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ABSTRACT 

In our propagation algorithms we have applied techniques from flow 

theory to compute an initial solution and to make the soft same 

constraint hyper-arc consistent. The same constraint is defined on two 

sequences of variables and states that the variables in one sequence use 

the same values as the variables in the other sequence. The same 

constraint can be applied to rostering problems where we need to  

assign two types of personnel to each other. 

 

KEYWORDS: Graph representation, Soft same constraint. 

  

1. INTRODUCTION 

Many real-life problems are over-constrained. In personnel reostering problems for example, 

people often have conflicting preferences. To such problems there does not exist a feasible 

solution that respects all preferences. However, we still want to find some solution, 

preferably one that minimizes the total number of conflicts. In case of the personnel rostering 

example, we may want to construct a roster in which the number of respected preferences is 

equally spread among the employees. 

 

In constraint programming, we seek for an (optimal) feasible solution to a given problem. 

Hence, we cannot apply constraint programming directly to over-constrained problems, 
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because it finds no solutions. As a remedy there have been proposed several methods. Most 

of these methods introduce so called soft constraints that are allowed to be violated. 

Constraints that are not allowed to be violated are called hard constraints. Most methods then 

try to find a solution that minimizes the number of violated constraints, or some other 

measure of constraint violation. 

 

Global constraints are often key elements in successfully modeling and solving real-life 

applications with constraint programming. For many soft global constraints, however, no 

efficient propagation algorithms were available, up to very recently. Moreover, it was stated 

that 

 

“Active solving of global constraints is only applicable on the assumption that the constraint 

must be satisfied in any solution. Soft constraints may be violated in an admissible solution, 

and cannot therefore be handled by the usual techniques for global constraints”. (quoted 

from Wallace, (Caseau and Puget 2003). In this chapter we show that “usual techniques for 

global constraints” can be used to handle soft constraints. In particular, we apply techniques 

that were used earlier to handle the weighted all different constraint. 

 

We distinguish two main objectives with respect to soft global constraints; useful violation 

measures and efficient propagation algorithms. Both issues will be addressed in this chapter, 

depending heavily on a technique from operations research: flow theory. 

 

In many cases we can represent a solution to a global constraint as a property in some graph 

representation of the constraint. For example, a solution to the all different constraint 

corresponds to a matching in the associated value graph. There exists a large class of such 

global constraints, see for example (Beldiceanu 2000) for a collection. In this chapter, we 

focus on global constraints for which a solution can be representing by a flow in a graph. 

 

Our method adds violation arcs to the graph representation of a global constraint. To these 

arcs we assign a cost, corresponding to some violation measure of the constraint. Each tuple 

in the constraint, the corresponding flow does not use any violation arc, and the cost is 0. If 

the tuple does not satisfy the constraint, the corresponding flow must use violation arcs, 

whose costs represent the cost of violation of this tuple. 

 

This approach allows us to define and implement useful violation measures for soft global 

constraints. Moreover, we present an efficient generic propagation algorithm for soft global 
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constraints, making use of flow theory. We apply our method to several global constraints 

that are well-known to the constraint programming community: the all different constraint, 

the global cardinality constraint, the regular constraint and the same constraint, which will be 

defined when considered in this chapter. To each of these global constraints we apply several 

violation measures, some of which are newly introduced. 

 

We give an overview of related literature. Then our method to soften global constraints is 

presented. We first discuss the general concepts of constraint softening and violation 

measures. Then we describe the addition of violation arcs to the graph representation and 

present the generic hyper-arc consistency propagation algorithm. 

 

The four global constraints mentioned above: the all different constraint, the global 

cardinality constraint, the same constraint and the regular constraint. For each constraint we 

introduce useful violation measures and the corresponding graph representations. We also 

analyze the corresponding propagation algorithms to achieve hyper arc consistency. 

 

We propose to use soft global constraints to aggregate the costs of violation of different soft 

constraints. 

 

2. GRAPH REPRESENTATION 

A solution to the all different constraint corresponds to a matching in the corresponding value 

graph. We can give an equivalent representation in terms of flows as follows see also (Regin 

1994,1996,1999a,1999b). 

 

Theorem.1: A solution to all different (x1,... ,xn) corresponds to an integer feasible s-t flow of 

value n in the. digraph A = (V, A) with vertex set 

V = X   DX  {s, t} 

and arc set                           A = As  Ax  At 

Where                                  As = {(s, xi) | i  {1,... ,n}}, 

Ax = {( xi, d) | d  Di, i  {1,...,n}}, 

At = {(d, t) \ d  Dx}, 

with capacity function c(a) =1 for all a  A. 

 

Proof: With an integer feasible s-t flow f of value n in A we associate the assignment xi = d 

for all arcs a = (xi, d)  AX with f(a) = 1. Because c(a) = 1 for all a  As  At, this is indeed a 
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solution to the all different constraint. As value (f) = n, all variables have been assigned a 

value. Similarly, each solution to the all different gives rise to a corresponding appropriate 

flow in A. 

 

Example.1: Consider again the CSP. In Figure represents the corresponding graph 

representation of the all different constraint is presented. 

 

 

Figure 1: Graph representation for the all different constraint. For all arcs the capacity 

is 1. 

 

We can recognize the value graph of X in A, being the subgraph on X and Dx. An integer 

feasible flow f of value n in A corresponds to a matching M in the value graph as follows: 

f (a) = 1  a  M  for all a  Ax 

Corresponds to the subgraph on X and Dx of the residual graph Af. 

 

3. SOFT SAME CONSTRAINT 

Definition 1 

The same constraint is defined on two sequences of variables and states that the variables in 

one sequence use the same values as the variables in the other sequence. The constraint was 

introduced by (Beldiceanu 2000). One can also view the same constraint as demanding that 

one sequence is a permutation of the other. A hyper-arc consistency algorithm for the same 

constraint was presented by (Beldiceanu, Katriel and Thiel 2004b), making use of flow 

theory. The same constraint can be applied to rostering problems where we need to assign 

two types of personnel to each other. An example is the assignment of the same number of 

doctors and nurses on a particular date. 
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Definition 2 (Same constraint). Let X=x1,…,xn and Y=y1,…,yn and be sequences of 

variables with respective finite domains D1,……,Dn and D'1,…., D'n
.
 Then 

 

 

Note that in the above definition 

  

are families, in which elements may occur more than once. 

 

To the same constraint we apply the variable based violation measure var. Denote the 

symmetric difference of two sets S and T by ST, i.e. ST = (S\T)  (T\S). For same (X,Y) 

we have. 

 

 

Example. 2: Consider the following over constrained CSP. 

 

x1  a,b,c, x2  c,d,e, x3  c,d,e, 

y1  a,b, y2  a,b, y3  c,d, 

same (x1, x2, x3, y1, y2, y3) 

we have var (a,c,c,a,b,c) = 1 because a,c,c  a,b,c = b,c and b,c/2 =1. 

 

4. GRAPH REPRESENTAION 

A graph representation for the same constraint was given by (Beldiceanu, Ka- triel and Thiel 

2004b). 

 

Theorem.2: (Beldiceanu et al. 2004b) A solution to same (X, Y) corresponds to an integer 

feasible s-t flow of value n in the digraph S = (V, A) with vertex set 

V = X  (Dx  D’y)  Y  {s, t} 

and arc set                 A = As  Ax  Ay  At, 

Where 
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with capacity function c(a) = 1 for all a  A. 

 

 

Figure 1: Graph representation for the same constraint. For all arcs the capacity is 1. 

 

5. VARIABLE-BASED VIOLATION MEASURE 

To the graph S of we add the arc sets 

 

with capacity c(a) = n for all arcs X Ya A A  . As before, we apply a cost function 

 : 0,1X Yw A A A  
,  where 

 

Let the resulting digraph be denoted by Svar. 

Example:  The corresponding graph representation of the variable-based soft same constraint 

is presented. 

 

Corollary : The constraint soft same (X,Y,z,var) is hyper-arc consistent if and only if. 
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i) for every arc a  Ax  Ay there exists a feasible s-t flow f of value n in Svar with f(a) = 1 

and weight (f) < max Dz, and ii)min Dz > weight (f) for a minimum-weight s-t flow f of 

value n in Svar. 

 

Proof: An assignment xi = d corresponds to the arc a = (xi, d) with f(a) = 1. By construction, 

all variables need to be assigned to a value and the cost function exactly measures the 

variable-based cost of violation. 

 

 

Figure 2: Graph representation for the variable-based soft same constraint. For all arcs 

the capacity is 1. Dashed arcs indicate the inserted weighted arcs with weight 1. 

 

The constraint soft same (X,Y,z,var)  can be made hyper-arc consistent by applying 

Algorithm 2. Consistency can again be checked by computing an initial flow in O(n(m + n 

log n)) time, and hyper-arc consistency can be achieved in O(m(m + n log n)) time by 

applying Theorem 2. Here m denotes the number of arcs in Svar. 

 

6. CONCLUSION 

 For all these soft global constraints efficient hyper-arc consistency algorithms have been 

presented, inferred from our generic algorithm. 

 In our propagation algorithms we have applied techniques from flow theory are 

consistent. 

 The application of these techniques make our algorithms very efficient. This shows that 

the application of operations research techniques in constraint programming is also 

beneficial for propagation algorithms for soft global constraints. 
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