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ABSTRACT 

Provision of punctual and reliable services are one of the major goals 

in railway operation and management. Due to the complexities 

involved in railroad operations planning, there are several limited 

possibilities to improve railroad infrastructure respective to the 

increase of rail traffic and customer demands. It is very important to 

develop innovative operation management strategies to make optimum 

use of the existing capacity, improve profitability and the overall level  

of rail service Train scheduling is an important stage in railway operations planning process 

and it is used as the basis for railroad organization. In this paper a mathematical 

programming model is developed as a support tool to schedule trains on single-track railway 

networks as well as a planning tool to assess the impact of changes in traffic demand and 

railroad infrastructure. The single-track train scheduling problem is formulated as a variable-

based cumulative flow model with to minimize the total train travel time, under a set of 

operational and safety constraints. By reformulating the infrastructure capacity using a vector 
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of cumulative flow variables on a time-space network, the model enables the decomposition 

of the original complex train routing and scheduling problem into a sequence of multiple 

single-train optimization sub-problems to optimize the routes and passing times of each train 

at each station along the route. The physical railway network is constructed in NEXTA-Rail 

Network Editor and an open- source train scheduling package FastTrain is used to solve the 

proposed model. FastTrain combines an effective time-dependent shortest path algorithm in 

Lagrangian relaxation solution framework and a priority rule-based implementing algorithm 

to provide feasible solutions with useful quality measures. The developed model is verified 

on Mombasa-Nairobi SGR line. The impact of varying the traffic demand by increasing the 

number of trains as well as opening the reserved passing stations on this network is discussed. 

In the network constructed with 33 stations, the average travel time of trains is generally 

higher than in the network with 45 stations. The average train travel time increases with 

increasing traffic demand in both networks. The network with more passing stations could also 

accommodate more traffic demand. The results obtained from this research can be directly 

used as a basis for railroad operations and infrastructure planning, as well as framework for 

further studies on the capacity of this line. 

 

KEYWORDS: Single-track, Train scheduling, Cumulative flow, Lagrangian Relaxation, 

mixed integer linear programming. 

 

1. INTRODUCTION 

Railway transportation is an energy efficient mode of transportation for people and cargo, it 

plays a key role in the development of a country’s economy. In many countries railway 

transport has facilitated passenger transportation, large-scale freight movement and helped to 

alleviate highway congestion. Being a sustainable and environmentally friendly mode of 

transportation, many countries are improving and expanding their railway networks as an 

alternative mode of transportation. 

 

Therefore, rail transport is a capital-intensive means of transport and proper management, 

and planning is essential to ensure the profitability of railway enterprises in highly 

competitive transportation markets. To increase the market share, it is important for rail 

service providers to offer reliable services while at the same time ensuring the safety, 

economic and environmental sustainability of the rail transport system. With the dynamically 

changing environment, technological advancement and increasing transport demands, railway 

companies must constantly upgrade the efficiency of their operations. Due to the complexity 
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of these operations, limited possibilities of improving railroad infrastructure, increasing 

railroad traffic and customer demands, developing innovative operation management strategies 

while making use of the existing capacity is key in improving the level of rail service. 

Timetabling is an important planning stage in railway operation management and has a 

significant contribution to the attraction of travelers and shippers and the general level of rail 

service. With increase in traffic demand on a railway network, problems with safety, 

punctuality, reliability, and service frequency begin to arise, hence the need for proper traffic 

management techniques. 

 

Until recently, train scheduling process was carried out manually in the developing countries 

based on the experience and expertise of timetable planners. However, as the rail networks 

become more complex and real-time dispatching operations more complicated, scheduling 

based on manual calculation becomes so time-intensive and ineffective, affecting reliability, 

punctuality, and overall service level. Due to the consequent need for improved techniques to 

solve complex scheduling problems, several computer-based methods have been studied and 

developed. Currently, several automated railway timetabling systems are being used in 

practice, thanks to the recent improvements in the computational power of computers and the 

available optimization techniques. Railway companies can achieve improved quality of the 

train operation diagram, improved service levels and reduced operational costs, while making 

optimum use of the available infrastructure. 

 

Due to high initial capital costs, a railway line must be designed as economically as possible 

and at the same time have sufficient capacity to meet the forecast demand.(Higgins, Ferreira et 

al. 1995). During the construction of the Mombasa-Nairobi Railway line, some of the designed 

passing stations were reserved for future construction because the line presently has low traffic 

demand and therefore train scheduling is not a major problem. However, passenger and freight 

volume on this section is predicted to increase every year and thus there is a need to study the 

implications on train scheduling that might arise due to increased traffic demand and opening 

of the reserved passing stations. 

 

The main goal of this research is to study the train scheduling problem for use as a decision 

support tool for transportation planners to schedule trains on a single-track line and to help in 

railroad operations planning. The problem will be formulated as a variable-based cumulative 

flow model with the objective of minimizing the total train travel time and solved in an open- 

source train scheduling package, in which a train-based Lagrangian relaxation framework 
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which provides an easy decomposition mechanism of the problem is used to obtain feasible 

schedules. The study will also evaluate the implications of the increase in traffic demand and 

railroad infrastructure changes on a railway network. Specifically, the study aims to: (1) To 

describe the development of a variable-based cumulative flow optimization model for the 

single-track train scheduling problem, to schedule trains subject to a set of operational and 

safety constraints. (2) To solve the proposed model to simultaneously optimize the routes and 

schedule of trains and output feasible solutions. (3) To investigate the impact of increasing the 

number of trains and the construction of more passing stations on the average train travel time. 

 

2. Related past work and motivation of the study 

Railway train scheduling problem is an important issue in railway operations planning and thus 

it has attracted considerable attention. Many studies devoted towards solving railway traffic 

management problems have been done in the past few decades. An overview of models and 

algorithms for real-time railway traffic management is presented in(Cacchiani, Huisman et al. 

2014, Corman and Meng 2014). A recent study by (Caimi, Kroon et al. 2017) provides an 

overview of the railway timetable design approaches with a comparison of the different 

optimization models and solution methods that have been proposed for solving the railway 

timetabling problem. 

 

The single-track train scheduling problem is known to be a NP-hard problem(Caprara, Fischetti 

et al. 2002) and optimal solutions are normally unattainable in large-scale and complex railway 

networks. , (B. 1973)formulated a mixed-integer programming model to determine the crossing 

and overtaking positions for trains with given routes and departure times on a single-track 

railway and designed a branch-and- bound algorithm to solve it. Considering the objective of 

minimizing delays and yet meeting traffic demands, (Carey 1994) developed a train pathing 

and timetabling mathematical model for complex rail networks with choice of lines, platforms, 

and routes. This model was further extended in(Carey 1994)for networks with one-way and 

two-way tracks.(Pellegrini, Marlière et al. 2014) proposed a mixed- integer linear programming 

formulation to search for the best train route and schedule in the event of real-time railway 

traffic management disruption. An integer programming model reformulation with cumulative 

flow variables based on the network is presented by(Meng and Zhou 2014), to 

simultaneously reroute and reschedule trains in an N-track network. Using a similar method, 

(Zhou and Teng 2016)developed an ILP model which was further reformulated as a path-

choice model of trains based on a space-time discretized network to simultaneously route and 
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schedule passenger trains on a rail network with both unidirectional and bidirectional tracks. 

 

Simulation and some heuristic approaches have been widely applied to solve the large- scale 

and real-world train timetabling problems in the recent years. This is due to the reason that they 

can usually obtain a satisfactory train timetable rather than the optimal one within an acceptable 

computing time.(Zhou and Teng 2016)A discrete event model of railway traffic was proposed 

by(Dorfman M J 2004)in which a local feedback-based travel advance strategy (TAS) is 

developed to simulate train advances along lines of the large-scale railway network and can 

quickly handle perturbations in the schedule. As far as heuristic algorithms are concerned, 

(Carey M 2007) developed an effective heuristic algorithm to help find and resolve conflicts 

in the draft train schedules in complex rail networks. 

 

Many studies have been devoted to efficient decomposition mechanisms to reduce the 

complexity of the models and heuristic algorithms to obtain feasible solution in reasonable 

computational time, e.g., in the train-based decomposition by(Lee Y 2009, Zhou and Teng 

2016, Liu L 2017). Other studies have employed classical Lagrangian relaxation of the 

conflicting constraints to decompose the problem into shortest path problems on time 

discretized networks. For instance, in (Brännlund, Lindberg et al. 1998) a Lagrangian 

relaxation solution approach has been used to separate the original train scheduling problem 

into train-based dynamic programs by relaxing track capacity constraints and assigning usage 

prices for them. 

 

A heuristic algorithm based on a Lagrangian relaxation of track capacity constraints is 

presented in(Cacchiani, Caprara et al. 2010) for a timetabling problem with both passenger and 

freight trains. The problem is modelled by a means of a space-time graph and using a 

generalization of the approach presented in(Caprara, Fischetti et al. 2002, Caprara, Monaci et 

al. 2006). 

 

3. Model formulation 

This section describes the formulation of a mathematical model for the single-track line train 

scheduling problem. The chapter introduces the conceptual illustration and notations, 

parameters, and variables, followed by the objective function and constraints considered in 

the formulation. 
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3.1.The Single-Track Train Scheduling Model Formulation 

A mathematical formulation for the is proposed based on a time-space network structure. 

Cumulative flow variables are taken to model the temporal and spatial occupancy of trains on 

railway tracks and safety time headways, jointly optimizing the routes and passing times at 

each station along the selected route of each train. This way, the original complex problem is 

thus decomposed into a sequence of multiple single train optimization sub- problems, which 

are easier to solve. The network cumulative flow model framework proposed by 
[3]

 is adapted. 

Whereas their model focuses on rerouting and rescheduling trains during perturbations, the 

formulation presented in this study addresses the tactical scheduling problem, since real time 

traffic management is beyond the scope of this research. 

 

3.2.Conceptual Illustration 

In this research, a rail network is viewed as a set of nodes and links. Nodes represent the 

intersections of station tracks, switch lines or a point where tracks are merging or diverging 

in the physical railway network. A station is represented as a sub-network consisting of a 

main track and several siding tracks corresponding to a set of links. In the proposed model, the 

track is modelled as a link and only one train is allowed on a link any given time. Each link 

connects two nodes, and it is assumed to be bidirectional so that trains can traverse the track 

from both directions. The length of a train is assumed to be zero for simplicity. Even though 

the model is flexible as regards the spatial granularity, it is proposed for a macroscopic 

network view, and the granularity of time taken as one minute for this network. 

 

A simple example of a rail network representation is illustrated in Figure 3-1. The single- track 

rail network consists of two stations with 10 nodes connected by bidirectional links. 

 

 

Figure 3-1: Bidirectional network with 10 nodes. 

 

Nodes (2, 3, 4, 5) represent station A, and nodes (6, 7, 8, 9) represents station B. With the route 

being modelled as a series of nodes and the track being modelled as a link in the proposed 
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model, the station minimum and maximum dwell times can be mapped as constraints on train 

traveling time in the corresponding link(s). For each link, input data such as free flow running 

time, safety headways and dwell time requirements are given. The earliest departure time, 

origin and destination for each train is also given. The train scheduling problem on the single- 

track railway network can be defined as follows: Assuming a network of railway stations and 

segments, the problem requires the determination of the arrival/departure times at every station 

for a set of trains 𝑓 ∈ 𝐹 from pre-specified origin stations to destination stations in each 

planning horizon 𝑡 = 1, … . 𝑇, where T is the length of the planning horizon. To capture the 

practical safety operational rules, the network is represented as a directed graph 𝐺 = (𝑁, 𝐸) 

with a set of nodes N and a set of links E. 

 

3.3.General Subscripts, parameters, and variables 

The general subscripts, parameters and decision variables of the proposed formulations 

are introduced in Tables 3-1, 3-2 and 3-3. 

 

Table 3-1: General subscripts. 

Symbol Description 

𝒊, 𝒋, 𝒌 Node index, 𝒊, 𝒋, 𝒌 ∈ 𝑵, N is the set of nodes 

𝒆 Link index, (𝒊, 𝒋), 𝒆 ∈ 𝑬, E is the set of links 

𝒑 

𝒎 

Route index,𝒑 ⊂ 𝑷, P is the set of all routes on a railway network 

Link sequence number along a route𝒑, 𝒎 ≤ 𝒏𝒑, np is the number of links 

 in route p 

𝒕 Scheduling time index, 𝒕 = 𝟏, … . 𝑻 T is the planning horizon 

𝒇 Train index,𝒇 ∈ 𝑭, F is the set of trains 

 

Table 3-2: Input parameters. 

Symbol Description 

𝒑 

𝑷𝒇 

𝑬𝒇 

𝑭𝑻𝒇(𝒊, 𝒋) 
𝑬𝑺𝑻𝒇 

𝒘𝒎𝒊𝒏(𝒊, 𝒋) 

𝒇 

𝒘𝒎𝒂𝒙(𝒊, 𝒋) 

𝒇 

𝒈 

𝒉 

𝒐𝒇 
𝒔𝒇 
𝑬𝒐𝒔(𝒊) 

Set of sequenced links of route 𝒑, B𝑬𝒑B = 𝒏𝒑| 

Set of possible routes on which train f may run, 𝑷𝒇 ⊂ 𝑷 

Set of links train 𝒇 may use, 𝑬𝒇 ⊂ 𝐄 

Free flow running time for train 𝒇 to traverse link (𝒊, 𝒋) Predetermined 

earliest start time of train f at its origin node Minimum dwell time for train 𝒇 

on link(𝒊, 𝒋), (𝒊, 𝒋) ∈ 𝛀 

Maximum dwell time for train 𝒇 on link (𝒊, 𝒋), (𝒊, 𝒋) ∈𝛀 Safety time 

headway between occupancy and arrival of trains Safety time headway 

between departure and release of trains 

Origin node of train 𝒇 

Destination node of train 𝒇 

Set of links starting from or ending at node 𝒊 
Set of links starting from node 𝒊 
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𝑬𝒐(𝒊) 
𝑬𝒔(𝒊) 
𝛀 

𝒄𝒂𝒑(𝒊, 𝒋, 𝒕) 

Set of links ending at node 𝒊 
Set of cells that allow dwell time, representing siding tracks in stations 

Flow capacity on link (𝒊, 𝒋) at time t,𝒄𝒂𝒑(𝒊, 𝒋, 𝒕) = 𝟎 due to maintenance of 

link (𝒊, 𝒋) at time 𝒕, otherwise 𝒄𝒂𝒑(𝒊, 𝒋, 𝒕) = 𝟏. 

 

Table 3-3: Decision variables. 

Symbol Description 

𝑇𝑇+(𝑖, 𝑗) Running time of train 𝑓 on link (𝒊, 𝒋) 
Binary train routing variables, 𝑥+(𝑖, 𝑗) = 1if train 𝑓 selects link 

(𝒊, 𝒋),otherwise, 𝑥+(𝑖, 𝑗) = 0 

0-1 binary time-space occupancy variables for time-space network, 

𝑦+(𝑖, 𝑗, 𝑡) = 1 if train 𝑓 occupies link (𝒊, 𝒋)at time 𝑡, and otherwise,𝑦+(𝑖, 𝑗, 
𝑡) = 0. 

0-1 binary cumulative arrival flow variables, 𝑎+(𝑖, 𝑗, 𝑡) = 1 if train 𝑓 

has already arrived at link (𝒊, 𝒋)by time 𝑡, and otherwise 𝑎+(𝑖, 𝑗, 𝑡) = 0. 

0-1 binary cumulative departure flow variables,𝑑+(𝑖, 𝑗, 𝑡) = 1, if train 

𝑓 has already departed from link (𝒊, 𝒋)by time 𝑡, and otherwise 

𝑑+(𝑖, 𝑗, 𝑡) = 0. 

𝑥+(𝑖, 𝑗) 

𝑦+(𝑖, 𝑗, 𝑡) 

 
𝑎+(𝑖, 𝑗, 𝑡) 

𝑑+(𝑖, 𝑗, 𝑡) 

 

3.4. Objective Function 

The objective function in the model aims to minimize total trip completion time of all trains 

from the origin node to the destination node. 

 

 

3.4.1. Flow balance constraints 

Constraints (2), (3) and (4) ensure flow balance on the network at the origin node, intermediate 

nodes, and the destination node of train 𝑓 respectively. 
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+ 

3.4.2. Time-space network constraints 

Constraints (5) and (6) ensure that trains do not depart earlier than predetermined earliest 

starting time at their origin nodes. While constraints (7) represent the transition within the link, 

constraints (8) ensure link-to-link transition by guaranteeing that 𝑎+(𝑗, 𝑘, 𝑡) = 𝑑+(𝑖, 𝑗, 𝑡) if the 

adjacent links 𝑖, 𝑗 and 𝑗, 𝑘) are both used by train 𝑓. 

Constraints (9) are imposed to map the variables 𝑎+(𝑖, 𝑗, 𝑡)in time-space network to the 

variables 𝑥+(𝑖, 𝑗) in the physical network, hence describing whether link 𝑖, 𝑗 is selected by train 

𝑓 to traverse the network from its origin to destination. 

(1) Starting time constraints at the origin node 

 

(2) Mapping constraints between time-space network and physical network 

𝑥+(𝑖, 𝑗) = 𝑎+(𝑖, 𝑗, 𝑇), ∀𝑓, (𝑖, 𝑗) ∈ 𝐸+ 

Running time and dwell time constraints 

While the running time for train f at link 𝑖, 𝑗 can be calculated by equation (10), constraints 

(11) and (12) enforce the required minimum running time as well as the minimum and 

maximum station dwell times respectively. In this study, 𝑤𝑚𝑎𝑥(𝑖, 𝑗) is taken as 1 hour. 
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 + 

3.4.3. Safety headways and capacity constraints 

Constrains (13) link time-space occupancy variables and cumulative arrival/departure variables 

of train 𝑓 by mapping 𝑦+(𝑖, 𝑗, 𝑡) with 𝑎+(𝑖, 𝑗, 𝑡 + 𝑔)and 𝑑+(𝑖, 𝑗, 𝑡 − 𝑕)if train f has started occupying 

link 𝑖, 𝑗 by time 𝑡, 𝑦+(𝑖, 𝑗, 𝑡) = 1, otherwise 𝑦+(𝑖, 𝑗, 𝑡) = 0. If train 𝑓 has ended occupying link 𝑖, 𝑗 

by time 𝑡, then 𝑑+(𝑖, 𝑗, 𝑡) ≥ 𝑑+(𝑖, 𝑗, 𝑡 − 1), ∀𝑓, (𝑖, 𝑗) ∈ 𝐸+, 𝑡, otherwise 0. 

Furthermore, constraints (14) enforce safety time headways by ensuring that the number of 

trains occupying link 𝑖, 𝑗 is less than the capacity of the respective link. 

 

3.4.4. Time-connectivity constraints 

Constraints (15Error! Reference source not found.) and (16) represent time connectivity for 

cumulative flow variables. 

If train 𝑓 has arrived at or departed from link 𝑖, 𝑗 by time 𝑡, then either 𝑎+(𝑖, 𝑗, 𝑡) or 𝑑+(𝑖, 𝑗, 𝑡) 

must have a value of 1 in all later time periods, such that 𝑡>
 ≥ t. 
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4. Solution Approach 

4.1. Space-Time Representation of Physical Rail Network 

The train scheduling problem requires to precisely model spatial and temporal occupancy of 

trains on the physical infrastructure with respect to various safety headway constraints. The 

solution approach presented in (Meng and Zhou 2014) is adopted. In the train scheduling 

software package FastTrain, the input physical network is transformed into a space-time 

network according to discretized time units and constructed arcs. The network 𝐺 is extended 

into a space-time network 𝑇𝑆𝐺 = (𝑉, 𝐴) for each train 𝑓. Each node 𝑖 in set 𝑁, is extended 

into a set of vertices (𝑖, 𝑡) in the set of time-space network at each interval 𝑡 in the planning 

horizon, 𝑡 = 1,2, …, 𝑇. Three types of arcs in the extended time-space network are defined to 

consider the feasible transitions allowed in the network, i.e., link traveling arcs (some allow 

dwelling while others do not), link waiting arcs at the origin link and dummy arcs at the 

destination node. 

 

Through the different types of arcs, the state transition is restricted by setting an infinitely large 

cost for arcs which are invalid or infeasible so that the standard shortest path algorithm can 

be adapted for train path choice. The mapping constraints (9) between the physical network 

and the time-space network, and the flow balance constraints (2)-(4) on each link and the 

origin/destination nodes are considered by the network representation. The link occupancy 

capacity constraints (13) and (14) will be considered through the resource costs in the label 

correcting algorithm discussed in section 4.5. 

 

As illustrated in Figure 4-1, the physical network with 4 nodes and 5 links (on the left) is 

transformed into the link-based space-time network on the right. 

 

 

Figure 4-1: Extended space-time network representation of the physical network. 

 

A set of binary-based cumulative flow variables 𝑎+(𝑖, 𝑗, 𝑡) and 𝑑+(𝑖, 𝑗, 𝑡) is introduced to 

represent link occupancy in the extended space-time network, where; 𝑎+(𝑖, 𝑗, 𝑡) = 1 if train 
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+ 

𝑓has already arrived at link (𝑖, 𝑗) by time, t, and otherwise 𝑎+(𝑖, 𝑗, 𝑡) = 0. 𝑑+(𝑖, 𝑗, 𝑡) = 1 if train 

𝑓 has already departed from link (𝑖, 𝑗) by time, and otherwise 𝑑+(𝑖, 𝑗, 𝑡) = 0. 

 

4.2. Transformation of Network Inflow Variables into Cumulative Flow Variables 

To model both temporal and spatial occupancy of trains on tracks as well as safety time 

headways between trains, inflow variables are linked with cumulative flow variables. The 

cumulative flow decision variables enable a simultaneous train routing and scheduling solution 

approach, which implicitly enumerates all possible routes in the extended space-time network 

and jointly optimizes train routes as well as the train arrival and departure times. 

 

A  set  of  network  flow  variables  𝑢+(𝑖, 𝑗, 𝑡)and  𝑢>
 

(𝑖, 𝑗, 𝑡) are used into represent the route 

selection and the corresponding arrival and departure times of train 𝑓. These binary network 

inflow variables are linked to the cumulative flow variables by equations (17) and (18). 

 

Where 𝑢+(𝑖, 𝑗, 𝑡) = 1 represents train 𝑓 arriving at the upstream node 𝑖 of link (𝑖, 𝑗) at 

time 𝑡, 𝑢+(𝑖, 𝑗, 𝑡) = 0 otherwise; 𝑢′
 (𝑖, 𝑗, 𝑡) = 1 represents train 𝑓 departing from the 

downstream node 𝑖 of link 𝑖, 𝑗 at time 𝑡"
, 𝑢′

 (𝑖, 𝑗, 𝑡) = 0, otherwise. Figure 4-2 depicts an 

illustration on the usage of cumulative arrival/ departure variables to describe variables to 

describe link selection and arrival/departure times for train 𝑓 at link (1,2). 

 

 

Figure 4-2: Transformation of inflow variables into cumulative flow variables. 

 

In figure 4-2 (a) above, train 𝑓 arrives at link (1,2) at time 𝑡 = 8 and departs at time 𝑡 = 10 

with 𝑢 = (1,2,8) = 1 and 𝑢>(1,2,10) = 1. In terms of cumulative flow variables as depicted in 

figure 4- 2(b), 𝑎+(1,2, 𝑡) = 0 for 𝑡 < 8 and 𝑎+(1,2, 𝑡) = 1, for 𝑡 ≥ 8; 𝑑+(1,2, 𝑡) = 0 for 𝑡 < 

10, and 𝑑+(1,2, 𝑡) = 1 for 𝑡 ≥ 10. Moreover, 𝑎+(𝑖, 𝑗, 𝑇) = 1 demonstrates that the link (𝑖, 𝑗) is 

+ 
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used by train 𝑓 to traverse the network, where T represents the planning horizon. 

 

4.3. Modelling Safety Headways by Cumulative Flow Variables 

To model the safety headway and spatial occupancy of trains, a set of shifted cumulative flow 

variables 𝑎+(𝑖, 𝑗, 𝑡 + 𝑔) and 𝑑+(𝑖, 𝑗, 𝑡 − 𝑕) is introduced to represent whether train 𝑓 starts or 

ends occupying link by time 𝑡, by considering minimum safety time headways 𝑔 and 𝑕 . the 

spatial occupancy of train 𝑓 is represented through the equation 𝑦+(𝑖, 𝑗, 𝑡) = 𝑎+(𝑖, 𝑗, 𝑡 + 𝑔) − 

𝑑+(𝑖, 𝑗, 𝑡 − 𝑕); where 𝑦+(𝑖, 𝑗, 𝑡) is a set of 0-1 binary occupancy variables with 𝑦+(𝑖, 𝑗, 𝑡) = 1, 

if train 𝑓 occupies link (𝑖, 𝑗) at time 𝑡, and otherwise 𝑦+(𝑖, 𝑗, 𝑡) = 0. The planning horizon is 

discretized and denoted by integers from time index 1 to T. For instance, if 𝑔 = 𝑕 = 1, the grey 

rectangular block in figure 4-3 corresponds to 𝑦+(𝑖, 𝑗, 𝑡) = 1 for 𝑡 = 7 … 10, and 𝑦+(𝑖, 𝑗, 𝑡) = 0 

otherwise, which implies that train 𝑓 occupies link (𝑖, 𝑗) from 7 minutes to time 10 minutes. 

 

 

Figure 4-3: Spatial occupancy of link 𝑖, 𝑗 by train 𝑓. 

 

An illustration of a single-track case is depicted in figure 4-4. A directed 𝑒 from station 𝑖 to 𝑗 

and 𝑒>
from station 𝑗 to 𝑖 is introduced to allow trains to run on opposite directions. Considering 

train 𝑐𝑎𝑝(𝑖, 𝑗, 𝑡) using link  𝑒 and train 𝑓 >
using link 𝑒>

. Since links 𝑒 and 𝑒>
correspond to the 

same segment, a constraint 𝑦+(𝑖, 𝑗, 𝑡) + 𝑦+𝘍 (𝑖, 𝑗, 𝑡) ≤ 1 can be used to model the safety 

headway requirement between the two trains. Specifically, 𝑦+(𝑖, 𝑗, 𝑡) + 𝑦+𝘍(𝑖, 𝑗, 𝑡) = 1 for 𝑡 

between 3 and 9,11 and 16. Furthermore 𝑦+(𝑖, 𝑗, 𝑡) + 𝑦+𝘍(𝑖, 𝑗, 𝑡) = 0 for 𝑡 between 0 and 3, 9 

and 11 (indicates 2 time units buffer time), 16 and 25. 
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Figure 4-4: Two links corresponding to a single-track segment 𝑙 from station 𝑖 to 𝑗. 

 

Based on the variables 𝑎+(𝑖, 𝑗, 𝑡), 𝑑+(𝑖, 𝑗, 𝑡) and 𝑦+(𝑖, 𝑗, 𝑡) safety headways 𝑔 and 𝑕, 

and 𝑐𝑎𝑝(𝑖, 𝑗, 𝑡), the basic safety headway constraints are simply modeled by constraints (13) 

and (14) can decouple the original train scheduling problem into many train-specific sub-

problems. The decomposition mechanism is later used in a Lagrangian Relaxation 

mechanism. 

 

4.4. Lagrangian Relaxation Solution Framework 

In the Lagrangian relaxation framework, the capacity constraints of the network are relaxed, 

and resource prices updated by Lagrangian multipliers. The original TSP is decomposed into a 

set of train-based sub-problems and a label correcting based algorithm is employed to 

determine the least time-dependent shortest path and compute the lower bound of each train 

traversing the network. Lagrangian profits for each of the trains are computed and a priority- 

based heuristic algorithm is then used to construct feasible solutions and calculate the 

optimality gap, upon which a termination condition is set. If the termination condition is met, 

the algorithm outputs the feasible solution and computational results at the current iteration. 

 

Otherwise, a sub-gradient method updates the Lagrangian multipliers and moves to the next 

iteration. 
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A set of non-negative Lagrangian multipliers 𝜌i,6,𝑡 is introduced as the cost incurred for 

utilizing a resource i.e., link (𝑖, 𝑗) at time 𝑡; and 𝜌 represents the iteration number. The original 

TSP is decomposed into a set of train-based sub-problems 𝐿𝑅+ as in equations (20) and (21). 

 
 

In a sub-problem with train f, the objective is to find the time-dependent least generalized cost 

path of train f from its origin node to its destination node. The generalized cost includes the 

schedule cost and the resource cost. For train f traversing a network from the origin to the 

destination nodes, schedule cost refers to the total travel time of train f, while the resource cost 

(the second portion of equation (21) is computed by summing 𝜌i,6,𝑡 over all selected links 

within associated time spans. 

 

A label-correcting based time-dependent shortest path algorithm is used to solve each sub- 

problem. Lagrangian profits for each train are computed after solving the train-based sub- 

problems, and then the trains are ranked by decreasing values of the Lagrangian profits. The 

Lagrangian profit of each train is the ratio of total free-flow travel time to the total travel time 

in the dual solution. A heuristic algorithm based on priority rules is then used to transform dual 

solutions into feasible solutions. Train priority is determined by the corresponding Lagrangian 

profits. The optimality gap at current iteration is computed based on the dual solutions and 

feasible solutions, and then the algorithm checks whether the termination condition is met. The 

termination criterion is set as: if 𝑞 > 𝑄𝑚𝑎𝑥 (a predetermined maximum number of iterations), 

then algorithm ends. 

 

If the termination condition is met, the algorithm outputs feasible solutions along with the 

corresponding quality measures (i.e., optimality gap). Otherwise, a subgradient method is 

invoked to update Lagrangian multipliers and then move to the next iteration. The subgradient 

method iteratively adjusts the resource prices by setting: 
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𝑖,𝑗,𝑡 

 

 
Where the superscript 𝑞 is the iteration index used in the dual updating procedure, while 𝜌𝑞 

and 𝛼𝑞 denote the link multiplier values and step size at iteration 𝑞, respectively. In the 

optimum search process, the step size parameter is updated as 𝛼𝑞 = 1⁄(𝑞 + 1) and after a certain 

number of iterations, we stop reducing 𝛼𝑞. 

 

4.5. Time-Dependent Shortest Path Algorithm 

The framework for the label correcting algorithm for solving the time-dependent least cost path 

problem is based on an extended time-space network. To compute 𝑚𝑖𝑛 ∑+ 𝐿𝑅+in equation, 

the least cost path problem must be solved through a link-based network 𝑚𝑖𝑛𝐺 = (𝑁, 𝐸). All 

resource prices i.e., Lagrangian multipliers are submitted to be 0 and after label connecting 

process in step 2, each vertex has its least cost label and preceding vertex. A list of symbols is 

introduced in Table 4-1 and the shortest path algorithm is then detailed. 

 

Table 4-1: Notation for the time-dependent shortest path algorithm. 

Symbol Description 

𝑠 

𝑟 

Θ(𝑖, 𝑡) 
𝜆𝑠(𝑗, 𝑡) 
𝜋𝑠(𝑗, 𝑡) 
 

𝜍i,6 

∆i,6(𝑡) 
𝖯i,6(𝑡, 𝑡 + 𝜍i,6 

+ ∆i,6(𝑡)) 
Γ(𝑖, 𝑡) 

Origin node, corresponding to 𝑜+ Destination node, corresponding to 

𝑠+ The corresponding node of vertex (𝑖, 𝑡) 
The least cost from vertex (𝑠, 𝐸𝑆𝑇+) to vertex(𝑗, 𝑡) 
The preceding least cost vertex (𝑗, 𝑡>

) denoted as time-space vertex 

(𝑖, 𝑡) 
Free flow running time of link (𝑖, 𝑗), corresponding to 𝐹𝑇𝑓(𝑖, 𝑗) 
Waiting time of link (𝑖, 𝑗) at time 𝑡 
Resource cost of using link (𝑖, 𝑗) at time 𝑡 to 𝑡 + 𝜍i,6 + 

∆   (𝑡), 𝖯 n𝑡, 𝑡 + 𝜍 + ∆ (𝑡)p = ∑𝑡B𝜍i,jB∆i,j(𝑡) 𝜌 

i,6 i,6 i,6i,6 EH𝑡 i,6,E 

Set of outgoing vertexes of vertex 

 

Input: Networks G and TSG origin node 𝑠(𝑖. 𝑒. , 𝑜+), destination node 𝑟(𝑖. 𝑒. , 𝑜+, starting time 

𝑡(𝑖. 𝑒. , 𝐸𝑆𝑇+ and resource cost vector 𝜌 at current iteration. 
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Output: The least cost path from 𝑠 to 𝑟, at time 𝑡. 

Step 1: Initialization 

Create an empty SE list, set 𝜆𝑠(𝑗, 𝑡) = ∞, ∀𝑗 ∈ 𝑁⁄{𝑠} , 𝑡 = 1, … , 𝑇; 𝜆𝑠(𝑠, 𝑡) = 

0, ∀𝑡 = 1, … , 𝑇; 𝜋𝑠(𝑠, 𝑡) = ∅, ∀𝑡 = 1, … , 𝑇; insert the source vertex (𝑠, 𝑡) into the 

𝑆𝐸 list. 

Step 2: Label updating While SE list is not empty do 

Pop up the front vertex from the SE list, denoted by (𝑖, 𝑡) 

 

Update preceding vertex by setting 𝜋𝑠 n𝑗, 𝑡 + 𝜍i,6 + ∆i,6(𝑡)p to time- space vertex (𝑖, 𝑡) 

If vertex (𝒋, 𝒕>), i.e., vertex n𝑗, 𝑡 + 𝜍i,6 + ∆i,6(𝑡)p, has been in the SE list, 

Then 

Add vertex (𝑗, 𝑡>) to the front of SE list; 

Else Add vertex (𝑗, 𝑡) to the back of SE list; 

End End// Updating node cost label End // for each link waiting time 

End // for each possible starting time 

End// for each vertex 

Remove vertex (𝑖, 𝑡) from the SE list. 

End Step 3: Fetch the time-dependent shortest path 

Step 3.1: Sind the vertex (𝑗∗, 𝑡∗) corresponding to the destination node 𝑟 and with the least 

cost; Set vertex (𝑗∗, 𝑡∗) as the current vertex (𝑘, 𝑡); 
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Step 3.1: Backtrack from the destination node 𝑟 to node 𝑠; 

While vertex 𝑘, 𝑡 is not corresponding to the origin node 𝑠; 

(1) Find the preceding vertex (𝑖, 𝑡>)of the current vertex (𝑘, 𝑡); 

(2) Update the preceding vertex (𝑖, 𝑡>) as the current (𝑘, 𝑡). 

End 

Step 3.3: Reserve the backward path and output the least cost path from 𝑠 to (𝑟) 
at (𝑡); 

Step 3.4: Terminate the algorithm. 
 

 

4.6. Priority Rule-Based Algorithm 

At each lagrangian iteration, a feasible solution based on priority rules is constructed to 

improve the upper bound estimate of the optimal solution. The priority rule implementing 

algorithm is detailed as below. 

 

Priority rule-based implementing algorithm 

Input: Network G, train set F, origin node 𝑜+, destination node 𝑠+, earliest departure time 

𝐸𝑆𝑇+ for each train 𝑓. 

Output: The routes and passing times at each station for each train 𝑓, and the updated upper 

bound. 

Step 1: Train priority ranking 

Rank the trains by decreasing values of Lagrangian profits. The Lagrangian profit of each 

train is the ratio of total free-flow travel time divided by total travel time in the dual solution. 

Step 2: Schedule trains one by one 

Step 2.1: For the train 𝑓∗ with the highest priority, apply the shortest path algorithm 

introduced in Section 3.2.2 to find its route and passing times at each station; 

Step 2.2: Fix the route and passing times at each station for train 𝑓∗; record the capacity usage 

of train 𝑓∗on network G; 

Step 2.3: If all trains have been scheduled, move to Step 3, otherwise, loop back to Step 2.1. 

Step 3: Update and output upper bound 

Step 3.1: Compute the objective value of the heuristic solution obtained by step 2; 

Step 3.2: Update the upper bound using the new objective value; 

Step 3.3: Output the route, passing time at each station, and the new upper bound at the 

current Lagrangian iteration. 
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5. Numerical experiments, Results and Analysis 

In this section, the proposed TSP model and solution approach proposed is applied to solve the 

train scheduling problem for the Mombasa-Nairobi SGR line. 

 

The model was then implemented in FastTrain on a 1.61GHz Intel(R) Core (TM) m3- 7Y30 

CPU with 4 GB of RAM. The current and long-term networks were used, and different number 

of trains were considered in each case (from 2 to 36) with a planning horizon, T = 1440 min. 

The program was allowed to terminate after 10000 iterations, before which feasible solutions 

were obtained in all instances. The output results provided values of the total travel time, total 

resource price, total trip time as well as the corresponding quality measures. 

 

5.1. Results and analysis 

The output results provided values of the total travel time, total resource price, total trip time, 

computational time, upper bound (UB) and lower bound (LB) values with a corresponding 

optimality gap. The lower bound and upper bound tend to become better with an increase of 

number of Lagrangian iterations. Considering the total travel time as the objective value, 

feasible results with the least optimality gap are considered. In the analysis, train schedules for 

the current (short-term) and long-term networks are obtained and compared. 

 

Table 5-2 below shows the total travel times, upper bounds, lower bounds, and the 

corresponding optimality gap for different number of trains when scheduled in both the current 

and the long-term networks. 

 

Table 5-2: Results. 

 Current network (33 stations) Long-term network (45 stations) 

No. of 

Trains 

Total travel 

time (min) 

Lower 

Bound 

Upper 

Bound 

Optimality 

Gap 

Total travel 

time (min) 

Lower 

Bound 

Upper 

Bound 

Optimality 

Gap 

2 734 719 113 0.27 7 731 102 0.288 

4 161 1554 260 0.36 1 1570 244 0.359 

6 238 2286 332 0.31 2 2308 328 0.298 

8 330 3473. 454 0.23 3 3395.5 449 0.245 

1 426 4501. 561 0.19 4 4409.1 546 0.193 

1 495 5411. 654 0.17 5 5263.3 646 0.186 

1 570 6526. 754 0.13 5 6252.3 761 0.179 

1 667 7520. 891 0.15 6 7135.6 891 0.199 

1 754 8674. 996 0.12 7 8202.4 104 0.212 

2 879 9863. 112 0.12 8 9297.2 114 0.189 

2 961 11112 126 0.12 9 10387. 124 0.165 

2 106 12134 145 0.16 1 11515. 138 0.167 

2 111 13363 153 0.13 1 12478. 144 0.139 
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2 - - - - 1 13604. 165 0.176 

3 - - - - 1 14710. 168 0.126 

3 - - - - 1 15920. 187 0.151 

3 - - - - 1 17657. 205 0.141 

3 - - - - 1 18255. 221 0.177 

 

5.2. Analysis of Traffic Demand on Average Train Travel Time 

Feasible schedules were obtained for a both the current network with 33 stations and the long- 

term network with 45 stations. As illustrated in figure 5-3 below, for a given number of trains, 

the average train travel time for the network with more sidings is lower than the average traiz 

travel time for the network with lesssidings. Notably, with an increase in traffic demand, there 

is a corresponding increase in the average train travel time. 

 

 

Figure 5-3: Effect of Traffic Demand on Average Train Travel Time. 

 

As can be noted from Figure 5 above, the average train travel time increases with an increase 

in the number of scheduled trains for both networks under consideration. Moreover, for any 

given number of trains, the corresponding total travel time on the current network is generally 

higher than the total travel time on the long-term network. For the current network, optimal 

schedules could only be obtained for a maximum of 26 trains while the long-term network 

could take more trains. 

 

5.3. Analysis of Traffic Demand on the Optimality Gap 

The optimality gap is a relative difference between upper and the lower bound, given by the 

equation 
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Figure 5-4: Effect of Travel Demand on the Optimality Gap. 

 

The optimality gap decreases with the increasing number of iterations and then stabilizes. With 

an increase in the number of trains, the optimality gap decreases sharply at first and then with 

more trains, the change is not very significant. For any number of trains scheduled, the 

optimality gap for the long-term network appears to be higher than the one for the current 

network, and the difference tends to increase with an increase in the number of trains. 

 

CONCLUSION 

In this study, the train scheduling problem was formulated as a variable-based cumulative flow 

model for simultaneously routing and scheduling trains on a single-track railway line and 

applied on the Mombasa-Nairobi Railway line as a case study. By reformulating the 

infrastructure capacity using a vector of cumulative flow variables, the model enabled the 

decomposition of the original complex train routing and scheduling problem into a sequence 

of multiple single train optimization sub-problems to optimize the routes and passing times of 

each train at each station along the route. An open-source software FastTrain in which a 

Lagrangian relaxation solution framework combines an efficient time-dependent shortest path 

algorithm, and a priority-based implementing algorithm was used to solve the variable-based 

cumulative flow model, outputting feasible solutions with corresponding quality measures 

within reasonable time. 

 

The presented model can be used as a reliable train scheduling tool for medium to large-scale 

networks as well as in railroad infrastructure and operations planning. It is useful to assess 

the impact on the train schedule due to increase in traffic demand. In the current network 

constructed with 33 stations, the average train travel time is generally higher than in the long- 

term network with 45 stations. The average train travel time also increases with increasing 

traffic demand in both networks. In the current network, optimal schedules could only be 
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obtained for a maximum of 26 trains while the long-term network with more passing stations 

could take 36 trains. The forecast demand for year 2025 is 33 trains per day, which implies that 

the current short- term network could not support the demand and hence some passing stations 

should be opened before 2025. According to the feasibility study report, the traffic demand in 

the year 2035 is 51 trains per day, and therefore a capacity bottleneck is likely to occur in the 

long-term period. Therefore, a more detailed study on the ways to increase the capacity of this 

line can be carried out. 
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