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ABSTRACT 

Remote sensing in precision agriculture is established with sensors to 

analyze soil organic matter. Nowadays a variety of spectral indices are 

available that can be used for various precision agriculture 

applications. The spatial resolution of various remote sensing images 

has improved from 100’s of meters to centimeter accuracy, granting 

assessment of various soil and crop properties but at the expense of  

increased data storage and processing requirements. In the past, optical remote sensing was 

used as an integral part of precision agriculture for crop and soil monitoring. However, in the 

present-day, work is being done on the development of thermal and hyperspectral remote 

sensing techniques. The applications of remote sensing in agriculture discussed here include 

soil characteristic mapping, precision farming practices, soil salinity detection, disease and 

pathogen detection, crop-water stress monitoring, crop monitoring, irrigation scheduling, soil 

texture analysis, soil moisture detection and soil texture analysis. 

 

KEYWORDS: remote sensing, hyperspectral remote sensing, optical remote sensing, 

thermal remote sensing, UAVs stress monitoring, soil characteristics mapping etc.  

 

1. INTRODUCTION 

Agriculture is the primary source of food and a dominant factor in the development of the 

economic condition. Precision agriculture (PA) is being practiced commercially since the 

1990s and revolutionized agriculture completely (Crookston, 2006). Due to a drastic increase 

in population, urbanization and industrialization (Vibhute and Gawali, 2013), the demand for 

wjert, 2022, Vol. 8, Issue 3, 129-153. 

World Journal of Engineering Research and Technology 

WJERT 

www.wjert.org 

ISSN 2454-695X Review Article 

SJIF Impact Factor: 5.924 

*Corresponding Author 

Dr. Rajani Srivastava 

Institute of Environment 

and Sustainable 

Development, RGSC, 

Banaras Hindu University, 

Varanasi- 221005. 

 



Rajani et al.                                    World Journal of Engineering Research and Technology 

  

 
 

www.wjert.org                         ISO 9001 : 2015 Certified Journal       

 

130 

food supply has increased, hence, there is an immediate need to enhance the agriculture 

practices into extremely resource-efficient systems that can benefit the world commercially 

along with the environmental sustainability (Donner and Kucharik, 2008; Zhang et al., 2015; 

Zillén et al., 2008). PA is a special type of agriculture practice that has become a frontier area 

in agriculture (Zhang et al., 2016) and focuses on the right management practice with the 

right place at right time (Gebbers and Adamchuk, 2010). PA tends to improve crop 

productivity and farm lucrativeness through meliorate management inputs (Zhang, Wang and 

Wang, 2002; Larson et al., 1991) and by using intensive data and information collection and 

processing (Harmon et al., 2005) that certainly leads to a better environment (Mulla et al., 

2003; Mulla, 1993). By the passage of time, the technologies like global positioning systems 

(GPS), variable rate technologies (VRT), sensor networks and remote sensing have 

developed and assisted the farmers to identify and implement site specific farming practices 

(Khanal et al., 2017). In PA, data collection-cum-analysis is involved with proper information 

management and it also involves the technological development in sensor design, remote 

sensing, data processing techniques, and their monitoring (Mulla and Bhatti, 1997). 

 

Remote sensing along with the geographical information system (GIS) and other types of 

data sets is helpful for farmers to decide on agricultural strategies (Soni, 2011). For 

commercial-scale monitoring and analysis in agriculture, remote sensing is the most cost-

effective technology present today. It is non-destructive and can cover a large area for 

phenotypic crops (Yang et al., 2017). It utilizes visible, near-infrared (NIR) and short-wave 

infrared (SWIR) sensors for agriculture purposes. Thermal sensors are extensively used in the 

areas of intelligence (Hinz and Stilla 2006), food processing (Vadivambal and Jayas, 2011) 

and medicine (Ring and Ammer, 2012). The various applications of thermal remote sensing 

in the field of agriculture are (1) irrigation scheduling and harvesting, (2) monitoring crop 

stresses, crop diseases and soil water stress. In the future, the sensors could be mounted on 

satellites (Bausch and Khosla, 2010), UAVs (Berni et al., 2009), tractors (Adamchuk et al., 

2004), mobile robots or airplanes to investigate the crop height, leaf reflectance, soil water 

stress and other properties which can help the farmers to quantify the fertilizers and 

pesticides. The objectives of this paper are to review and summarize the potential 

applications of remote sensing in the field of precision agriculture. 
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2. Remote sensing in precision agriculture 

In PA, various remote sensing applications are used for collecting-cum-analyzing data about 

the crop and soil characteristics by using different types of sensors. It is based on the 

interaction of electromagnetic (EM) radiation with soil and plant material. Remote sensing 

applications in agriculture mainly focus on the reflected radiations and are least considered 

about the transmitted/absorbed radiations (Mulla, 2013). In addition to it, the plant leaves also 

emit fluorescence (Apostol et al., 2003) or thermal emission (Cohen et al., 2005) which 

provides essential information about the temperature variations and other factors like energy 

fluxes (Weng, 2009; Quattrochi and Luvall, 1999). Various factors stated by (Ben-Dor et al., 

2008) that influence the applications of remote sensing in precision agriculture: (1) type of 

platform (satellite, air, or ground), (2) region of the EM spectrum (visible, infrared, or 

microwave), (3) spectral bandwidths and their number (panchromatic, multispectral or 

hyperspectral), (4) spatial resolution (low, medium, high), (5) temporal resolution, (6) 

radiometric resolution and (7) energy source (active or passive). Figure 1 shows a schematic 

diagram to illustrate about the cropping cycle involved in precision agriculture (Chantarat et 

al., 2007; Gebbers and Adamchuk, 2010). 

 

 

Figure 1: Precision agriculture information flow in crop production (Gebbers and 

Adamchuk, 2010). 

 

2.1.Optical remote sensing in precision agriculture 

Optical remote sensing is the most exploited remote sensing system in the field of agriculture 

which utilizes visible, NIR and SWIR sensors (Prasad and Bruce, 2011). In general, optical 
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remote sensing is associated with the radiations reflected from the target object (Sabins Jr, 

1996). By the advancement in remote sensing technology, different vegetative indices have 

been developed which are based on the combination of different bands to estimate various 

plant parameters like leaf area, biomass, chlorophyll content, etc. (Starkbet al. 2014; 

Anderson et al., 2013). Due to the cloud cover, the images from satellite and aerial platforms 

are severely limited while ground-based remote sensing is least affected (Moran et al. 1997). 

 

2.2. Hyperspectral remote sensing in precision agriculture 

Hyperspectral remote sensing (also known as imaging spectroscopy or spectrometry) is the 

acquisition of images in hundreds of contiguous spectral bands (forms hyperspectral cube) to 

obtain high-resolution data for each pixel (Galvão et al., 2018; Goetz et al., 1985). It is based 

on the ability of the sensors to capture narrow absorption bands instead of taking a greater 

number of bands. In 1987, an airborne visible/infrared imaging spectrometer (AVIRIS), the 

first hyperspectral sensor was launched. The technological advancement in hyperspectral 

remote sensing in agriculture leads to a significant enhancement over conventional remote 

sensing, resulting in improved modeling and mapping of agricultural attributes like as (1) 

crop type/species (Thenkabail et al., 2014; Thenkabail et al., 2013), (2) use of water and its 

productivities (Thenkabail et al., 2013), (3) management of stress factors (nitrogen 

deficiency, moisture deficiency, drought conditions (Delalieux et al., 2009; Gitelson, 2013; 

Thenkabail et al., 2014; Slonecker et al., 2013), and (4) biophysical and biochemical 

quantities (Galvão et al., 2018; Clark and Roberts, 2012). Imaging spectroscopy is different 

from multispectral imaging in terms of continuity of spectrum, range and spectral resolution 

of bands. Hyperspectral vegetation indices (HVIs) are used to target studies on crop 

characteristics such as leaf area index (LAI), biomass, pigments, moisture status, stresses, etc. 

(Haboudane et al., 2004; Galvão et al., 2018; Thenkabail et al., 2014; Bian et al., 2010; Goel 

et al., 2003; Zarco-Tejada et al., 2004). Hyperspectral remote sensing data is interpreted by 

using advanced statistical methods for chemometric analysis of reflectance spectra which 

included partial least squares (Rossel et al., 2006; Lindgren et al., 1994; Geladi, 2003; 

Alchanatis and Cohen, 2016), principal components analysis (Geladi, 2003; Alchanatis and 

Cohen, 2016), pattern classification and recognition techniques (Stuckens et al.,  2000), 

classification techniques like decision tree (Wright and Gallant 2007) and object-oriented 

classification (Frohn et al., 2009). A variety of hyperspectral indices used in precision 

agriculture are mentioned in Table 1. 
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Table 1: Vegetation indices (modified from (Mulla, 2013). 

Index Definition Reference 

Multispectral broadband vegetation indices 

NG G/(NIR+R+G) 
(Sripada et al., 2005) 

NR R/(NIR+R+G) 

RVI NIR/R (Jordan, 1969) 

GRVI NIR/G (Sripada et al., 2005) 

DVI NIR-R (CJ, 1979) 

GDVI NIR-G (CJ, 1979) 

NDVI (NIR-R)/(NIR+R) (Rouse et al., 1974) 

GNDVI (NIR-G)/(NIR+G) (Gitelson et al., 1996) 

SAVI 1.5*[(NIR-R)/(NIR+R+0.5)] (Huete and Escadafal, 1991) 

GSAVI 1.5*[(NIR-G)/(NIR+G+0.5)] (Sripada et al., 2005) 

OSAVI (NIR-R)/(NIR+R+0.16) (Rondeaux et al., 1996) 

GOSAVI (NIR-G)/(NIR+G+0.16) (Sripada et al., 2005) 

MSAVI2 0.5*[2*(NIR+1)-SQRT((2*NIR+1)
2
-8*(NIR-R))] (Qi et al., 1994) 

Hyperspectral narrowband vegetation indices 

Green index (G) R554/R677 (Smith et al., 1995) 

SR1 NIR/red = R801/R670 (Daughtry et al., 2000) 

SR2 NIR/green = R800/R550 (Buschmann and Nagel, 1993) 

SR3 R700/R670 (McMurtrey Iii et al., 1994) 

SR4 R740/R720 (Vogelmann et al., 1993) 

SR5 R675/(R700*R650) (Chappelle et a., 1992) 

SR6 R672/(R550*R708) 
(Datt, 1998) 

SR7 R860/(R550*R708) 

DI1 R800 -R550 (Buschmann and Nagel, 1993) 

NDVI (R800-R680)/(R800+R680) (Lichtenthaler et al., 1996) 

GNDVI (R801-R550)/(R800+R550) (Daughtry et al., 2000) 

PSSR(a) R800/R680 
(Blackburn, 1998) 

PSSR(b) R800/R635 

NDI1 (R780-R710)/(R780-R680) 
(Datt, 1999) 

NDI2 (R850-R710)/(R850-R680) 

NDI3 (R734-R747)/(R715+R726) (Vogelmann et al., 1993) 

MCARI [(R700-R670)-0.2(R700-R550)](R700/R670) (Daughtry et al., 2000) 

TCARI 3*[(R700-R670)-0.2*(R700-R550)(R700/R670)] (Haboudane et al., 2002) 

OSAVI (1+0.16)(R800-R670)/(R800+R670+0.16) (Rondeaux et al., 1996) 

TCARI/OSAVI  (Haboudane et al., 2002) 

TVI 0.5*[120*(R750-R550)-200*(R670-R550)] (Broge and Leblanc, 2001) 

MCRI/OSAVI  (Zarco-Tejada et al., 2004) 

RDVI (R800-R670)/SQRT(R800+R670) (Roujean and Breon, 1995) 

MSR (R800/R670-1)/SQRT(R800/R670+1) (Chen, 1996) 

MSAVI 0.5[2R800+1-SQRT((2R800+1)2-8(R800-R670))] (Qi et al., 1994) 

MTVI 1.2*[1.2*(R800-R550)-2.5*(R670-R550)] 

(Haboudane et al., 2004) 
MCARI2 
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2.3. Thermal remote sensing in precision agriculture 

Thermal remote sensing is based on the principle that everybody which has a temperature 

above absolute zero i.e. 0 K or -273.15 °C emits radiations in the infrared region of the 

electromagnetic spectrum (Prakash, 2000; Ishimwe et al., 2014; Khanal et al., 2017). Hence, 

it is associated with the thermal infrared region of EM spectrum which is helpful in data 

acquisition, processing and interpretation (Prakash, 2000).  It measures the radiations emitted 

from the surface of the object. Although, the thermal wavelength region ranges from 3μm to 

35μm but still only 8μm to 14μm region is taken into consideration for thermal remote 

sensing as due to overlap with solar reflection in day imagery from 3μm to 5μm wavelength, 

data interpretation becomes complicated and the investigation of the 17μm to 25μm is in the 

development phase (Kant et al., 2009). With the advancement of remote sensing technology, 

various airborne and satellite-based thermal sensors (Table 2) have been developed and are 

being used in agricultural applications either directly or indirectly. 

 

Table 2: Thermal infrared sensors {modified from (Khanal et al., 2017). 

Sensors 
Wavelength 

(μm) 

Waveband 

(thermal) 

Spatial 

Resolution (m) 

Temporal 

resolution (days) 
References 

Satellite 

AATSR/ 

ENVISAT 
11.0–12.0 6–7 1000 1 

(Llewellyn-Jones 

et al., 2001) 

ABI/GOES-R 10.1–13.6 13–16 2000 Hourly (GOES-R, 2020) 

ASTER 8.125–11.65 10–14 90 16 (NASA, 2020a) 

AVHRR 
3.5–3.93 3 

1100 0.5 (NOAA, 2020) 
10.50–12.5 4–5 

CBERS 10.4–12.5 4 80 26 (CBERS, 2020) 

Landsat 4-5TM 10.40–12.50 6 120 

16 (USGS 2020) 
Landsat 7 ETM+ 10.40–12.50 6 60 

Landsat 8 
10.60–11.19 10 

100 
11.5–12.51 11 

MODIS 
3.66–4.55 20–25 

1000 1 (NASA, 2020b) 
8.4–14.08 29–35 

Airborne 

ATLAS 8.32–12.02 10–15 10 -  (Lo et al.,  1997) 

TIMS 8.2–12.2 1–6 50 -  
(Kealy and Hook, 

1993) 

 

3. UAVs in precision agriculture 

With the development of unmanned aerial vehicles (UAVs) or drones, remote sensing in 

agriculture became easier and cheaper and come under the reach of most of the farmers 

providing unaltered datasets of high spatial, temporal and spectral resolution (Colomina and 
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Molina, 2014). Yamaha developed the first UAV for agricultural purpose and continued its 

production till 2007 (Giles and Billing, 2015). The hardware implementations of UAVs in 

agriculture depend on several major aspects like weight, payload, range of flight, 

configuration and their costs (Mogili and Deepak 2018). These are efficient to cover hectares 

of fields in a single flight. Thermal and multispectral cameras are used to record the 

reflectance of the canopy (Bendig et al., 2012; Colomina and Molina, 2014). Figure 2 

discusses the schematic overview of various platforms used in precision agriculture. The 

suitability of sensors in UAV remote sensing in the field of precision agriculture is 

summarized by (Maes and Steppe, 2019) in Table 3. 

 

 

Figure 2: Schematic overview of various platforms used in precision agriculture (Maes 

and Steppe 2019) 
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Table 3: Overview of Applications and Suitability of Different Sensors (modified from 

Maes and Steppe (2019). 

Application 

Type of sensor/camera 

RGB 
Multispectral 

(broadband) 

Hyperspectral 

(narrowband) 
Thermal 

Drought stress 
Detection in early stages - - - 

highly 

suited 

Long-term consequences - highly suited highly suited suited 

Pathogen 

detection 

Detection in early stages - - highly suited 
highly 

suited 

Severity of infection 
highly 

suited 
highly suited highly suited suited 

Weed detection 

Spectral discrimination - suited highly suited - 

Object-based 
highly 

suited 
highly suited - - 

Nutrient status -   suited highly suited highly suited suited 

Growth vigor 

Growth stage 
highly 

suited 
- - - 

Canopy height and 

biomass 

highly 

suited 
highly suited - - 

Lodging 
highly 

suited 
- - suited 

Yield prediction -  suited highly suited - - 

 

4. Applications of remote sensing techniques in agriculture 

Remote sensing techniques are used in the field of agriculture for various purposes like crop 

classification, monitoring, yield estimation, identifying soil characteristics and precision 

farming practices. It is based on the interaction between sensors that can detect 

electromagnetic radiation and objects. The spectral reflectance curve of remotely sensed 

images helps in crop monitoring, yield area estimation and crop identification (as each crop 

has its spectral signature). The remote sensing applications in agriculture are mainly 

classified based on the platform used for the sensors (such as satellite, aerial, ground-based 

platforms). 

 

4.1. Crop identification 

Crop identification and its classification are done to prepare maps with different crop types 

which are beneficial for crop production inventory and crop acreage (Sesha Sai et al., 2013). 

For the identification of crops multispectral and multitemporal data are used with supervised 

or unsupervised classification techniques. Through accurate crop maps, agricultural 

monitoring and decision-making can be done at wider spatial scales (Kussul et al., 2015; Löw 

and Duveiller, 2014) to improve cropland management and support in policymaking 
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(Davidson et al., 2017). Various vegetation indices are used with the multi-temporal image 

classification (Hentze et al., 2016; Liu et al., 2016; Siachalou et al., 2015; Yan et al., 2015) to 

identify croplands and crop types (Hao et al., 2016; Marais Sicre et al., 2016; Ghazaryan et 

al., 2018). 

 

4.2. Crop monitoring 

For sustainable use and preservation of food, it is necessary to monitor the crop condition 

precisely and frequently (Kalpana et al., 2003). Crop monitoring is an advancement in remote 

sensing. It is mainly focused on the individual’s physical parameters and different indices of 

the crop (Nellis et al., 2009). It helps the farmers in detecting the places where the growth is 

moderate or slow and allows them to take adequate measures. It, thus, not only increase 

productivity but also reduces the input cost. Images acquired throughout the crop season will 

not only help in detecting the problem but also monitor the success ratio of the treatment 

done on it.  

 

4.2.1. Nursery monitoring 

A nursery is a place where plants are grown in open fields or greenhouses till their maturing 

age. Seed monitoring through remote sensing allows the farmers to identify the individual 

viable and non-viable seeds before use (Kranner et al., 2010). The thermal profile of seeds is 

used to detect pernicious changes in temperature which varies with feasibility. This enables 

the detection of viable seeds from non-viable seeds (Kranner et al., 2010; Zhang et al., 2012). 

In nurseries, infrared thermography can be applied to detect seedlings viability, physical 

damage, disorders and evaluation of the growth progress of seeds, seedlings and plants 

(Hellebrand, Beuche, and Linke 2002; Kim and Lee 2004; Ljungberg and Joensson 2002; 

Ishimwe, Abutaleb, and Ahmed 2014). 

 

4.2.2. Bruise detection 

Damages on the surface of fruits and vegetables due to any external factors like transportation 

and handling (Manickavasagan et al. 2005) which cause a physical change in texture, color, 

smell and taste is termed as a bruise (Mohsenin 1986). Multispectral and hyperspectral NIR-

based techniques can be used efficiently for bruise detection (Quansheng and Vittayapadung, 

2008; Wen and Tao, 2000). Thermal imaging is preferred over NIR-based detection as it may 

get affected by the varied skin color or illumination setup (Varith et al., 2003).    
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4.2.3. Crop-water stress monitoring 

Using thermal images, crop-water stress can be identified by monitoring canopy temperature 

and conductance. To detect crop water stress, (Jackson et al. 1981) evaluated the crop water 

stress index (CWSI). 

 

 

 

Here, Ta denotes air temperature, Tc denotes canopy temperature, LL and UL are lower and 

upper limits respectively. Several formulations are there which vary according to the 

approach applied to determine UL and LL (Agam et al., 2013; Gonzalez-Dugo et al., 2014; 

Gonzalez-Dugo et al. 2013) recommended that temperature measurement of shaded leaves is 

much reliable indicator of leaf temperature. 

 

4.2.4. Disease and pathogen detection 

It can prove crucial for farmers and agricultural managers if plant diseases and insect 

infestation is detected early. It can reduce the loss due to these threats and erstwhile support 

the economy (Teke et al., 2013). The physiological state of the infected tissue during 

pathogenic infection is altered and causes changes in photosynthesis rate, transpiration, 

stomal conductance and can even cause cell death (Xu et al., 2006). Foliar pathogens such as 

leaf spots or rusts which often influence the entire plant or plant organs (Mahlein, 2016) can 

be directly detected by advanced optical sensor technology. For pre-symptomatic diagnosis of 

biotic stresses, thermal imaging is an exceptional choice for providing information before the 

emergence of visible necrosis on leaves by visualizing and analyzing the difference in 

temperature between infected and non-infected leaves (Ishimwe, Abutaleb, and Ahmed, 

2014). Thermal sensors are way far effective in the detection of disease-induced early 

changes in plants respiration, transpiration and leaf temperature as compared to optical, 

multispectral and hyperspectral sensors (Mahlein, 2016; Mahlein et al., 2012; Stoll et al., 

2008). However, hyperspectral remote sensing is an economical and powerful option for 

learning the spatial distribution of invasive plant species (Evangelista et al., 2009). The 

structure and chemical composition of the tissues during pathogenesis is highly pathogen-

specific and thus influences the reflectance (Maes and Steppe, 2019). 
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4.3. Soil characteristic mapping 

It is beneficial in agricultural management and development to understand various 

characteristics of the soil. In past, soil sampling and analysis were done to study the soil 

characteristics which were very slow and unable to provide required information efficiently 

(Zribi et al. 2011). Some of the soil quality parameters are explained below.  

 

4.3.1. Soil salinity detection 

Soil salinity causes severe degradation in the environment that disrupts crop growth and 

global-regional production (Abbas et al., 2013). For augmentation of soil affected with 

salinity, it is requisite to identify the soil type, exact location and affected area. It is expedient 

in interpreting salt-affected areas through optical remote sensing techniques (Saha, 2011). 

However, thermal imageries can also be used for the extraction of soil salinity as emitted 

radiance can provide subsoil information that cannot be harnessed through reflected radiation 

(Ben-Dor et al., 2008). 

 

4.3.2. Soil moisture detection  

Soil serves as a solvent as well as a carrier of nutrients needed for plant growth, it also 

regulates temperature, influences farm operations, supports microbial activities and performs 

as a nutrient itself. Hence, monitoring soil moisture from time to time is a necessity 

(Ramachandra, 2006). (Shafian and Maas, 2015) used raw digital count data in the visible-

red, NIR and thermal bands from Landsat satellite images to develop the perpendicular soil 

moisture index (PSMI) which is correlated with observed soil moisture.  

 

4.3.3. Soil texture analysis 

Soil texture is a property of soil that can indicate other physical and chemical properties of 

soil like soil grain structure, hydraulic properties, porosity, nutrient retention ability, etc. that 

influence crop productivity. It also influences soil water content which in turn affects the land 

surface temperature (Mattikalli et al., 1998). (Wang et al., 2015; De-Cai et al., 2012) 

demonstrated the use of thermal remote sensing to evaluate soil texture at a regional extent by 

analyzing the differences in land surface temperature in a relatively similar climatic 

condition. 

 

4.4. Precision farming practices 

Precision agriculture is the management of farms by observing and giving responses to 

various changes in the intra field to increase the returns on inputs without changing the 
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resources. It helps to locate the exact position of the field and is based on remote sensing 

technology, GIS and GPS/GNSS technology. Precision agriculture opposes conventional 

farming practices of equally applying the herbicide, pesticide and fertilizers in the whole area 

without observing the variability within the area. The advancement of remote sensing 

technology and reduction in the cost of sensors enabled the farmers to harness precision 

agriculture practices. NASA accentuated the importance of these technologies in the early 

decade of the current century and emphasized commercializing geospatial technologies and 

developing tools for producers and agricultural managers (Nellis et al., 2009).   

 

4.4.1. Irrigation scheduling 

Agricultural production needs water to meet crop water demand which is done through 

irrigation as non-availability of rainfall in every season (Pinter Jr et al., 2003) By maintaining 

the irrigation efficiency, farmers can maximize their profit. There are primarily four factors 

that quantify the need for irrigation i.e. crop water need, amount of precipitation, the 

efficiency of irrigation system and soil moisture (Rhoads and Yonts, 2000). (Panigada et al., 

2014) states that by combined use of hyperspectral indices, fluorescence and thermal images 

good results can be insured for irrigation scheduling and crop-water stress identification. 

 

4.4.2. Crop yield estimation 

Estimation of crop yield is one of the most significant sectors of precision farming techniques 

that can offer the greatest benefit. It can help farmers with decision-intensive work like crop 

insurance, harvesting, storage requirements and cashflow budgeting (Khanal et al., 2017). 

Crop yield is closely related to the electrical conductivity of soil which further determines the 

characteristics and texture of soil (Bajcsy and Groves, 2004). The studies done by (Yang, 

2009) showed that airborne multispectral and hyperspectral images can be used efficiently in 

the determination of the spatial patterns in the plants’ growth and yield before harvesting. 

Airborne images give better results than satellite images due to their finer spatial resolution 

(Teke et al., 2013).  

  

5. CONCLUSION 

This review paper has concisely discussed the current advancement and potential application 

of remote sensing in precision agriculture. These potential applications are soil characteristic 

mapping, precision farming practices, soil salinity detection, disease and pathogen detection, 

crop-water stress monitoring, crop monitoring, irrigation scheduling, soil texture analysis, 

soil moisture detection and soil texture analysis. Precision agriculture can potentially reduce 
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the use of chemicals in crop production, efficient use of water resources, and helps in cost 

reduction in various agricultural processes by combined use of remote sensing GIS and GPS 

technology. UAV technologies and stress to achieve greater precision in agriculture act as a 

catalyst for increased integration of remote sensing in agricultural decision-making.  
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