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ABSTRACT 

In this paper an H

 -control technique is presented and applied to the 

design of optimal multirate-output controllers. The technique is based 

on multirate-output controllers (MROCs) having a multirate sampling 

mechanism with different sampling period in each measured output of 

the system. It relies mainly on the reduction, under appropriate 

conditions, of the original H

 -disturbance attenuation problem to an  

associated discrete H

 -control problem for which a fictitious static state feedback controller 

is to be designed, even though some state variables are not available (measurable) for 

feedback purposes. The proposed H

-control technique is applied to the discrete linear open-

loop system model which represents a 160 MVA synchronous machine with automatic 

excitation control system, in order to design a proper optimal multirate excitation controller 

for this power system.  

 

KEYWORDS: Disturbance, digital multirate control, H  -control, power system. 

 

I. INTRODUCTION 

The H -optimization control problem has drawn great attention ( Stoorvogel,1992; Chen and  

et al. 1994; Doyle et al. 1989; Yaesh  et al. 1990; Iglesias et al. 1991; Stoorvogel 1992; Mats 

et al. 1998). In particular, the H -control problem for discrete-time and sampled-data 

singlerate and multirate systems has been treated successfully (Doyle et al. 1989; Yaesh et al. 
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1990; Stoorvogel 1992; Fujimoto et al.  2002; Jia 2008). Generally speaking, when the state 

vector is not available for feedback, the H -control problem is usually solved in both the 

continuous and discrete-time cases using dynamic measurement feedback approach.  

 

Recently, a new technique (Arvanitis 1996; Arvanitis et al. 1995; Davison et al. 1971; Jia 

2008) is presented for the solution of the H -disturbance attenuation problem. This 

technique is based on multirate-output controllers (MROCs) and in order to solve the 

sampled-data H -disturbance attenuation problem relies mainly on the reduction, under 

appropriate conditions, of the original H -disturbance attenuation problem, to an associated 

discrete H -control problem for which a fictitious static state feedback controller is to be 

designed, even though some state variables are not available for feedback. 

 

In the present work the ultimately investigated discrete linear open-loop power system model 

was obtained through a systematic procedure using a linearized continuous, with impulse 

disturbances, 9
th

-order MIMO open-loop model representing a practical power system (which 

consists of a 160 MVA synchronous machine supplying power to an infinite grid through a 

proper connection network(Smith et al. 1988; Papadopoulos et al. 1990). The digital 

controller, which will lead to the associated designed discrete closed-loop power system 

model displaying enhanced dynamic stability characteristics, is accomplished by applying 

properly the presented MROCs technique.  

 

II. Overview of H
∞ 

-Control Technique using Mrocs 

Consider the controllable and observable continuous linear state-space system model of the 

general form 

)t(x =Ax(t)+Bu(t)+Dq(t), 0x )0(   (1a) 

)t()t()t( 1m uJCxy    (1b) 

 

Where: nRx )t( , mRu )t( , d

2)t( Lq , 1p
)t( Rym  , 2p

)t( Ry c  are the state, input, 

external disturbance, measured output and controlled output vectors, respectively. In equation 

1 all matrices have real elements and appropriate dimensions. Now follows a useful 

definition.  

 

Definition. For an observable matrix pair  CA, , with  T

p

T

2

T

1

T

1
cccC   and ci with 

i=1, …,p1, the ith row of the matrix C, a collection of 1p  integers  
1p21 n , ,n ,n   is called an 
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observability index vector of the pair  CA, , if the following relationships simultaneously 

hold 



1p

1i

i nn  ,      nrank T

p

1nTT

p

T

1

1nTT

1 1

1p

1

1




cAccAc 
 

 

Next the multirate sampling mechanism, depicted in Figure 1, is applied to system (1).  

 

 

Figure 1: Control of linear systems using MROCs. 

 

Assuming that all samplers start simultaneously at t = 0, a sampler and a zero-order hold with 

period T0  is connected to each plant input u ti ( ) , i=1,2,…,m, such that 

u(t)=u  0kT ,  00 1)T+(k ,kTt         (2) 

While the ith disturbance )t(q i , i=1,…,d, and the ith controlled output )t(y i,c , i=1,…, 2p , are 

detected at time 0kT , such that for  00 1)T+(k ,kTt  

q(t)=q  0kT ,   0c kTy Ex  0kT +J2  0kT            (3) 

The ith measured output )t(y i,m , i=1,…, 1p , is detected at every iT  period, such that for 

1N,...,0 i   

     
i1i0ii0i,m TkTTkTy Jxc  u  0kT  (4) 

where  
i2J  is the ith row of the matrix 2J . Here ZiN  are the output multiplicities of the 

sampling and RiT  are the output sampling periods having rational ratio, i.e. i0i N/TT   

with i=1,…, 1p .  

 

The sampled values of the plant measured outputs obtained over  00 T)1k(,kT   are stored in 

the *N -dimensional column vector given by  

    1101,m01,m0 T)1N(kTy)kT(ykTˆ    

    Tpp0pm,0pm, 1111
T1NkTykTy              (5) 



Boglou et al.                                    World Journal of Engineering Research and Technology 

  

 
 

www.wjert.org                         ISO 9001: 2015 Certified Journal       

 

21 

(where 



1p

1i

i

* NN ), that is used in the MROC of the form (5) 

      000 kTˆkTT1k  LuLu u  

where 
*mxNmxm

u  , RLRL   . 

 

The H -disturbance attenuation problem treated in this paper, is as follows: Find a MROC of 

the form (2), which when applied to system (1), asymptotically stabilizes the closed-loop 

system and simultaneously achieves the following design requirement  

  


z
cqyT        (6) 

For a given  R , where  


z
cqyT  is the H


-norm of the proper stable discrete transfer 

function  z
cqyT , from sampled-data external disturbances q  0kT d

2  to sampled-data 

controlled outputs  0c kTy , defined by 

 
 

 

 
20

20c

lkT kT

kT
supz

20

c q

y
T

q
qy





 
     zsupesup

cc max
1z

j

max
2,0

qyqy TT 






           (7) 

where,   z
cmax qyT  is the maximum singular value of  z

cqyT , and where use was made of 

the standard definition of the 2 -norm of a discrete signal )kT( 0s  

     





0k

00

T2

20 kTkTkT sss  

 

Our attention will now be focused on the solution of the above H -control problem. To this 

end, the following assumptions on system (1) are made:  

 

Assumptions 

a) The matrix triplets  CBA  , ,  and  EDA  , ,  are stabilizable and detectable. 

b) dmnrankd,nrank
xdpxmpxdp 111



















00C

DBA

0C

DA
  

c)    mmnm2

T

2  I0JEJ  

d) There is a sampling period 0T , such that the open-loop discrete-time system model in 

general form becomes  

 
        

     0200c

0000

kTkTkT     

kTˆkTˆkTT1k

uJExy

qDuBxx



 
                   (8) 
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Where         d)(expˆˆ ,Texp
0T

0

0 B,DAD,BAΦ  

 

Is stabilizable and observable and does not have invariant zeros on the unit circle.  

 

From the above it fellows that the procedure for H -disturbance attenuation using MROCs 

essentially consists in finding for the control law a fictitious state matrix F, which 

equivalently solves the problem and then, either determining the MROC pair  u,LL   or 

choosing a desired L u  and determining the L . As it has been shown in (Doyle et al. 1989), 

matrix F takes the form  

  PBBPBIF
T

1
T ˆˆˆ



  (9) 

Where P is an appropriate solution of the following Riccati equation 

   PBBPBIBPPEEP ˆˆˆˆ
1

TTTT


   PDDPDIDP
TT ˆˆˆˆ
   , DD ˆˆ 1

    (10) 

It is to be noted that  R , such that )z(
cqyT  where 


)z(

cqyT  is the H

-norm of the 

proper stable discrete transfer function )z(
cqyT , from sampled-data external disturbances 

d

oq 2)kT(   to sampled-data controlled output )kT( ocy .  

  

Once matrix F is obtained the MROC matrices L  and uL  (in the case where uL  is free), 

can be computed according to the following mathematical expressions  

    

      uqu

q

HHIH0FL

HHIH0FL





~~

~~
  

**

**

NNdm

NNdm








  (11) 

Where   IHH q 
~

  and 
*

mxN
RΛ  is an arbitrary specified matrix. In the case where 

sp,uu LL  , we have     HHIH0LFL quu
ˆˆ  ** NNdmsp,  

  

Where   IHH qu ˆ  and 
*

mxN
R  is arbitrary.   

The resulting closed-loop system matrix  dclA /  takes the following general form 

FBAA doldoldcl ///   (12) 

Where cl = closed-loop, ol = open-loop and d = discrete.  
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III. Design and Simulations of Open-And Closed-Loop Models of the Power System 

The system under investigation is shown in block diagram form in Figure 2, and consists of a 

three-phase 160 MVA synchronous machine with automatic excitation control system 

supplying power through a step-up transformer and a high-voltage transmission line to an 

infinite grid. The numerical values of the parameters, which define the total system as well as 

its operating point, come from (Smith et al. 1988; Papadopoulos et al. 1990) and are given in 

Appendix A. 

 

Based on the state variables Figure 2 and  the values of the parameters and the operating 

point (see Appendix A), the system of Figure 2 may be described in state-space form, in the 

form of 1, where 

'

1 2 3 4 5

T

q R fdE v v v v v v E    x  



Re

10 10 1 2 2 2 10 2

,

[ ,

, 0 , 0

T

f m

T

m t c

x x x

E T

v

     

 

  

u q u

y y x

E I J J
 

 

 

Figure 2: Block diagram representation of regulated synchronous Machine supplying to 

an infinite grid. 

 

The eigenvalues of the original continuous open-loop power system model and the simulated 

responses of the output variables (δ and vt), are shown in Table 1 and Figure 2, respectively.  

 



Boglou et al.                                    World Journal of Engineering Research and Technology 

  

 
 

www.wjert.org                         ISO 9001: 2015 Certified Journal       

 

24 

Table 1: Eigenvalues of original open-loop power system models. 

original open-

loop power 

system model  

λ 
-18.9310+2.0250i -18.9310-2.0250i -12.1970 -9.6484 -0.2394+3.2350i  

-0.2394-3.2350i  -2.1313 -0.8972+1.3560i -0.8972-1.3560i -0.1000       

 

 

Figure 3: Responses of the output variables of the original continuous open-loop power 

system models to step input change: (1):ΔVref.=0.05; (2):ΔVref.=0.10, rispectevly.  

 

The computed discrete linear open-loop power system model, based on the associated 

linearized continuous open-loop system model described in Appendix 2 of (Papadopoulos et 

al 1990), is given below in terms of its matrices with sampling period T0 = 0.2 sec. 

 

/

0.8714 1.6593 0.0536 0.0396 0.0915 0.0978 0.0407 0.0964 0.0011 0.0295

0.0071 0.7927 0.0063 0.0001 0.0002 0.0002 0.0 0.0002 0.0 0.0001

0.2387 58.4020 0.7930 0.0018 0.0032 0.0027 0.0 0.0033 0.0 0.0027

0.4311 2.45

ol d

     

    

  



A

70 0.0570 0.0057 0.0261 0.0261 0.0103 0.0272 0.0004 0.0110

0.0920 0.4575 0.0024 0.0650 0.5930 0.2792 0.1386 0.2445 0.0012 0.0059

0.0174 0.2577 0.0154 0.0004 0.0008 0.1145 0.0003 0.0008 0.0 00004

0.0360 0.0034 0.0325

   

    

   

   0.0013 0.0026 0.9326 0.1148 0.0027 0.0 0.0011

0.0354 0.0217 0.0319 0.0012 0.0026 0.9106 0.8735 0.9775 0.0 0.0010

19.1520 96.7580 0.8317 0.2058 32.8860 43.8970 33.5280 38.5010 0.0605 0.2055

2.4699 12.2780 0.0621 1

  

     

      

  .8511 6.1687 7.5433 3.7000 6.6673 0.0357 0.8371  

 
 
 
 
 
 
 
 
 
 
 

 

 

/

0.0970 0.0002 0.0033 0.0274 0.2468 0.0008 0.0027 0.0027 39.1810 6.7260

0.0051 0.0172 0.5610 0.0166 0.0201 0.0426 0.0912 0.0896 4.2985 0.5399

T

ol d

    

 

 
  

B  
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Based on Figure 1, the H
 

-control using MROCs, the computed discrete linear open-loop 

model of the power system under study, the discrete closed-loop power system models were 

designed considering the cases with γ =2.5 and the computed values of BN, K, Lu and F 

feedback gain matrices were computed as  

 

0.0142 0.0064 0.0027 0.0009 0.0003 0.0 0.0 0.0 0.4152 0.2466 0.1406 0.0758 0.0378 0.0167 0.0061 0.0016 0.0002

0.5590 0.4324 0.3203 0.2240 0.1441 0.0814 0.0363 0.0091 0.0477 0.0184 0.0040 0.0021 0.0039 0.0035 0.0023

        

    
BN

0.0011 0.0003

T



 
 

 

3 3.2267 9.2928 9.2945 3.2283 0.0301 0.6151 0.3089 0.2690 0.0676

2.5053 7.2136 7.2129 2.5048 0.0234 0.4772 0.2414 0.1890 0.0719
10

    

    

  
  

Κ  

 

0.4929 3.1106 0.0021 0.0570 1.0252 1.3718 0.9416 1.1550 0.0005 0.0192

0.7220 54.9430 0.2358 0.1973 0.0433 0.0720 0.3820 0.1491 0.0052 0.1016

       

   

 
  

F  

 

0.00000105 0.00000421

0.00000026 0.00000064u
 
  

L  

 

The numerical values of the matrices referring to the discrete closed-loop power system 

models of the above two cases are not included here due to space limitations.  

 

The magnitude of the eigenvalues of the discrete original open-loop and designed closed-loop 

power system models are shown in Table 2. By comparing the eigenvalues of the designed 

closed-loop power system models to those of the original open-loop power system model the 

resulting enhancement in dynamic system stability is judged as being remarkable.  

 

Table 2: Magnitude of eigenvalues of discrete original open-loop and designed closed-

loop power system models.  

Original open-loop power 

system model 


 
0.9532  0.9532  0.8357  0.8357  0.6529  0.1452  0.0872 

0.0227 0.0227  0.9802 

Designed closed-

loop power 

system model  

 with 

γ=2.5 
̂  0.4356  0.4356  0.0029  0.0180  0.1219  0.1219  0.7774  

0.7774 0.9348  0.9802 

 

The responses of the output variables (vt and δ) of the original open-loop and designed 

closed-loop power system models for zero initial conditions and unit step input disturbance 

are shown in Figures 4,5,6), respectively.  
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(A) 

 

(B) 

Figure (4): (A),(B): Responses of δ and vt of the discrete open loop (1), (3) and closed 

loop (2), (4), system  to step input changes: ΔVref.=0.05, ΔTm=0.0 and ΔVref.=0.10, 

ΔTm=0.0, respectively. 
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(C) 

 

(D) 

Figure(5): (C),(D): Responses of δ and vt, of discrete open loop (1), (3) and close loop (2), 

(4) system to step input changes: ΔVref.=0.05, ΔTm=0.0 and ΔVref.=0.10, ΔTm=0.0 

rispectively. 
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(E) 

 

(F) 

Figure(6):  (E),(F):Responses of δ and vt,of the discrete open loop and close loop (2),(4) 

system, to input changes: ΔVref. 0.05, ΔTm=0.0 and ΔVref.=0.10, ΔTm=0.0, 

respectively. 

 

From Figures 4,5,6, it is clear that the dynamic stability characteristics of the designed 

discrete closed-loop system-models are far more superior than the corresponding ones of the 

original open-loop model, which attests in favour of the proposed H
 

-control technique.  

 

It is to be noted that the solution results of the discrete system models, i.e. eigenvalues, 

eigenvectors, responses of system variables etc., for zero initial conditions were obtained 
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using a special software program, which is based on the theory of & 2 and runs on MATLAB 

program environment. 

 

In Figure 7, the maximum singular value of ( )T zqyc
 is depicted, as a function of the frequency 

ω. 

 

Clearly, the design requirement ( ) 0.5589
cqy z   , is satisfied. Moreover, as it can be easily 

checked the poles of the closed loop system, lie inside the unit circle. Therefore, the 

requirement for the stability of the closed-loop system is also satisfied.  

 

Not that, the H
∞
-norm of the open-loop system transfer function between disturbances and 

controlled outputs has the value 
1( ) 74.28C j I A B 


   while the minimum achievable 

disturbance attenuation level is γ∞ =0.325. 

 

 

Figure (7): The maximum singular value of Tqyc(z) over ω, for the unsaturated machine 

and for γ=2.5. 

 

Appendix A (Numerical values of system parameters and operating point) Synchronous 

machine: 3-phase, 160 MVA, pf=0.094, xd=1.7, xq=1.6, 
' '0.245 . .; 5.9,d dox p u  

 H=5.4 s; 

ωR =314 rad. s-1.  
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Type-1 exciter: KA=50, K 

E= -0.17, SE = 0.95, KF = 0.04, KR = 1, Ko =1; τΑ = 0,05, τΕ = 0,95, τF = 1, τR = 0.05, το = 

10 p.u., τ1 = τ3 = 0.440, τ2 = τ4 =0,092 s.  

External system: Re = 0.02, Xe = 0.40 p.u., (on 160 MVA base).  

Operating point: Po=1, Qo=0.5, EFDo=2.5128, Eqo=0.9986, vto=1, Tmo=1 p.u.; δο=1.1966 

rad.; K1=1.1330, K2=1.3295, K3=0.3072, K4=1.8235, K5=-0.0433, K6=0.4777.  

 

Appendix B (Numerical values of matrices A, B and C of the original 10th-order system) 

 

0.5517 0 0.3091 0 0 0 0 0 0 0.1695

0.0410 0 0.0350 0 0 0 0 0 0 0

0 314.1593 0 0 0 0 0 0 0 0

9.5540 0 0.8660 20 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0.0421 0.0328

0.1962 10.8696 0.1672 0 0 10.8696 0 0 0 0

0.9386 51.9849 0.7999 0 0 41.1153 10.8696 0 0 0

0.9386 51.

 

 

 

 

  

   



A

9849 0.7999 0 0 41.1143 10.8696 0.1 0 0

0 0 0 1000 1000 0 0 1000 20 0

0 0 0 0 0 0 0 0 1.0526 0.8211

   

  



 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

0 0 0 0 0 0 0 0 1000 0

0 0.0926 0 0 0 0.4428 2.1179 2.1179 0 0

T
 

   
B  

 

0 0 1 0 0 0 0 0 0 0

0.4777 0 0.0433 0 0 0 0 0 0 0

 
  

 
C

 

 

IV. CONCLUSION 

 An efficient H
 

-control technique based on MROCs has been presented in concise form for 

the purpose of attenuating in an effective manner system disturbances which otherwise 

degrade the performance of a synchronous generator. The method was applied successfully to 

a discrete open-loop power system model (which was computed from an original continuous 

linearized open-loop one) resulting in the design of an associated discrete closed-loop power 

system model. The results of the simulations performed on the discrete open- and closed-loop 

power system models demonstrated clearly the significant enhancement of the dynamic 

stability characteristics achieved by the designed closed-loop model. Thus this H
 

-control 

technique was proved to be a reliable tool for the design of implementable MROCs.  
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