4)

 = HN=16
(2/1)

 =  = , 

Where HN=4
(1)

 is a WH matrix and HN=4
(2)

N=4 is a Hadamard back-circulant matrix for N = 4 

(9), (10), and (11). Using the same approach shown above, one may construct shortened 

families of Hadamard matrices for N = 32, 64, …, etc.  
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Following from (19), (20), (21) and (22), when constructing a shortened family of Hadamard 

matrices for any N = 2
n
 (n = 3, 4, 5, …), only two Hadamard orthogonal binary matrices are 

used: matrices HN=4
(1)

 and HN=4
(2)

. And with a circular rotation of the second (right) parts of 

matrices HN
(1)

 and HN
(2)

, it is possible to obtain matrices HN
(3)

 and HN
(4)

. 

 

CONCLUSION  

We show that for any N = 2
n 

(n = 3, 4, 5, …) orthogonal binary matrices similar to orthogonal 

binary Walsh-Hadamard matrices exist with size N x N. The number of these matrices, QN, 

grows fast with an increasing value of N and equals QN = 2
(N-(n+1))

.  

 

All newly identified orthogonal binary matrices, including the WH matrices, for any N = 2
n 

(n = 3, 4, 5, …) can be called an expanded family of Hadamard matrices because they emerge 

from two fundamental Hadamard matrices for N = 4. Based on Kronecker multiplication 

followed by a circular rotation of the matrix binary sequences, the formation procedure of 

these orthogonal binary matrices for any N = 2
n 

(n =3, 4, 5, …) is presented. 

 

The shortened family of Hadamard matrices for any N = 2
n 

(n =3, 4, 5, …) consists of only 

four orthogonal binary matrices, including the WH matrices. The construction procedure of 

the shortened family of Hadamard matrices for any N = 2
n 

(n =3, 4, 5, …) also is presented. 

 

APPENDIX 1: PROCEDURE DEFINITIONS 

Circular Rotation of Matrix Sequences  

The definition of the matrix sequence rotation is associated with the circular rotation, or 

circular permutation, of sequences with length N, represented as the matrix MN.   

Consider four numeric sequences with a length of N: 

 A = {ai} = {a0, a1 , …, aN-1},   B = {bi} = {b0, b1 , …, bN-1}, 

(1A)     

 C = {ci} = {c0, c1 , …, cN-1}, and D = {di} = {d0, d1 , …, dN-1}, 

Where N is a positive integer (N = 1, 2, 3, …). 

 

Without rotation, matrix MN, MN = MN
(↑R=0)

, may be represented as 

   k↓ 

(2A) 

 

MN = MN
 (↑R=0) =  

 

0 

 1 

 2 

 3.  
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After one rotation step, we can represent matrix MN 
(↑R=1)

 as 

   k↓ 

(3A) 

 

MN
 (↑R=1)

 =   

 

0 

 1 

 2 

 3,  

 

Where N is the length of the matrix rows (length of the sequences), k is the matrix row 

ordering number (k = 0, 1, 2, 3), the symbol (↑R=0) represents zero circular (cyclic) rotation 

(i.e., the absence of sequence rotations), and the symbol (↑R = 1) represents a first step 

circular (cyclic) rotation. The number of matrix sequences m defines the total number of 

matrix rows k (k = 0, 1, 2. 3, 4, …, m-1), and in this example, m = 4. 

                                                                            

From equation (3A), a circular rotation of one step (↑R = 1) is the upward shift of the matrix 

MN sequences by one step. In this case, row k = 0 in equation (3A) corresponds to sequence 

B instead of sequence A as in equation (2A), row k = 1 corresponds to sequence C
 
instead of 

sequence B, etc. Thus, during a rotation procedure, all of the sequences are shifted up by one 

step, and sequence A is shifted to the bottom row k = m-1 (in this case, m = 4), thus closing 

this circle. Due to its circular nature, we name the procedure a circular rotation. 

 

The second rotation step (↑R = 2) corresponds to shifting the matrix MN sequences up by two 

steps compared with the original matrix MN = MN
(↑R=0)

 (2A).  

   k↓ 

(4A) 

 

MN
 (↑R=2) =   

 

0 

 1 

 2 

 3.  

 

The cyclic rotation procedure of matrix MN sequences continues using the same process until 

rotation step number m-1. After rotation step number m-1, for m = 4, matrix MN
(↑R=m-1)

N is 

                                  

And after step number m, matrix MN equals matrix MN
(↑R=m)

N and is identical to the original 

version without rotation: MN = MN
(↑R=m)

 = MN
(↑R=0)

 (2A). 
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   k↓ 

(5A) 

 

MN
 (↑R=3)

 =  

 

0 

 1 

 2 

 3.  

 

The total number of rotation steps (including step number zero, i.e., when R = 0) is defined 

by the number of matrix MN rows and equals m. I.e., the rotation step numbers are R = 0, 1, 

2, 3, …, m-1. And in the R=0 case (no rotation), MN = MN 
(↑R=0)

N = MN
(↑R=m)

 as described 

above. 

  

If all the sequences from (1A) are orthogonal, i.e.,  

 A x B = ∑aibi = 0,  A x C = ∑aici = 0, 

(6A)  A x D = ∑aidi = 0,  B x C = ∑bici = 0, 

 B x D = ∑bidi = 0, and  C x D = ∑cidi = 0, 

 

Then the original matrix MN = MN
(↑R=0)

N (2A) is an orthogonal matrix. And in this case, one 

may observe that matrices MN
(↑R)

 remain orthogonal matrices during the circular rotation 

procedure of any R step (R = 0, 1, 2, 3, …, m-1). 

  

Synchronized Circular Rotation of Matrix Sequences 

Consider matrix M2N 

                                           M2N =  = ,   (7A) 

Where MN = MN 
(↑R=0)

 is the original matrix (2A) consisting of sequences A, B, C, and D of 

length N (1A). 

 

A synchronized rotation of matrix M2N
(↑R/R)

 is the simultaneous rotation of matrices MN and 

-MN of the right half of matrix M2N (7A), 

                                                      M2N
(↑R)

 = ,   (8A) 
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Where MN
(↑R)

 and -MN
(↑R)

 are the synchronized circular rotated matrices MN and -MN on R 

steps. I.e., the circular rotation of matrices MN and -MN is performed simultaneously using 

the same number of steps (R) for both matrices. Thus, the synchronized circular rotation 

procedure is similar to the circular rotation procedure defined above (3A, 4A, and 5A); 

however, it is performed simultaneously for matrices MN and -MN, which belong to the right 

half of matrix M2N (8A). 

 

Following from (3A), the circular (cyclic) rotation of one step (R=1) corresponds to the 

upward circular (cyclic) shift of matrix MN sequence by one step. The same procedure is 

performed simultaneously inside matrix -MN. For instance, after the first synchronized 

rotation procedure step, we obtain   

M2N
(↑R/R=1)

 =  = .  (9A) 

 

After the second step of the synchronized rotation procedure, we obtain   

M2N
(↑R/R=2)

 =  = .  (10A) 

 

Note that the cyclic rotation of the sequences in matrices MN and -MN is only performed 

within these matrices (9A, 10A). There is no rotation of any sequences between matrices MN 

and -MN. 

 

The total number of synchronized circular rotation steps (R) is defined by numbers of matrix 

MN rows and equals m (3A). I.e., the rotation step numbers are R = 0, 1, 2, 3, …, m-1.  In the 

samples above (9A, 10A) m = 4. In the R = 0 (zero rotation) and R = m cases, M2N = 

M2N
(↑R/R=0)

 = M2N
(↑R/R=m)

 because this rotation procedure is circular (cyclic): 
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M2N = M2N
(↑R/R=0)

 = M2N
(↑R/R=m)

 =  = . (11A) 

 

We observe that if sequences A, B, C, and D are orthogonal sequences (6A), then matrix M2N 

for R = 0 (7A, 11A) is an orthogonal matrix. Matrix M2N = M2N
(↑R/R=0)

 is an orthogonal matrix 

only for R = 0, i.e., only in the absence of a synchronized circular (cyclic) rotation. 

 

Notice that to obtain orthogonal matrices M2N
(↑R/R)

 for any R ≠ 0, sequences A, B, C, and D 

must satisfy the following conditions in addition to conditions (6A): 

 A
2
 = B

2
 = C

2
 = D

2
 

(12A) 
    

 A
2
 = ∑ai

2
,  B

2
 = ∑bi

2
, 

 C
2
 = ∑ci

2
, and D

2
 = ∑di

2
. 

 

Observe that the binary sequences whose elements (ai, bi, ci, di) have only two values, namely 

+/-1, satisfy the conditions in equation (12A). Binary sequences with length N always have 

A
2
 = B

2
 = C

2
 = D

2
 = N. This result means that if matrices MN consist of binary orthogonal 

sequences, then matrices with a synchronized circular (cyclic) rotation M2N
(↑R/R)

 remain 

orthogonal matrices for any R (R = 0, 1, 2, …, m-1).                               

 

Circular Rotation Procedure of Sequences Between Matrices 

Consider the case when there are four numeric sequences with length N 

 A = {ai} = {a0, a1, …, aN-1},  B = {bi} = {b0, b1, …, bN-1}, 

   

 C = {ci} = {c0, c1, …, cN-1},  and D = {di} = {d0, d1, …, dN-1}, 

 where A x B = ∑aibi = 0, and C x D = ∑cidi = 0, (13A) 

     

 but A x C = ∑aici ≠ 0,  A x D = ∑aidi ≠ 0, 

 B x C = ∑bici ≠ 0, and B x D = ∑bidi ≠ 0. 

 

Sequences A & B and C & D are orthogonal sequences, but sequences A & C, A & D, B & 

C, and B & D are not orthogonal sequences. 
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In this case, matrices MAB and MCD (11A), 

MAB = ,     MCD = ,  (14A) 

are orthogonal matrices because sequences A & B and C & D are orthogonal sequences.  

Matrices MAB/CD and MCD/AB, 

MAB/CD = ,     MCD/AB = ,  (15A) 

are called matrices with circularly rotated second (right) parts between matrices MAB and MCD 

(14A). 

  

These matrices (15A) are orthogonal matrices when all their sequences (A, B, C, and D) are 

binary sequences. In this case, for all of the sequences, A
2
 = B

2
 = C

2
 = D

2
 = N (12A), where 

N is the length of binary sequences A, B, C, and D. Equation (12A) and the orthogonality of 

sequences A & B and C & D (13A) are sufficient conditions to guarantee the orthogonality of 

matrices MAB/CD and MCD/AB despite the absence of orthogonality of sequences A & C, A & 

D, B & C, and B & D. 

 

APPENDIX 2: SQUARE ORTHOGONAL MATRIX EXAMPLES 

The following are examples of square orthogonal binary matrices for N = 8.  

   k↓ G↓  

 
HN=8

(1)
 = H2 ⊗ HN=4

(1)
 =  =   

 

 

0 G1  

1 G2 

2 G3 
3 

  

4 

G4 
5 

6 

7 

                                                                                                                                      , 
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   k↓ G↓  

 
HN=8

(2)
 = H2 ⊗ HN=4

(2)
 =  =   

 

 

0 

G1 

 

1 

2 

3 

  

4 

G2 
5 

6 

7 

                                                                                                                                      , 

   k↓  

 
HN=8

(3)
 = HN=8

(1/2)
 =  =  

 

 

0 

 

1 

2 

3 

 

4 

5 

6 

7 

                                                                                                                                     , 

   k↓  

 
HN=8

(4)
 = HN=8

(2/1)
 =  =  

 

 

0 

 

1 

2 

3 

 

4 

5 

6 

7 

                                                                                                                                       , 

   k↓  

 
HN=8

(5)
 = HN=8

(3) (↑R/R=1)
 =  =  

 

 

0 

 

1 

2 

3 

 

4 

5 

6 

7 

                                                                                                                                               , 
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   k↓  

 
HN=8

(6)
 = HN=8

(3) (↑R/R=2)
 =  =  

 

 

0 

 

1 

2 

3 

 

4 

5 

6 

7 
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