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ABSTRACT 

The Van der Pol oscillator is a classical example of a circuit in which 

self-oscillations occur. They are the Hopf-Andronov oscillations 

caused by the presence in the circuit of a nonlinearity of the amplifying 

element. The present paper considers changes in behavior of these self-

oscillations when into the circuit another essentially nonlinear element 

such as a tunnel diode is inserted. Three forms of realization of the 

oscillator have been analyzed – two simplified ones and one in the 

form of computer model of its complete physical diagram with a 

transistor serving as an amplifier. As concerns the first approximate  

realization of the oscillator in the form of a pure mathematical model, the paper quotes the 

detailed results of previous research, which later are compared to the results of the two other 

realizations. If the first approximate realization of the oscillator is described by its differential 

equations, which cannot be descriptions of any electronic circuit, the second approximate 

realization of the oscillator is a concrete circuit whose computer model has also been 

analyzed in detail. And, finally, the third most complete realization of the oscillator gives a 

true description of the oscillations in the twice nonlinear diagram of the Van der Pol 

oscillator. A comparison of the analyses of these three models demonstrates that each of them 

is an independent object with characteristics proper only to it. The most adequate model of 

the oscillator might be a model of its complete electrical circuit that shows the character of 

the changes in auto-oscillations and a possibility of their synchronization. An energy criterion 

ensuring the possible synchronization has been considered. 
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1. INTRODUCTION 

The Van der Pol oscillator is constantly attracting researchers’ attention as a demonstrative 

example of the occurrence of self-oscillations known as the Hopf-Andronov oscillations 

(Strogatz, 1994). The differential equation later named the Van der Pol equation, which gives 

an approximate description of the processes in the oscillator has become a standard example 

of describing such oscillations of a very different physical nature. The Van der Pol equation 

originated on the ground of an electrical circuit, which described the possibility of occurrence 

of self-exiting continuous oscillations, has turned out to be applicable to a wide range of 

other systems and phenomena. So, for instance, (Cercek, et al., 1996) gives a study of 

nonlinear dynamics of an instability that is triggered by a positive electrode in a weakly 

magnetized discharge plasma column, mechanical vibrating system - in (Warminski, 2012), 

biological populations -Predator-Prey Interaction (Marinca, et al., 2011, Martha L. Abell, et 

al., 2014), mathematical model of an oscillatory chemical reaction - the brusselator (Nicolis, 

1971), in a number of phenomena found in nonequilibrium systems, including oscillatory 

phenomena, order-formation processes, and pattern formation (Shuichi Kinoshita, 2013). In 

the (Shovan Dutta, et al., 2019) a quantum version of a driven Van der Pol oscillator explores 

as efficient sensors due to a strongly nonlinear response.  

 

These researches concerning the Van der Pol oscillator do not consider the possibility of 

occurrence of oscillations with bifurcations, or, moreover, oscillations that transform into 

chaotic ones. In this aspect, of interest becomes the question of the work of such an oscillator 

on a tunnel diode, that is, the load with a strongly pronounced nonlinearity. This question was 

raised and considered in detail in (Keyashko, et al., 1980). In that work a simplified form of 

the oscillator has been considered – the authors have ignored the nonlinearity of the 

electronic element of the oscillator (tube). The authors have obtained a number of oscillation 

modes with bifurcations and chaos in a wide range of variations of the parameters. However, 

strictly speaking, these special modes would rather be related to the authors’ approach, which 

is quite remote from the Van der Pol oscillator. 

 

Researchers pay special attention to practically feasible electrical circuits with nonlinear 

elements due to the possibility of occurring in them of complex oscillatory modes, that is, 

self-oscillations with various bifurcations up to the occurrence of determined chaos. Such 

circuits are exemplified by various DC-DC converters, and a vast literature exists concerned 
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with the research of their chaotic modes, in particular, (Deane, et. al., 1990, Deane, 1992, 

Hamill, et. al., 1992). 

 

One of such simple models is a boost converter that converts a given DC voltage into a DC 

voltage at a higher level. Many works are devoted to researching chaotic processes in boost 

converters, among which one should primarily mention (Tse, 2003, 2004, Lu, et. al., 2000). 

A considerable contribution into research of chaotic modes in various types of power 

electronics devices has been made in (Baranovski, et. al., 1999, 2000, Woywode, et. al., 

2003). 

 

Another type of such devices is represented by the generators with nonlinear elements. Basic 

examples of such systems are the generator with inertial nonlinearity in the form of a thermal 

resistor in the circuit (Teodorchik, 1946), the modified generator with an inertial converter 

whose circuit includes twice semi-periodic quadratic detector with a RC filter (Anishchenko, 

2002), the Chua’s generator (based on Chua’s diode) (Bilotta, et. al., 2008), etc. These 

generators are powered by a direct current source. Generators powered by alternate current 

form a separate group not considered here. 

 

As concerns generators, often their analyses are based on their simplified diagrams. Their 

authors obtain mathematical models distinguished by interesting modes, but, strictly 

speaking, often inadequately describing basic real circuits. A number of such situations have 

been considered in the present paper on an example of the Van der Pol oscillator. 

 

The paper has the following structure. Section 2 gives a detailed presentation of the basics of 

an analysis of a simplified diagram, which, in the opinion of the authors (Keyashko, et. al., 

1980), describes the processes in the Van der Pol oscillator. We give the differential 

equations and their solutions that imply the occurrence of bifurcation and chaotic modes. The 

differential equations of the simplified mathematical model of the oscillator given in the 

above paper were not realized as circuits, and therefore in Section 3 we checked these results 

using a more refined electrical circuit model of such an oscillator obtaining different results. 

Further, Section 4 gives the results of checking a model of the full circuit of the Van der Pol 

oscillator with a transistor amplifier and a tunnel diode, which showed the occurrence of 

other, specific self-oscillating modes, including non-periodical ones. Finally, Section 5 

considers the possibility of synchronizing the above mentioned specific and non-periodical 
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modes, and the influence of a reactive input power as an energy factor ensuring 

synchronization. The Conclusion sums up our analyses. 

 

2. An analysis of a mathematical model of a KPR- oscillator 

In the original research (Keyashko, et. al., 1980), the КPК-oscillator is represented by the 

diagram in Fig. 1a, which is a modification of the Van der Pol oscillator with the addition of 

a nonlinear element into the oscillatory circuit, a tunnel diode. In order to analyze, the 

diagram has been transformed into an equivalent diagram in Fig. 1b, where the power supply 

source is implemented using a negative resistance, and the tunnel diode set with the help of a 

parallel connection of a capacitor and a nonlinear resistor. On the basis of this diagram the 

following differential equations have been written:  

1; ; m

m

di di dv v
L u v iR C i C i I f

dt dt dt V

 
        

 

  (1) 

 

Here the formula 
m

m

v
I f

V

 
 
 

of the characteristic of the tunnel diode,  

2 3

8.6 22 14.42m m

m m m m

v v v v
I f I

V V V V

        
          
         

 (2) 

 

We introduce the relative units  

m

; ; ;
I m m

i u C v t
x y z

I L V LC
    .  (3) 

 

With accounting for this, the system of equations takes on the form 

2 ; ; ( ),x hx y gz y x z x f z         4) 

where 12 ; ; 1m

m

VC C C
h R g g

L I L C
   , and in further calculations we assume ε . 

The form of the characteristics of the tunnel diode 2 3( ) 8.59 22 14.41f z z z z    is given in 

Fig. 2.  
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Fig. 1: а) - simplified diagram of the Van Der Pol oscillator and b) - her realization by 

(Keyashko, et. al., 1980). 
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Thus, the defining of the modes of working of the primary diagram in Fig. 1a, considered as a 

modification of the Van der Pol oscillator, is reduced to the solution of the system of 

differential equations (4). It is assumed that the mutual inductivity, nonlinearity of the tube 

amplifier, and in a more modern version, a transistor, do not considerably influence the 

course of processes in the diagram under consideration. 

 

A detailed consideration of the modes of the circuit in Fig. 1b has discovered various forms 

of oscillations, the emergence of bifurcations, and, especially interesting, the emergence of 

chaotic modes for certain combinations of the parameters h and g.  

 

0 0.2 0.4 0.6 0.8 1
0

0.4

0.8

1.2
f z( )

z

Im

Vm

 

Fig. 2: Current-voltage characteristic of a tunnel diode. 

 

In the beginning, let us dwell on the steady-state mode of harmonic oscillations with the 

frequency of the oscillating circuit of Fig. 1b for 0.145h  and 0.85g   - they are shown in 

the time space in Fig.3a, and in the phase space in Fig. 3b. Upon decreasing the magnitude of 

h, the mode of doubling the period was obtained, followed by its tripling for 0.140h   and 

0.135h  respectively. 

 

Upon further changes of h and g, more complex modes have been observed. In particular, for 

0.1135h  and 0.75g  , a chaotic mode occurred for the following values of the physical 

parameters of the circuit: 130 , 30 , 0.1; 8 .L H C F R C F        Fig. 3c 

illustrates this mode in the time space over the entire duration of the simulation time. Here 

also one can discern the base frequency, which is equal to the frequency of the LCR 

oscillating circuit of the circuit. The variations of the variables x, y, z in the phase space are 

given in Fig. 3d. 
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Nevertheless, it is still difficult to make correspond this analysis to the complete circuit of the 

Van der Pol oscillator with a tunnel diode added to the oscillatory circuit. Due to the above 

assumptions and simplifications, it seems to be rather the result of the functioning of a certain 

mathematical object described by system (4) of differential equations. Therefore, later we 

will attempt to make these results closer to real electrical circuits, first, to simplified versions 

of the Van der Pol oscillator with the addition of a tunnel diode, an later, to its complete 

circuit with a transistor as an amplifying element like it has been done in (Berkovich, et. al., 

2021). 
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Fig. 3: Diagrams of current x through inductance L, voltage y across a capacitor C, and 

voltage z across a capacitor C1 - in various operating modes of the circuit Fig. 1; a) - 

. 0 145h , . 0 85g ; b) – 3D stable mode diagram a); c) - . 0 1135h , . 0 75g ; d) – 3D 

mode diagram c). 

 

3. Modelling of an electrical circuit with a tunnel diode and a physical implementation 

of negative resistance 

To achieve the reliability of our results, physical implementations of the diagram in Fig. 1b 

have been modeled in two programs, Pspice and Matlab. Fig. 4 shows the implementation of 

a model of a real electrical circuit in Matlab, more precisely in its annex, Simscape-Simulink. 

Its main difference from the model in Fig. 1b is that instead of the mathematical treatment of 

negative resistance, the latter is implemented with the operational amplifier Oramp. As is 
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known, negative resistance could be realized only by using an active circuit. The use of 

negative resistance in the form –R in the modeling by Pspice program results in an unstable 

mode, since the exponent in the exponential function in the solution of the linear part of the 

circuit turns out to be positive, exp( ( / ) ) exp(( / ) )R L t R L t   .It results to an unlimited 

increase over time of the initial values without any influence of the nonlinearity of the tunnel 

diode. In general, the Simscape-Simulink program does not accept negative values of 

resistances. As an active circuit the operational amplifier Op-Amp ( 1 2r r r  , Fig. 4a) is 

used. If we denote its output voltage as oV , then the voltage NV  on the inverting input will be 

equal /( )N oV V R r R  . Since in the steady-state of the amplifier the voltages on its inputs are 

equal, that is, the voltage PV  on the non-inverting input P NV V , its input current will be 

( ) /P o N NI V V r I    . Thus, /P pV I R  . The tunnel diode model is shown in Fig. 4b. 

 

As was to be expected, the results of modeling after the diagram Fig. 4 differ from the 

modeling after Fig. 1b, despite the same physical values. So, when, say, for Fig. 1b the 

parameters 0.145h  и 0.85g  , ( 0.255R   ) ensured a stable oscillating mode (Fig. 3), 

for Fig. 4, they give the mode of double period – Fig.5. The chaotic mode in the zone of limit 

cycles in the circuit of Fig. 4 has been obtained with the parameters: 0.0935h  и 0.85g  , 

( 0.165R   )- Fig. 5. 
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Fig.4: A simplified electrical circuit of a Van der Pol oscillator with a tunnel diode and a 

physical implementation of negative resistance. 
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Fig. 5: Diagrams of current I through inductance L, voltage U across a capacitor C, and 

voltage V across a capacitor C1- in various operating modes of the circuit Fig. 4; a) - 

. 0 145h , . 0 85g , ( .R 0 255  ); b) – 3D doubling mode diagram; c) - . 0 0935h , и 

. 0 85g , ( .R 0 165  ); d) – 3D mode diagram c). 

 

4. Modeling of a complete electrical circuit of the transistor Van der Pol oscillator with 

a tunnel diode 

As is known, in the time of the earlier descriptions that appeared in the 1930s, the Van der 

Pol oscillator was based on an electronic tube. A theoretical analysis led to the known Van 

der Pol differential equation, where the tube parameters were taken into account indirectly. In 

our days, a feasible oscillator can be imagined only as one based on a transistor whose 

application implies a different analysis, as was considered in (Berkovich, et. al., 2021). The 

solving of the Van der Pol equation and the analyzing of a transistor oscillator could both be 

conducted only with making use of a computer, in the present case, by modeling its complete 

electric diagram. In the present paper the circuit of the oscillator has been modeled using the 

Matlab-Simscape program, and the model’s structure is given in Fig. 6. The design makes it 

possible to check the oscillator’s functioning both with- and without synchronization (in the 

diagram, it is the controlled voltage source and the elements related to it). 
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Fig. 6: Complete electrical model of a van der Pol oscillator with a tunnel diode. 

 

The parameters of the oscillator’s electrical circuit were assumed to be close to the 

parameters of the previous simplified models of the oscillator (Fig. 1b, Fig. 4), namely, 

1 2 23 ,L L H  1 230 ; 7.1 ; 0.005 0.1 .C F C F R      . As the transistor, we used a 

model from the Simscape library, where the resistance in its base equaled 100BR   , and in 

the collector circuit the resistance 100BR   is serially connected with the inductivity
2L . For 

coaxing the circuit into oscillation, in the case of the complete circuit with a transistor, the 

power source voltage must be greater than in the previous simplified models, and it varied 

within the range 4 9inV V  . Correspondingly, we had to change the tunnel diode’s 

nonlinear characteristic, namely, to increase 4mI A  and 3mV V . This is ensured by the 

characteristic
2 38.6 5.5 0.9i v v v      , realized by a circuit similar to one in Fig. 4b, whose 

input in Fig. 6 is the unit ACo1, and the output, the unit Ao1.  

 

Fig. 7 gives the results of the model’s checking in various modes at the input voltage 4inV V . 

The mode of stable oscillations is observed at the resistance magnitude 1 0.075R   , Fig. 7a 

shows the current through the inductivity 
2L  ( I ), the voltage on the capacitor, 

1C (U ) and the 

voltage on the capacitor 
2C (V ). For 1 0.01R   , we obtained the mode of the doubled 

period, for 1 0.05R   , the mode of the quadrupled period, and for 1 0.06R   , the 

quintupled period (Fig. 7b, 7c, 7d). 
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Fig. 7: Diagrams of current I through inductance L1, voltage U across a capacitor C1, 

and voltage V across a capacitor C2- in various operating modes of the circuit Fig. 6; а)- 

stable oscillation mode ( . 1 0 075R ); b) – doubling mode ( . 1 0 01R ); c) – quadruple 

the period ( . 1 0 05R ); d) - fivefold increase in period ( . 1 0 06R ). 

  

Separately, Fig. 8 shows the mode of unordered alterations of the triple and quadruple 

frequencies for 1 0.055R   . An insignificant difference in the peaks’ amplitudes could be 

rather explained by an inaccuracy of the graphic editor of the program. For a longer checking 

period, this mode of non-periodic oscillations could be classified as chaotic one. 

 

Further, we have checked the functioning of the oscillator in Fig. 6 (but without 

synchronization elements) at the input voltage Vin=6V. The circuit parameters and the initial 

values of voltages and currents have remained unchanged. In particular, the normal mode of 

functioning has been observed for R1=0.1 , the period’s doubling, for R1=0.01 . For 

R1=0.06we obtained the mode with a triple period with the increasing of the voltage pulses, 

and for R1=0.01 , the mode of the tripled period with decreasing pulses. 
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Fig. 8: Mode of random alternation of three-fold and four-fold periods ( . 1 0 055R ). 

 

As general remarks concerning the Fig. 6 oscillator we may note the following. 

1. The circuit’s functioning does not manifest a visible pattern of working depending on the 

changes in the resistance R, such as, for instance, an increase of the pulsation frequency 

in the curves upon the former’s magnitude increase or decrease. 

2. When stating about “doubling,” “tripling,” etc. of the period, it would be more precise to 

say about “quasi-doubling,” “quasi-tripling,” etc., of the period; since the distances 

between pulses are not equal, and, strictly speaking, the resulting period is note a multiple 

of the base one. 

3. The mode of the oscillator’s functioning depends on the power supply voltage, and could 

be explained by the changes in the intervals of functioning of the tunnel diode. 

 

5. Synchronization of oscillations in various realizations of the electrical circuit of the 

Van der Pol oscillator with a tunnel diode 

А. The reactive power as an energy criterion of synchronization. In (Berkovich, et. al., 

2021) it was shown that the energy condition of the synchronizing of the frequency and form 

of oscillations in the Van der Pol oscillator is the magnitude of the reactive power circulating 

through the power source, more precisely, the magnitude of its density in time. In other 

words, the magnitude, which is determined by the changes in energy over one second and 

repeats itself 1/T f times per second in the process of circulation during each period of 

oscillations, T, forming a definite conditional power. This value is defined as 
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negentropy /ES Q T , where
ES  is electrical negentropy, Q , the reactive power calculated by 

(5) 

1

sink k k

k

Q kV I 




  (5) 

Here the magnitudes , ,k k kV I   are respective active values of the voltage and current of the k-

th harmonic, and its phase. Note that negentropy 
ES  coincides with the term Entohmung 

(German) or, in English, "Deohming" (Emde, 1921, Mayevsky, 1978, Krogeris, et. al., 1993).  

 

The reactive power Q can be defined as the area of the phase space of a reactive element (for 

instance, inductivity), divided by 2 , that is,  

0

1

2

T

L LQ i dv


     (6) 

 

The minus sign before the integral is taken in order that a positive value of Q corresponded to 

the consumption of the reactive power, while the negative one, to the generation. On the basis 

of the above said, the ensuring of synchronization is achieved by an increase of the reactive 

power circulating through the power source, resulting in negentropy of the process. 

 

B. A circuit with an operational amplifier. Consider first an application of synchronization 

in the case of a model with negative resistance realized on the operational amplifier (Fig.4). 

The figure shows a source of rectangular voltage with the amplitude 0.35V and the 

period 146 148T s  , which is equal to the period of the natural frequency of the oscillating 

circuit 
1R C L C TD    , serially connected with a resistor R. 

 

We have noted in Section 3 that for 0.165R  , the oscillations in the circuit took on a chaotic 

character (Figs. 5c, d). In order to find in that mode the power in the reactive elements of the 

circuit, we considered a lengthy segment of chaotic oscillations – from 0.0005s up to 0.004s 

along the whole duration of the calculations as one period with the duration 0.0035s, for 

which we determined the said powers. In this circuit the source of power is a negative active 

resistance that generated only the active power. Therefore, the resulting power on the three 

reactive elements, L, C и C1, of the circuit equals zero, and the reactive power does not 

circulate through the source. In order to confirm this obvious conclusion, the said reactive 

powers have been calculated, and for the assumed parameters of the model their values were 

as follows: the reactive power on the inductivity L : 9.24LQ VAr ; on the capacitor C : 
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8.72CQ VAr ; on the capacitor
1C : 1 0.41 .CQ VAr  In the end, the resulting power in that 

circuit will be 0.11Q VAr  , what, with the margin of error equaling 1.2% is equivalent to 

the summary power being zero. Thus, negentropy in the circuit is absent, thus making 

possible the appearance of the chaotic mode observed in this case. 

 

Now we will check the realization of synchronization, as well as evaluate, like in the previous 

case, negentropy upon the action of an additional source of rectangular voltage with the 

amplitude 0.35V , the duty cycle only 10%, and the period 148T s . The results of the 

modeling of the circuit functioning are given in Fig. 9, confirming the complete 

synchronization of the process with the period 148T s . 

 

The modeling for the values of the reactive powers of the elements gives 0.60LQ VAr , 

0.41CQ VAr , 1 0.18CQ VAr . With the given parameters, the source of rectangular voltage 

also contributes a small reactive power 0.0053inQ Q VAr   , which is balanced by the 

differential resulting power of reactive elements. Thus, with the period 148T s , 

negentropy will be equal 
, 35.81 /ES VAr s  . In the present example this small value turns 

out to be sufficient for the exclusion of anomalous modes in the range
2 0.001 0.165R   .  

 

0 0.5 1 1.5 2 2.5 3 3.5
-1.5

-1

-0.5

0

0.5

1

1.5

2

4x10
-3

t

VU

I

I,U,V

e.  

Fig. 9: Diagrams of current I through inductance L, voltage U across the capacitor C 

and voltage V across the capacitor C1 of the circuit Fig. 4 at . 0 0935h , . 0 85g , 

( .R 0 165  ) in synchronization mode. 
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C. The transistor Van der Pol oscillator 

In the same way, we further consider the voltage synchronization processes in the circuit in 

Fig. 6. In order to achieve synchronization, a source of unipolar rectangular pulses V with the 

amplitude 10V, duty cycle 50% and the period 146 s has been serially connected with a 

source of constant voltage inV (the above values will be specified for different modes). Since 

the average value of the voltage equals 5V, in order to preserve the level of the input voltage 

that equals 6V, one should assume that ' 1inV V in the synchronization mode. It is a low 

voltage level, and it will lead to a disruption of oscillations on the zero segments of 

rectangular pulses. We therefore will perform checking for 9inV V , which, in the 

synchronization mode requires ' 4inV V .  

 

Now, we consider in detail the mode of the circuit in Fig. 6 for 9inV V  the 

resistance
1 0.095R   , when the chaotic (non-periodical) mode was observed (Fig. 10a). 

First, let us follow the transfer of active power in this circuit upon the absence of the 

synchronization voltage. For the assumed parameters of the circuit, the input source generates 

the power 11.9389inP W , which is being distributed over the inductivity 
2L and the 

transistorTr : 
2

2.3373LP W и 9.5802TrP W respectively. Further, the inductivity power
2L is 

transferred to the inductivity
1L - 

1
2.1899LP W  which, in turn, is dissipated om the tunnel 

diode, 1.7488GP W , and on the resistor
1R - 0.4694RP W . 

 

The magnitudes of the reactive powers are as follows: 
2

10.69LQ VAr , 
1

121.21LQ VAr , 

1
94.57CQ VAr , 2

26.65CQ VAr . The reactive powers of the secondary circuit are mutually 

compensated, that is, 
1 1 2L C CQ Q Q  . The reactive power 

2LQ is being formed in the power 

source circuit thus forming negentropy whose magnitude will equal 

21 / 3.05 /LS Q T kVAr s  for the period 0.0035T s (see subsection B). 

 

Let us in the same way analyze the circuit in Fig. 6 with the synchronization voltage with the 

above parameters switched on. The input sources jointly generate the same power, 

10.36inP W , which is distributed on the rest of the elements in the same way as in the 

circuit without synchronization. The magnitudes of the reactive powers are as 

follows:
2

0.61LQ VAr , 0.69inQ VAr . The reactive powers of the secondary circuit are 
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mutually compensated, that is, 
1 1 2L C CQ Q Q  . The reactive powers 

2LQ and inQ are being 

formed in the power source circuit, thus forming negentropy which for the period 

146 ,T us equals 2 / 4.73 / .inS Q T kVAr s   Therefore, upon the action of an additional 

source 10sV V , negentropy increases from the value 3.05 /kVAr s to 4.73 /kVAr s ,that is, by 

a factor of 1.55 , thus being the energetic cause of the elimination of the anomalous mode 

(Fig. 10b). Similar results of its elimination by the use the tripling period mode 

synchronization (
1 0.08R   ) are given in Fig. 10c and Fig. 10d (synchronization mode) and 

doubling mode (
1 0.01R   ), in Fig. 10e and Fig. 10f (synchronization mode).  
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Fig. 10: Diagrams of current I through inductance L1, voltage U across a capacitor C1, 

and voltage V across a capacitor C2- in various operating modes of the circuit Fig. 6; a) - 

 9inV V , .R  1 0 095 ; b) '  4
in

V V , 10sV V , 146T us , .R  1 0 095 ; c) -  9inV V , 

.R  1 0 08 ; d) '  4
in

V V , 10sV V , 143T us , .R 1 0 08 ; e) -  9inV V , .R 1 0 01 ; f) 

'  4
in

V V , 10sV V , 146T us , .R  1 0 01 ;
 
(b), d), f) - in synchronization mode ). 

 

As expected, the results of modeling according to the circuit in Fig. 6 differ from those 

complied with Fig, 1b. So, for instance, if for the circuit in Fig. 1b the parameters 

0.145h  and 0.85g  ensured a stable oscillatory mode (Fig. 3), in the circuit of Fig. 6 they 

give the doubling period mode (Fig. 7b). The chaotic (non-periodical) mode of Fig. 4 has 

been obtained for the parameters 0.0935h  and 0.85g  (Fig. 5). 
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6. CONCLUSIONS 

The present paper analyzes three mathematical models presenting three different 

approximations of the Van der Pol oscillator. Common for them is the oscillating circuit LCR 

with a tunnel diode included in it. Our analysis shows that being nonlinear objects, all three 

approximations are different and independent circuits with different behavior. As the most 

adequate, should be considered the model of the full transistor design of the oscillator and the 

corresponding diagram of its electrical circuit. Since all three designs are nonlinear objects, 

characteristic for the processes in them are the phenomena of bifurcations and chaotic modes. 

And in the first approximation model – which is a purely mathematical object – the chaotic 

modes occur for wide combinations of parameters. The less frequent is the occurrence of 

such modes in the model of a transistor circuit of the Van der Pol oscillator. The possibility 

of synchronizing bifurcations and chaotic modes for the models presented in the form of 

electrical circuits by inserting in them serially with a source of constant voltage, a source of 

pulsating voltage of rectangular form. The energy factor that ensures synchronization is the 

growth of the reactive power circulating through the power source, that is, negentropy.  
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