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INTRODUCTION AND PRELIMINARIES

The recurrence property and generalized recurrence property have been studied by the
Riemannian and Finslerian geometrics. Ruse.l!” considered the three dimensional
Riemannian space having the recurrent of curvature tensor, he called such space as
Riemannian space of recurrent curvature. This space has extended to m —dimensional
Riemannian space by Walker, Wong, Wong and Yano and others****! This idea was

extended to Finsler space by Moor.®! for the first time.

Pandey et al."™? Qasem and Abdallah.®! Qasem and Baleedi.[ and Alaa et al.*® introduced
the generalized recurrent Finsler spaces for H},,, R}y, Kn @nd P, respectively. Also,

the generalized property for normal projective curvature tensor N' in sense of Berwald has

been introduced by

Let F, be an n —dimensional Finsler space equipped with the metric function F(x, y)
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satisfying the request conditions.'®! The vector y; is defined by.

(LD yi= g0y
Two sets of quantities g;; and its associative g". which are connected by

| : 1if j=k,
ik — gk —
12 gge*=ef=1{y LY

In view of (1.1) and (1.2), we have

(13)  a)dkyi=yx.  bory =y and 0) 8/ gir = Gjr-

The tensor C;j;, that is known as (h)hv —forsion tensor defined as [11]

1 15 22
Cijk:Eaigjkzzaidasz

It is positively homogeneous of degree —1 in y* and symmetric in all its indices. The
above tensor Cjj satisties
(14)  a)Cijy' =Cijy' =Ciray' =0 and ) Cipdy = Cijp.
Berwald’s covariant derivative B, T)-i of an arbitrary tensor field T}i with respect to x*
1s given by [1, 9]

BRT}i = aiji - (arﬁ)G; +17 e =T i
Berwald’s covariant derivative ‘Biji appears as 7}"(;(). Berwald’s covariant derivative
of the vector y* and metric tensor g; j satisfy
(15) a) ‘Bkyi =0 and b) By gij = —ZCij;qhyh‘ = —th‘BhCijk .
The h — curvature tensor (Cartan’s third curvature tensor) is defied by

R = Onl5i + (O3 )G + Cim (0GR — GRiGr) + ki — K/
This tensor satisfies the following relations
(1.6)  Rh;=Ry.
The curvature tensor R;kh, its associative R, R-Ricci tensor Rj. curvature vector

R, and h(v) — torsion tensor HL, satisfy
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(L) Rejin = Rjngri

(1.8) Ry’ =Ry

(19)  Rigy’ = Hip = Kjny”.

The h(v) — torsion tensor satisfies the relation

(1.10)  Hiy* = Hj, = —Hp,yk.

where h(v) —torsion tensor Hi, and deviation tensor Hj}. are positively homogenous
of degree one and two in y', respectively. The curvature vector H, and curvature

scalar H satisfy the following

. ; 1
(1.11) a)Hj; = H; and b) H =— HT.

The curvature tensor Rjy;, and its associative tensor Ryjn satisfy the following
identities which known as Bianchi identity [ 9]

(1.12)  a) Rijiqn + Rinjixe + Rijenjj + (Rrsnkhpi?}s + Ry jicPins + Rai‘lh.jpt?;(s) ym =0

5 5 5 —
b) Rijkn + Rinkj + Rixjn + CijsHpg + CinsHgj + CaesHjy = 0,
where Pj;, 1s called hv —curvature tensor (Cartan's second curvature fensor) is

defined by [8]

P;;m = ahrj:;f + C}::‘P;:h - ;:huc-.

which satisfies the relations
(L13) Py’ =Ty’ = Pin = Cionyry "
where P}, called v(hv) —torsion tensor.

A Fnsler space F, which Cartan's third curvature tensor R;kh satisfies the
condition [6]
(1.14) B?ILR;':RP: = ’:l?rleikh + H-m.(é}iﬂkh - 5:£:th.) ) Rjikh + 0,
called a generalized BR — recurrent Finsler space and denoted it briefly by G (BR) —
RE,.

Transvecting the condition (1.14) by g;;, using (1.5b). (1.7) and (1.3c),we get
(1.15)  BRjyn = AmRiven + o (929n — Gragin) + 2R3y By, Civm-
Contracting the indices i and h n the condition (1.14), using (1.6) and (1.3¢), we get
(1.16)  BpRjx = AR
Transvecting (1.16) by ¥/, using (1.5a) and (1.8), we get
(1.17)  BpRx = AnRy .
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2. Main Results

In this section, we discuss two theorems related to generalized BR — recurrent
space. Let us consider a G(BR) — RE, which characterized by the condition (1.14).
Transvecting the condition (1.14) by y/, using (1.5a), (1.9), (1.3b) and (1.1), we get
(21)  BuHiy = AnHin + (V' G — Siyn) -
Further, transvecting (2.1) by y*, using (1.5a), (1.10), (1.1) and (1.3b), we get
(22)  B,H: = 1,H.
Contracting the mdices i and h m (2.1), using (1.11a), (1.1) and (1.3a), we get
(23)  BpHy = ApH.
Contracting the mdices i and h n (2.2), using (1.11b), we get
24)  BypH= A,H.
From (2.2), (2.3) and (2.4), we conclude

Theorem 2.1. In G(BR) —RE,, the deviation tensor Hi, curvature vector

Hy, and curvature scalar H behave as recurrent

We know that the associate curvature tensor R;j, of three dimensional Finsler
space 1s given by the form [9]

(25)  Rijin = GixLin + 9jnlix — /N,

where
1
26) L =—(Ri—50a)
and
L
?‘ZER;

Differentiating (2.6) covariantly with respect to x™ i sense of Berwald, using (1.16)

and (1.5b), we get
1 , :
(27) Bm‘['ik - E (Am.Rik t yhBh.CEkm. )
Taking B — covartant dertvative for eq. (2.5) with respect to x" and using eq. (1.15),

we get
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B (GixLin + gjnLix — k/h) = AnRjpen + tim (gjlgkh - gkigjfz)
+ 2R}y "By Cipn -
Using eq. (2.5) i above equation, we get
(2.8)  By(gikLin + gjnLix — k/h) = Ay (gixLjn + gjnLix — k/h)
+tm(gj1Gkn — Gragin) + ZR,fkhyhBhCizm-
Thus, we conclude
Theorem 2.2. In G(BR) — REF,, Berwald’s covariant derivative of first order for
the tensors Ly and (guLjn + gjnLliy —k/h) are given by egs. (2.7) and (2.8),
respectively.
Differentiating (1.12b) covariantly with respect to x™ in sense of Berwald,
we get
BmRijkn + BmRinkj + BmRixjn + (BmCijr) Hyge + Cijr (BinHpg)
+(BmCinr)Hij + Cinr (BmHi) + (BmCirr)Hipy + Ciger (BmH},) = 0.
Using (1.15) and (2.1) in above equation, we get
Am(Rijkn + Rinkj + Rixjn + CijrHpge + Cing Hyj+Cirer Hjp)
it (gixgjn — 9jxGin) + (BmCijr)Hyg + (BpCine ) Hyj + (B Cirr ) Hjy

+.|um(cijry?‘ghk, Cijrﬁhyk + C:h?y gk,} Cih.?‘ﬁi?;yj + Cik?‘yrgjfz - Cikré}ryh) = 0.

Using (1.12b) and (1.4) in above equation. we get
(2.10)  (BmCijr)Hpx + (B Cinr)Hyj + (BmCirr ) Hjy — tan (CijnYi + Cinkyj
+Cixjyn + 9jr9in — Gixgjn) = 0.
From (1.12a), the Bianchi identity for Cartan's third curvature tensor R! ixn 10 since of
Berwald 1s given by [9].
BunRjin + BuRimic + BiRinn + (RiumPier + Rixn i + ReicBjur )¥° = 0.

Using (1.9) in above equatlon, then using (1.14), we get

+ Hth‘ + H,,’;,RP’“

(2-11) A R;kh + ’;lh jmk + AR ‘jhm + ‘L‘{h?wpE jmr jhr

jkr
+1m (8 grn — 6£95n) + 1n (8] i — 09 jxc) + (5} Grom — 65 Gjm) = 0
Transvecting (2.11) by y/. using (1.9). (1.13). (1.3b) and (1.1), we get
(2.12)  AmHpp + AnHige + AxHp + Hip Pl + Hip Pl + Hipi Py
i (V.G1en — Sevn) + 1 (¥ Imie — Sin¥ic) + 1 (¥ Irim — 6 Ym) = 0.
Thus, we conclude

Corollary 2.1. In G(BR) — RE,, we have the identities (2.10) and (2.12).
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CONCLUSION
Some tensors in generalized B R — recurrent Finsler space have been studied. Further,certain

identities belong to this space were obtained.
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