

World Journal of Engineering Research and Technology

WJERT

www.wjert.org

SJIF Impact Factor: 5.924

SOME TENSORS IN GENERALIZED \$ B R - RECURRENT FINSLER SPACE

Alaa A. Abdallah^{1*}, A. A. Navlekar², Kirtiwant P. Ghadle¹ and Basel Hardan¹

¹Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431001, India.

²Department of Mathematics Pratishitan Mahavidyalaya, Paithan (M.S.) India.

Article Received on 14/04/2023

Article Revised on 04/05/2023

Article Accepted on 24/05/2023

*Corresponding Author Alaa A. Abdallah

Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431001, India.

ABSTRACT

The generalized \mathcal{B} R – recurrent Finsler space has been introduced by Qasem and Abdallah. Now, in this paper, two theorems related to the above mentioned space have been established and proved.

KEYWORDS: Generalized \mathcal{B} R – recurrent Finsler space, Berwald's covariant derivative.

INTRODUCTION AND PRELIMINARIES

The recurrence property and generalized recurrence property have been studied by the Riemannian and Finslerian geometrics. Ruse. [10] considered the three dimensional Riemannian space having the recurrent of curvature tensor, he called such space as Riemannian space of recurrent curvature. This space has extended to n –dimensional Riemannian space by Walker, Wong, Wong and Yano and others. [4,13,14] This idea was extended to Finsler space by Moor. [5] for the first time.

Pandey et al.^[12] Qasem and Abdallah.^[6] Qasem and Baleedi.^[7] and Alaa et al.^[2,3] introduced the generalized recurrent Finsler spaces for H^i_{jkh} , R^i_{jkh} , K^i_{jkh} and P^i_{jkh} , respectively. Also, the generalized property for normal projective curvature tensor N^I in sense of Berwald has been introduced by.^[8]

Let F_n be an n -dimensional Finsler space equipped with the metric function F(x, y)

www.wjert.org ISO 9001: 2015 Certified Journal 42

satisfying the request conditions. [9] The vector y_i is defined by.

(1.1)
$$y_i = g_{ij}(x, y)y^j$$
.

Two sets of quantities g_{ij} and its associative g^{ij} , which are connected by

(1.2)
$$g_{ij}g^{ik} = \delta^k_j = \begin{cases} 1 & \text{if } j = k, \\ 0 & \text{if } j \neq k. \end{cases}$$

In view of (1.1) and (1.2), we have

(1.3) a)
$$\delta_k^i y_i = y_k$$
, b) $\delta_k^i y^k = y^i$ and c) $\delta_i^i g_{ir} = g_{jr}$.

The tensor C_{ijk} that is known as (h)hv –torsion tensor defined as [11]

$$C_{ijk} = \frac{1}{2} \dot{\partial}_i g_{jk} = \frac{1}{4} \dot{\partial}_i \dot{\partial} \dot{\partial}_k F^2$$

It is positively homogeneous of degree -1 in y^i and symmetric in all its indices. The above tensor C_{ijk} satisfies

(1.4) a)
$$C_{ijk} y^i = C_{kij} y^i = C_{jki} y^i = 0$$
 and b) $C_{ijk} \delta_h^k = C_{ijh}$.

Berwald's covariant derivative $\mathcal{B}_k T_j^i$ of an arbitrary tensor field T_j^i with respect to x^k is given by [1, 9]

$$\mathcal{B}_k T_i^i = \partial_k T_i^i - (\dot{\partial}_r T_i^i) G_k^r + T_i^r G_{rk}^i - T_r^i G_{ik}^r.$$

Berwald's covariant derivative $\mathcal{B}_k T_j^i$ appears as $T_{j(k)}^i$. Berwald's covariant derivative of the vector y^i and metric tensor g_{ij} satisfy

(1.5) a)
$$\mathcal{B}_k y^i = 0$$
 and b) $\mathcal{B}_k g_{ij} = -2C_{ijk|h} y^h = -2y^h \mathcal{B}_h C_{ijk}$.

The h – curvature tensor (Cartan's third curvature tensor) is defined by

$$R^i_{jkh} = \partial_h \Gamma^{*i}_{jk} + \left(\partial_l \Gamma^{*i}_{jk}\right) G^l_h + C^i_{jm} \left(\partial_k G^m_h - G^m_{kl} G^l_h\right) + \Gamma^{*i}_{mk} \Gamma^{*m}_{jh} - k/h^* \,.$$

This tensor satisfies the following relations

(1.6)
$$R_{jki}^i = R_{jk}$$
.

The curvature tensor R_{jkh}^i , its associative R_{rjkh} , R-Ricci tensor R_{jk} , curvature vector R_k and h(v) – torsion tensor H_{kh}^i satisfy

$$(1.7) R_{rjkh} = R_{jkh}^i g_{ri}$$

$$(1.8) R_{jk} y^j = R_k$$

(1.9)
$$R_{jkh}^i y^j = H_{kh}^i = K_{jkh}^i y^j$$
.

The h(v) – torsion tensor satisfies the relation

$$(1.10) H_{kh}^i y^k = H_h^i = -H_{hk}^i y^k,$$

where h(v) -torsion tensor H_{kh}^i and deviation tensor H_h^i are positively homogenous of degree one and two in y^i , respectively. The curvature vector H_k and curvature scalar H satisfy the following

(1.11) a)
$$H_{ji}^i = H_j$$
 and b) $H = \frac{1}{n-1} H_r^r$.

The curvature tensor R_{jkh}^i and its associative tensor R_{ijkh} satisfy the following identities which known as *Bianchi identity* [9]

$$(1.12) \quad \text{a)} \ R^r_{ijk|h} + R^r_{ihj|k} + R^r_{ikh|j} + \left(R^s_{mkh} P^r_{ijs} + R^s_{mjk} P^r_{ihs} + R^s_{mhj} P^r_{iks} \right) y^m = 0$$

b)
$$R_{ijkh}+R_{ihkj}+R_{ikjh}+C_{ijs}H^s_{hk}+C_{ihs}H^s_{kj}+C_{iks}H^s_{jh}=0,$$

where P_{jkh}^{i} is called hv –curvature tensor (Cartan's second curvature tensor) is defined by [8]

$$P_{jkh}^{i} = \dot{\partial}_h \Gamma_{jk}^{*i} + C_{jr}^{i} P_{kh}^{r} - C_{jh|k}^{i},$$

which satisfies the relations

(1.13)
$$P_{jkh}^{i} y^{j} = \Gamma_{jkh}^{*i} y^{j} = P_{kh}^{i} = C_{kh|r}^{i} y^{r},$$

where P_{kh}^{i} called v(hv) —torsion tensor.

A Finsler space F_n which Cartan's third curvature tensor R_{jkh}^i satisfies the condition [6]

$$(1.14) \quad \mathcal{B}_m R_{jkh}^i = \lambda_m R_{jkh}^i + \mu_m \left(\delta_j^i g_{kh} - \delta_k^i g_{jh} \right), \quad R_{jkh}^i \neq 0,$$

called a generalized BR — recurrent Finsler space and denoted it briefly by G(BR) — RF_n .

Transvecting the condition (1.14) by g_{il} , using (1.5b), (1.7) and (1.3c), we get

$$(1.15) \quad \mathcal{B}_m R_{jlkh} = \lambda_m R_{jlkh} + \mu_m \left(g_{jl} g_{kh} - g_{kl} g_{jh} \right) + 2 R_{jkh}^i \mathcal{Y}^h \mathcal{B}_h C_{ilm}.$$

Contracting the indices i and h in the condition (1.14), using (1.6) and (1.3c), we get

$$(1.16) \quad \mathcal{B}_m R_{jk} = \lambda_m R_{jk}.$$

Transvecting (1.16) by y^j , using (1.5a) and (1.8), we get

$$(1.17) \quad \mathcal{B}_m R_k = \lambda_m R_k .$$

2. Main Results

In this section, we discuss two theorems related to generalized BR – recurrent space. Let us consider a G(BR) – RF_n which characterized by the condition (1.14).

Transvecting the condition (1.14) by y^j , using (1.5a), (1.9), (1.3b) and (1.1), we get

$$(2.1) \mathcal{B}_m H_{kh}^i = \lambda_m H_{kh}^i + \mu_m (y^i g_{kh} - \delta_k^i y_h).$$

Further, transvecting (2.1) by y^k , using (1.5a), (1.10), (1.1) and (1.3b), we get

$$(2.2) \mathcal{B}_m H_h^i = \lambda_m H_h^i.$$

Contracting the indices i and h in (2.1), using (1.11a), (1.1) and (1.3a), we get

$$(2.3) \mathcal{B}_m H_k = \lambda_m H_k.$$

Contracting the indices i and h in (2.2), using (1.11b), we get

$$(2.4) \mathcal{B}_m H = \lambda_m H.$$

From (2.2), (2.3) and (2.4), we conclude

Theorem 2.1. In $G(BR) - RF_n$, the deviation tensor H_h^i , curvature vector H_k and curvature scalar H behave as recurrent.

We know that the associate curvature tensor R_{ijkh} of three dimensional Finsler space is given by the form [9]

(2.5)
$$R_{ijkh} = g_{ik}L_{jh} + g_{jh}L_{ik} - k/h$$
,

where

(2.6)
$$L_{ik} = \frac{1}{n-2} (R_{ik} - \frac{r}{2} g_{ik})$$

and

$$r = \frac{1}{n-1} R_i^i .$$

Differentiating (2.6) covariantly with respect to x^m in sense of Berwald, using (1.16) and (1.5b), we get

(2.7)
$$\mathcal{B}_m L_{ik} = \frac{1}{n-2} (\lambda_m R_{ik} + y^h \mathcal{B}_h C_{ikm}).$$

Taking \mathcal{B} – covariant derivative for eq. (2.5) with respect to x^m and using eq. (1.15), we get

$$\mathcal{B}_{m}(g_{ik}L_{jh} + g_{jh}L_{ik} - k/h) = \lambda_{m}R_{jlkh} + \mu_{m}(g_{jl}g_{kh} - g_{kl}g_{jh}) + 2R_{ikh}^{i}y^{h}\mathcal{B}_{h}C_{ilm},$$

Using eq. (2.5) in above equation, we get

(2.8)
$$\mathcal{B}_{m}(g_{ik}L_{jh} + g_{jh}L_{ik} - k/h) = \lambda_{m}(g_{ik}L_{jh} + g_{jh}L_{ik} - k/h) + \mu_{m}(g_{jl}g_{kh} - g_{kl}g_{jh}) + 2R_{jkh}^{i}y^{h}\mathcal{B}_{h}C_{ilm}.$$

Thus, we conclude

Theorem 2.2. In $G(BR) - RF_n$, Berwald's covariant derivative of first order for the tensors L_{ik} and $(g_{ik}L_{jh} + g_{jh}L_{ik} - k/h)$ are given by eqs. (2.7) and (2.8), respectively.

Differentiating (1.12b) covariantly with respect to x^m in sense of Berwald, we get

$$\begin{split} \mathcal{B}_{m}R_{ijkh} + \mathcal{B}_{m}R_{ihkj} + \mathcal{B}_{m}R_{ikjh} + (\mathcal{B}_{m}C_{ijr})H_{hk}^{r} + C_{ijr}(\mathcal{B}_{m}H_{hk}^{r}) \\ + (\mathcal{B}_{m}C_{ihr})H_{kj}^{r} + C_{ihr}(\mathcal{B}_{m}H_{kj}^{r}) + (\mathcal{B}_{m}C_{ikr})H_{jh}^{r} + C_{ikr}(\mathcal{B}_{m}H_{jh}^{r}) &= 0. \end{split}$$

Using (1.15) and (2.1) in above equation, we get

$$\begin{split} \lambda_{m}(R_{ijkh} + R_{ihkj} + R_{ikjh} + C_{ijr}H_{hk}^{r} + C_{ihr}H_{kj}^{r} + C_{ikr}H_{jh}^{r}) \\ + \mu_{m}(g_{ik}g_{jh} - g_{jk}g_{ih}) + (\mathcal{B}_{m}C_{ijr})H_{hk}^{r} + (\mathcal{B}_{m}C_{ihr})H_{kj}^{r} + (\mathcal{B}_{m}C_{ikr})H_{jh}^{r} \\ + \mu_{m}(C_{ijr}y^{r}g_{hk} - C_{ijr}\delta_{h}^{r}y_{k} + C_{ihr}y^{r}g_{kj} - C_{ihr}\delta_{k}^{r}y_{j} + C_{ikr}y^{r}g_{jh} - C_{ikr}\delta_{j}^{r}y_{h}) = 0. \end{split}$$

Using (1.12b) and (1.4) in above equation, we get

$$(2.10) \quad (\mathcal{B}_{m}C_{ijr})H_{hk}^{r} + (\mathcal{B}_{m}C_{ihr})H_{kj}^{r} + (\mathcal{B}_{m}C_{ikr})H_{jh}^{r} - \mu_{m}(C_{ijh}y_{k} + C_{ihk}y_{j} + C_{ikj}y_{h} + g_{jk}g_{ih} - g_{ik}g_{jh}) = 0.$$

From (1.12a), the Bianchi identity for Cartan's third curvature tensor R_{ikh}^{i} in since of Berwald is given by [9].

$$\mathcal{B}_m R^i_{jkh} + \mathcal{B}_h R^i_{jmk} + \mathcal{B}_k R^i_{jhm} + \left(R^r_{shm} P^i_{jkr} + R^r_{skh} P^i_{jmr} + R^r_{smk} P^i_{jhr}\right) y^s = 0.$$

Using (1.9) in above equation, then using (1.14), we get

(2.11)
$$\lambda_{m}R_{jkh}^{i} + \lambda_{h}R_{jmk}^{i} + \lambda_{k}R_{jhm}^{i} + H_{hm}^{r}P_{jkr}^{i} + H_{kh}^{r}P_{jmr}^{i} + H_{mk}^{r}P_{jhr}^{i} + \mu_{mk}P_{jhr}^{i} + \mu_{mk}P_$$

Transvecting (2.11) by y^j , using (1.9), (1.13), (1.3b) and (1.1), we get

(2.12)
$$\lambda_{m}H_{kh}^{i} + \lambda_{h}H_{mk}^{i} + \lambda_{k}H_{hm}^{i} + H_{hm}^{r}P_{kr}^{i} + H_{kh}^{r}P_{mr}^{i} + H_{mk}^{r}P_{hr}^{i} + \mu_{m}(y^{i}g_{kh} - \delta_{k}^{i}y_{h}) + \mu_{h}(y^{i}g_{mk} - \delta_{m}^{i}y_{k}) + \mu_{k}(y^{i}g_{hm} - \delta_{h}^{i}y_{m}) = 0.$$

Thus, we conclude

Corollary 2.1. In $G(BR) - RF_n$, we have the identities (2.10) and (2.12).

CONCLUSION

Some tensors in generalized $\mathcal{B}R$ – recurrent Finsler space have been studied. Further, certain identities belong to this space were obtained.

REFERENCES

- 1. A. A. Abdallah, A. A. Navlekar, K. P. Ghadle and B. Hardan, Fundamentals and recent studies of Finsler geometry, International Journal of Advances in Applied Mathematics and Mechanics, 2022; 10(2): 27-38.
- 2. A. A. Abdallah, A. A. Navlekar and K. P. Ghadle, On study generalized *B P* recurrent Finsler space, International Journal of Mathematics trends and technology, 65(4): 74-79.
- 3. A. A. Abdallah, A. A. Navlekar and K. P. Ghadle, The necessary and sufficient condition for some tensors which satisfy a generalized *B P* –recurrent Finsler space, International Journal of Scientific and Engineering Research, 2019; 10(11): 135-140.
- 4. A. G. Walker, On Ruse's space of recurrent curvature, proc. Lond. Math. Soc., 1950: 52: 36 64.
- 5. A. Moor, Untersuchungen über Finslerränme von rekurrenter krümmung, Tensor N.S, 1963; 13: 1-18.
- 6. F. Y. Qasem and A. A. Abdallah, On certain generalized *B R* –recurrent Finsler space, International Journal of Applied Science and Mathematics, 2016; 3(3): 111-114.
- 7. F. Y. Qasem and S. M. Baleedi, On a generalized *B K* –recurrent Finsler space, International Journal of Science basic and applied reserch, 2016; 28(3): 195-203.
- 8. F. Y. Qasem and A. A. Saleem, On generalized *B N* –recurrent Finsler space, Elect–Vonic Aden University Journal, 2017; 7: 9–18.
- 9. H. Rund, *The differential geometry of Finsler spaces*, Springer-Verlag, Berlin Göttingen, (1959); 2nd Edit. (in Russian), Nauka, Moscow, 1981.
- 10. H. S. Ruse, Three dimensional spaces of recurrent curvature. Proc. Lond. Math. Soc., 1949; 50: 438 446.
- 11. M. Matsumoto, On h –isotropic and C^h –recurrent Finsler, J. Math. Kyoto Univ., 1971; 11: 1-9.
- 12. P. N. Pandey, S. Saxena and A. Goswani, On a generalized *H* recurrent space, Journal of International Academy of Physical Science, 2011; 15: 201 211.
- 13. Y. C. Wong, Linear connections with zero torsion and recurrent curvature, Trans. Amer. Math. Soc., 1962; 102: 471–506.

14. Y. C. Wong and K. Yano, Projectively flat spaces with recurrent curvature, Comment Math. Helv, 1961; 35: 223–232.