

World Journal of Engineering Research and Technology WJERT

www.wjert.org

SJIF Impact Factor: 5.924

NEW CRITICAL DENSITY IN METAL-INSULATOR TRANSITION, OBTAINED IN VARIOUS N(P)- TYPE DEGENERATE CRYSTALLINE ALLOYS, BEING JUST THAT OF CARIERS LOCALIZED IN EXPONENTIAL BAND TAILS. (II)

Prof. Dr. Huynh Van Cong*

Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (LAMPS), EA 4217, Département de Physique, 52, Avenue Paul Alduy, F-66 860 Perpignan, France.

Article Received on 11/02/2024

Article Revised on 01/03/2024

Article Accepted on 21/03/2024

*Corresponding Author Prof. Dr. Huynh Van Cong

Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (LAMPS), EA 4217, Département de Physique, 52, Avenue Paul Alduy, F-66 860 Perpignan, France.

ABTRACT

By basing on the same physical model and treatment method, as used in our recent work (Van Cong, 2024). for $[InP_{1-x}As_x (Sb_x), GaAs_{1-x}Te_x (Sb_x, P_x), CdS_{1-x}Te_x (Se_x)]$ - crystalline alloys, $0 \le x \le 1$, referred to as (I), we will investigate the critical impurity densities in the metal-insulator transition (MIT), obtained now n(p)-type degenerate X(x) $[InAs_{1-x}P_x(Sb_x), GaTe_{1-x}As_x(Sb_x, P_x), CdTe_{1-x}S_x(Se_x)]$ - crystalline alloys, being due to the effects of the size of donor (acceptor) d(a)radius, $r_{d(a)}$ and the x- concentration, assuming that all the impurities are ionized even at T=0 K. In such n(p)-type degenerate $X(x) \equiv$ crystalline alloys, we will determine: (i)-the critical impurity density $N_{CDn(CDp)}(r_{d(a)}, x)$ in the MIT, as that given in Eq. (8), by using an

empirical Mott parameter $M_{n(p)} = 0.2$, and (ii)-the density of electrons (holes) localized in the exponential conduction (valence)-band tails (EBT), $N_{CDn(CDp)}^{EBT}(r_{d(a)}, x)$, as that given in Eq. (26), by using our empirical Heisenberg parameter, $\mathcal{H}_{n(p)} = 0.47137$, as given in Eq. (15), suggesting that: for given $r_{d(a)}$ and x, $N_{CDn(CDp)}^{EBT}(r_{d(a)}, x) \cong N_{CDn(CDp)}(r_{d(a)}, x)$, obtained with a precision of the order of 2.91×10^{-7} , as observed in Tables 2-8. In other words, such the critical d(a)-density $N_{CDn(NDp)}(r_{d(a)}, x)$, is just the density of electrons

www.wjert.org ISO 9001: 2015 Certified Journal 65

(holes) localized in the EBT, $N_{CDn(CDp)}^{EBT}(r_{d(a)},x)$. So, if denoting the total impurity density by N, the effective density of free electrons (holes), N^* , given in the parabolic conduction (valence) band of the n(p)-type degenerate X(x)- crystalline alloy, can thus be defined, as the compensated ones, by: $N^*(N,r_{d(a)},x) \equiv N - N_{CDn(NDp)} \cong N - N_{CDn(CDp)}^{EBT}$, needing to determine various optical, electrical, and thermoelectric properties in such n(p)-type degenerate X(x)-crystalline alloys, as those studied in n(p)-type degenerate crystals (Van Cong, 2023).

KEYWORS: [InAs_{1-x}P_x (Sb_x), GaTe_{1-x}As_x(Sb_x, P_x), CdTe_{1-x}S_x(Se_x)]- crystalline alloys; critical impurity density in the Mott MIT.

INTRODUCTION

By basing on the same energy-band-structure parameters, physical model and treatment method, used (Van as in our recent works Cong, 2024), for $[InP_{1-x}As_x (Sb_x), GaAs_{1-x}Te_x (Sb_x, P_x), CdS_{1-x}Te_x (Se_x)]$ - crystalline alloys, $0 \le x \le 1$, and also other works (Green, 2022; Kittel, 1976; Moon et al., 2016; Van Cong et al., 2014; Van Cong & Debiais, 1993; Van Cong et al., 1984), we will investigate the critical impurity density in the metal-insulator transition (MIT), obtained in n(p)-type degenerate $X(x) \equiv$ $[InAs_{1-x}P_x(Sb_x), GaTe_{1-x}As_x(Sb_x, P_x), CdTe_{1-x}S_x(Se_x)] - crystalline alloys, being also$ due to the effects of the size of donor (acceptor) d(a)-radius, $r_{d(a)}$, and the x- concentration, assuming that all the impurities are ionized even at T=0 K. In such n(p)-type degenerate crystalline alloys, we will determine

(i)-The critical impurity densities $N_{CDn(CDp)}(r_{d(a)},x)$ in the MIT, as that given in Eq. (10), by using an empirical Mott parameter $M_{n(p)}=0.25$, and (ii)-The density of electrons (holes) localized in the exponential conduction(valence)-band tails (EBT), $N_{CDn(CDp)}^{EBT}(r_{d(a)},x)$, as that given in Eq. (26), by using the empirical Heisenberg parameter, $\mathcal{H}_{n(p)}=0.47137$, as that given in Eq. (17), according to: for given $r_{d(a)}$ and x, $N_{CDn(CDp)}^{EBT}(r_{d(a)},x) \cong N_{CDn(CDp)}(r_{d(a)},x)$, with a precision of the order of 2.91×10^{-7} , as observed in Tables 2-8. In other words, such the critical d(a)-density $N_{CDn(NDp)}(r_{d(a)},x)$, is just the density of electrons (holes), being localized in the EBT, $N_{CDn(CDp)}^{EBT}(r_{d(a)},x)$.

In the following, we will determine those functions: $N_{CDn(CDp)}(r_{d(a)}, x)$ and $N_{CDn(CDp)}^{EBT}(r_{d(a)}, x)$.

CRITICAL DENSITY IN THE MOTT MIT

Such the critical impurity density $N_{CDn(CDp)}(r_{d(a)}, x)$, expressed as a function of $r_{d(a)}$ and x, is determined as follows.

Effect of x-concentration

Here, the values of the intrinsic energy-band-structure parameters, such as (Van Cong, 2024): the effective average number of equivalent conduction (valence)-band edges, $g_{c(v)}(x)$, the unperturbed relative effective electron (hole) mass in conduction (valence) bands, $m_{c(v)}(x)/m_o$, m_o being the electron rest mass, the unperturbed relative dielectric static constant, $\epsilon_o(x)$, and the intrinsic energy gap, $E_{go}(x)$, at $r_{d(a)} = r_{do(ao)}$, are given respectively in Table 1 in Appendix 1.

Table 1 in Appendix 1

Therefore, one gets the effective donor (acceptor)-ionization energy, $E_{do(ao)}(x)$, as:

$$E_{do(ao)}(x) = \frac{{}^{13600 \times [m_{c(v)}(x)/m_0]}}{{}^{[\epsilon_0(x)]^2}} \text{ meV}, \tag{1}$$

and the isothermal bulk modulus, $B_{do(ao)}(x)$, by:

$$B_{do(ao)}(x) \equiv \frac{E_{do(ao)}(x)}{(4\pi/3) \times (r_{do(ao)})^3}.$$
 (2)

Effects of impurity size, with a given x

Here, one shows that the effects of the size of donor (acceptor) d(a)-radius, $r_{d(a)}$, and the x-concentration, strongly affects the changes in all the energy-band-structure parameters, which can be represented by the effective relative static dielectric constant $\varepsilon(r_{d(a)}, x)$ (Van Cong, 2024; Van Cong et al., 1984), in the following.

At $r_{d(a)} = r_{do(ao)}$, the needed boundary conditions are found to be, for the impurity-atom volume $V = (4\pi/3) \times (r_{d(a)})^3$, $V_{do(ao)} = (4\pi/3) \times (r_{do(ao)})^3$, for the pressure p, as: $p_o = 0$, and for the deformation potential energy (or the strain energy) σ , as: $\sigma_o = 0$. Further, the two important equations, used to determine the σ -variation: $\Delta \sigma \equiv \sigma - \sigma_o = \sigma$, are defined by: $\frac{dp}{dV} = \frac{B}{V}$ and $p = -\frac{d\sigma}{dV}$. giving: $\frac{d}{dV}(\frac{d\sigma}{dV}) = \frac{B}{V}$. Then, by an integration, one gets

$$\begin{split} \left[\Delta\sigma(r_{d(a)},x)\right]_{n(p)} &= B_{do(ao)}(x) \times (V - V_{do(ao)}) \times \text{ ln } \left(\frac{V}{V_{do(ao)}}\right) = E_{do(ao)}(x) \times \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \\ &\ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 \geq 0. \end{split} \tag{3}$$

Furthermore, we also shown that, as $r_{d(a)} > r_{do(ao)}$ ($r_{d(a)} < r_{do(ao)}$), the compression (dilatation) gives rise to: the increase (the decrease) in the energy gap $E_{gno(gpo)}(r_{d(a)},x)$, and in the effective donor (acceptor)-ionization energy $E_{d(a)}(r_{d(a)},x)$ in the absolute values, being obtained from the effective Bohr model, and then such the compression (dilatation) is represented respectively by: $\pm \left[\Delta \sigma(r_{d(a)},x) \right]_{n(p)}$,

$$E_{gno(gpo)}(r_{d(a)}, x) - E_{go}(x) = E_{d(a)}(r_{d(a)}, x) - E_{do(ao)}(x) = E_{do(ao)}(x) \times \left[\left(\frac{\epsilon_o(x)}{\epsilon(r_{d(a)})} \right)^2 - \frac{\epsilon_o(x)}{\epsilon(r_{d(a)})} \right]^2 - \frac{\epsilon_o(x)}{\epsilon(r_{d(a)})}$$

$$1 = + \left[\Delta \sigma(r_{d(a)}, x) \right]_{n(p)},$$

for $r_{d(a)} \ge r_{do(ao)}$, and for $r_{d(a)} \le r_{do(ao)}$,

$$E_{gno(gpo)}(r_{d(a)}, x) - E_{go}(x) = E_{d(a)}(r_{d(a)}, x) - E_{do(ao)}(x) = E_{do(ao)}(x) \times \left[\left(\frac{\varepsilon_o(x)}{\varepsilon(r_{d(a)})} \right)^2 - \frac{\varepsilon_o(x)}{\varepsilon(r_{d(a)})} \right]^2 - \frac{\varepsilon_o(x)}{\varepsilon(r_{d(a)})} = \frac{\varepsilon_o(x)}{\varepsilon(r_{d(a)})} + \frac{\varepsilon_o(x)}{\varepsilon(r_{d(a)})} + \frac{\varepsilon_o(x)}{\varepsilon(r_{d(a)})} = \frac{\varepsilon_o(x)}{\varepsilon(r_{d(a)})} + \frac{\varepsilon_o(x)}{\varepsilon(r_{d(a)})} = \frac{\varepsilon_o(x)}{\varepsilon(r_{d(a)})} + \frac{\varepsilon_o(x)}{\varepsilon(r_{d(a)})} + \frac{\varepsilon_o(x)}{\varepsilon(r_{d(a)})} + \frac{\varepsilon_o(x)}{\varepsilon(r_{d(a)})} = \frac{\varepsilon_o(x)}{\varepsilon(r_{d(a)})} + \frac{\varepsilon_o(x$$

$$1 = -\left[\Delta\sigma(r_{d(a)}, x)\right]_{n(p)}. (4)$$

Therefore, from above Equations (3) and (4), one obtains the expressions for relative dielectric constant $\varepsilon(r_{d(a)}, x)$ and energy band gap $E_{gn(gp)}(r_{d(a)}, x)$, as:

$$\text{(i)-for } r_{d(a)} \geq r_{do(ao)}, \text{ since } \epsilon(r_{d(a)}, x) = \frac{\epsilon_o(x)}{\sqrt{1 + \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \leq \epsilon_o(x),$$

$$E_{gno(gpo)}(r_{d(a)}, x) - E_{go}(x) = E_{d(a)}(r_{d(a)}, x) - E_{do(ao)}(x) = E_{do(ao)}(x) \times \left[\left(\frac{r_{d(a)}}{r_{do(ao)}} \right)^3 - 1 \right] \times \ln \left(\frac{r_{d(a)}}{r_{do(ao)}} \right)^3 \ge 0, \quad (5)$$

according to the increase in both $E_{gn(gp)}(r_{d(a)},x)$ and $E_{d(a)}(r_{d(a)},x)$, for a given x, and

$$(\textbf{ii})\text{-for } r_{d(a)} \leq r_{do(ao)} \;, \; \; \text{since } \; \epsilon(r_{d(a)},x) = \frac{\epsilon_o(x)}{\sqrt{1 - \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \; \geq \; \epsilon_o(x) \;, \; \; \text{with } \; \; a = \frac{\epsilon_o(x)}{\sqrt{1 - \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \; \geq \; \epsilon_o(x) \;, \; \; \text{with } \; a = \frac{\epsilon_o(x)}{\sqrt{1 - \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \; \geq \; \epsilon_o(x) \;, \; \; \text{with } \; a = \frac{\epsilon_o(x)}{\sqrt{1 - \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \; \geq \; \epsilon_o(x) \;, \; \; \text{with } \; a = \frac{\epsilon_o(x)}{\sqrt{1 - \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \; \geq \; \epsilon_o(x) \;, \; \; \text{with } \; a = \frac{\epsilon_o(x)}{\sqrt{1 - \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \; \geq \; \epsilon_o(x) \;, \; \; \text{with } \; a = \frac{\epsilon_o(x)}{\sqrt{1 - \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \; \geq \; \epsilon_o(x) \;, \; \; \text{with } \; a = \frac{\epsilon_o(x)}{\sqrt{1 - \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \; \geq \; \epsilon_o(x) \;, \; \; \text{with } \; a = \frac{\epsilon_o(x)}{\sqrt{1 - \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \; \geq \; \epsilon_o(x) \;, \; \; \text{with } \; a = \frac{\epsilon_o(x)}{\sqrt{1 - \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \;, \; \; \text{with } \; a = \frac{\epsilon_o(x)}{\sqrt{1 - \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)}} \;, \; \; \text{with } \; a = \frac{\epsilon_o(x)}{\sqrt{1 - \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)}} \;, \; \; \text{with } \; a = \frac{\epsilon_o(x)}{\sqrt{1 - \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)}} \;, \; \; \text{with } \; a = \frac{\epsilon_o(x)}{\sqrt{1 - \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)}} \;, \; \; \text{with } \; a = \frac{\epsilon_o(x)}{\sqrt{1 - \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right]}} \;, \; \; \text{with } \; \text$$

condition, given by:
$$\left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 < 1$$
,

$$E_{gno(gpo)}(r_{d(a)}, x) - E_{go}(x) = E_{d(a)}(r_{d(a)}, x) - E_{do(ao)}(x) = -E_{do(ao)}(x) \times \left[\left(\frac{r_{d(a)}}{r_{do(ao)}} \right)^3 - \frac{1}{r_{do(ao)}} \right]^3$$

$$1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 \le 0, (6)$$

corresponding to the decrease in both $E_{gn(gp)}(r_{d(a)},x)$ and $E_{d(a)}(r_{d(a)},x)$, for a given x. Furthermore, the effective Bohr radius $a_{Bn(Bp)}(r_{d(a)})$ is defined by:

$$a_{\text{Bn(Bp)}}(r_{\text{d(a)}}, x) \equiv \frac{\epsilon(r_{\text{d(a)}}, x) \times \hbar^2}{m_{\text{c(v)}}(x) \times q^2} = 0.53 \times 10^{-8} \text{ cm} \times \frac{\epsilon(r_{\text{d(a)}}, x)}{m_{\text{c(v)}}(x) / m_o},$$
(7)

where -q is the electron charge.

Then, the critical donor (acceptor)-density in the Mott MIT, $N_{CDn(NDp)}(r_{d(a)},x)$, is determined, using an empirical Mott parameter, $M_{n(p)}$, as:

$$\left[N_{CDn(NDp)}(r_{d(a)},x)\right]^{1/3} \times a_{Bn(Bp)}(r_{d(a)},x) = M_{n(p)} = 0.25,$$
(8)

noting that, in general case, such values of $M_{n(p)}$ could be chosen, such that the obtained numerical $N_{CDn(NDp)}(r_{d(a)},x)$ -results, being found to be in good agreement with the corresponding experimental ones.

In the following, such numerical $N_{CDn(NDp)}(r_{d(a)},x)$ -results can also be justified by the numerical results of the density of electrons (holes), being localized in exponential conduction (valence)-band (EBT) tails, $N_{CDn(CDp)}^{EBT}(r_{d(a)},x)$, with a precision of the order of 2.91×10^{-7} , as those observed in Tables 2-8 in Appendix 1.

$N_{CDn(CDn)}^{EBT}(r_{d(a)}, x)$ - EXPRESSION

In order to determine $N_{CDn(CDp)}^{EBT}(r_{d(a)},x)$, we first present our physical model and also our mathematical methods.

Physical model

In n(p)-type degenerate X(x)-crystalline alloys, if denoting the Fermi wave number by: $k_{Fn(Fp)}(N,x) \equiv \left(3\pi^2 N/g_{c(v)}(x)\right)^{1/3}$, N being the total impurity density, the effective reduced Wigner-Seitz radius $r_{sn(sp)}$, characteristic of interactions, is defined by:

$$r_{sn(sp)}(N, r_{d(a)}, x) \equiv \left(\frac{3g_{c(v)}(x)}{4\pi N}\right)^{1/3} \times \frac{1}{a_{Bn(Bp)}(r_{d(a)}, x)} = 1.1723 \times 10^8 \times \left(\frac{g_{c(v)}(x)}{N}\right)^{1/3} \times \frac{m_{c(v)}(x)/m_o}{\epsilon(r_{d(a)}, x)}.$$
 (9)

So, the ratio of the inverse effective screening length $k_{sn(sp)}$ to Fermi wave number $k_{Fn(kp)}$ can be defined by:

$$R_{sn(sp)}(N, r_{d(a)}, x) \equiv \frac{k_{sn(sp)}}{k_{fn(fp)}} = \frac{k_{fn(fp)}^{-1}}{k_{sn(sp)}^{-1}} =$$

$$R_{snWS(spWS)} + \left[R_{snTF(spTF)} - R_{snWS(spWS)}\right]e^{-r_{sn(sp)}} < 1. \quad (10)$$

These ratios, R_{snTF(spTF)} and R_{snWS(spWS)}, are determined in the following.

First, for N $\gg N_{CDn(NDp)}(r_{d(a)}, x)$, according to the Thomas-Fermi (TF)-approximation, the ratio $R_{snTF(snTF)}$ is reduced to

$$R_{snTF}(N, r_{d(a)}, x) \equiv \frac{k_{snTF(spTF)}}{k_{Fn(Fp)}} = \frac{k_{Fn(Fp)}^{-1}}{k_{snTF(spTF)}^{-1}} = \sqrt{\frac{4\gamma r_{sn(sp)}(N, r_{d(a)}, x)}{\pi}} \ll 1,$$
(11)

being proportional to $N^{-1/6}$.

Secondly, for $N < N_{CDn(NDp)}(r_{d(a)})$, according to the Wigner-Seitz (WS)-approximation, the ratio $R_{snWS(spWS)}$ is reduced to:

$$R_{snWS(spWS)}\big(N,r_{d(a)},x\big) \equiv \frac{k_{snWS(spWS)}}{k_{Fn(Fp)}} = \left(\frac{_3}{^2\pi} - \gamma \frac{d[r_{sn(sp)}^2 \times E_{CE}]}{dr_{sn(sp)}}\right) \times 0.5 \; , \label{eq:RsnWS}$$

(12) where $E_{CE}(N, r_{d(a)}, x)$ is the majority-carrier correlation energy (CE), being determined by:

$$E_{CE}\big(N,r_{d(a)},x\big) \equiv \frac{_{-0.87553}}{_{0.0908+r_{sn(sp)}}} + \frac{\frac{_{0.87553}}{_{0.0908+r_{sn(sp)}}} + \left(\frac{_{2[1-ln(2)]}}{\pi^2}\right) \times ln(r_{sn(sp)}) - 0.093288}{_{1+0.03847728\times r_{sn(sp)}^{1.67378876}}} \,.$$

So, n(p)-type degenerate X(x)- crystalline alloys, the physical conditions are found to be given by:

$$\frac{k_{Fn(Fp)}^{-1}}{a_{Bn(Bp)}} < \frac{\eta_{n(p)}}{\mathbb{E}_{Fno(Fpo)}} \equiv \frac{1}{A_{n(p)}} < \frac{k_{Fn(Fp)}^{-1}}{k_{sn(sp)}^{-1}} \equiv R_{sn(sp)}(N, r_{d(a)}, x) < 1, \ A_{n(p)}(N, r_{d(a)}, x) \equiv \frac{\pm E_{Fno(Fpo)}}{\eta_{n(p)}}.$$
(13)

Here, $\pm E_{Fno(Fpo)}$ is the Fermi energy at 0 K, and $\eta_{n(p)}$ is defined as $\pm E_{Fno(Fpo)}(N,x) =$ $\frac{\hbar^2 \times k_{Fn(Fp)}(N,x)^2}{2 \times m_{c(v)}(x)} \geq 0, \eta_{n(p)}(N,r_{d(a)},x) = \frac{\sqrt{2\pi N}}{\epsilon(r_{d(a)},x)} \times q^2 k_{sn(sp)}^{-1/2}.$

Then, the total screened Coulomb impurity potential energy due to the attractive interaction between an electron (hole) charge, -q(+q), at position \vec{r} , and an ionized donor (ionized acceptor) charge: +q(-q) at position $\overrightarrow{R_j}$, randomly distributed throughout X(x)- crystalline alloys, is defined by:

$$V(r) \equiv \sum_{j=1}^{N} v_j(r) + V_o,$$
(14)

where \mathbb{N} is the total number of ionized donors (acceptors), V_0 is a constant potential energy, and the screened Coulomb potential energy $v_i(r)$ is defined as:

$$v_j(r) \equiv -\frac{q^2 \times \exp(-k_{sn(sp)} \times |\vec{r} - \overline{R_j}|)}{\epsilon(r_{d(a)}) \times |\vec{r} - \overline{R_j}|},$$

where $k_{sn(sp)}$ is the inverse screening length determined in Eq. (11).

Further, using a Fourier transform, the v_i -representation in wave vector \vec{k} -espace is given by

$$v_{j}(\vec{k}) = -\frac{q^{2}}{\epsilon(r_{d(a)})} \times \frac{4\pi}{\Omega} \times \frac{1}{k^{2} + k_{Sn(SD)}^{2}},$$

where Ω is the total X(x)- crystalline alloy volume.

Then, the effective auto-correlation function for potential fluctuations, $W_{n(p)}(v_{n(p)}, N, r_{d(a)}) \equiv \langle V(r)V(r') \rangle$, was determined, [4, 5] as:

$$W_{n(p)}\big(\nu_{n(p)},N,r_{d(a)},x\big)\equiv\eta_{n(p)}^2\times exp\left(\frac{-\mathcal{H}_{n(p)}\times R_{sn(sp)}(N,r_{d(a)},x)}{2\sqrt{|\nu_{n(p)}|}}\right) \quad , \quad \eta_{n(p)}(N,r_{d(a)},x)\equiv \frac{1}{2\sqrt{|\nu_{n(p)}|}}$$

$$\frac{\sqrt{2\pi N}}{\epsilon(r_{d(a)})} \times q^2 k_{sn(sp)}^{-1/2},$$

Here, E is the total electron energy, and the empirical Heisenberg parameter $\mathcal{H}_{n(p)}=0.47137$ was chosen above such that the determination of the density of electrons localized in the conduction(valence)-band tails will be accurate, noting that as $E \to \pm \infty$, $\left|\nu_{n(p)}\right| \to \infty$, and therefore, $W_{n(p)} \to \eta_{n(p)}^2$.

In the following, we will calculate the ensemble average of the function: $(E-V)^{a-\frac{1}{2}} \equiv E_k^{a-\frac{1}{2}}$, for $a \ge 1$, $E_k \equiv \frac{\hbar^2 \times k^2}{2 \times m_{c(v)}(x)}$ being the kinetic energy of the electron (hole), and V(r) determined in Eq. (16), by using the two following integration methods, which strongly depend on $W_{n(p)}(v_{n(p)}, N, r_{d(a)}, x)$.

Mathematical Methods

Kane integration method (KIM)

Here, the effective Gaussian distribution probability is defined by:

$$P(V) \equiv \frac{1}{\sqrt{2\pi W_{n(p)}}} \times \exp\left[\frac{-V^2}{2W_{n(p)}}\right].$$
(16)

So, in the Kane integration method, the Gaussian average of $(E - V)^{a - \frac{1}{2}} \equiv E_k^{a - \frac{1}{2}}$ is defined by $\langle (E - V)^{a - \frac{1}{2}} \rangle_{KIM} \equiv \langle E_k^{a - \frac{1}{2}} \rangle_{KIM} = \int_{-\infty}^{E} (E - V)^{a - \frac{1}{2}} \times P(V) dV$, for $a \ge 1$.

Then, by variable changes: $s = (E - V)/\sqrt{w_{n(p)}}$ and $y = \mp E/\sqrt{W_{n(p)}} \equiv \frac{\pm E_{Fno(Fpo)}}{\eta_{n(p)}} \times \nu_{n(p)} \times \nu_{n(p)}$

$$exp\Bigg(\frac{\mathcal{H}_{n(p)}\times R_{sn(sp)}}{4\times\sqrt{|\nu_{n(p)}|}}\Bigg), \text{ and using an identity:}$$

$$\int_{0}^{\infty} s^{a - \frac{1}{2}} \times \exp(-ys - \frac{s^{2}}{2}) ds \equiv \Gamma(a + \frac{1}{2}) \times \exp(y^{2}/4) \times D_{-a - \frac{1}{2}}(y),$$

where $D_{-a-\frac{1}{2}}(y)$ is the parabolic cylinder function and $\Gamma(a+\frac{1}{2})$ is the Gamma function, one thus has:

$$\begin{split} \langle E_k^{a-\frac{1}{2}} \rangle_{KIM} &= \frac{\exp(-y^2/4) \times W_{n(p)}^{\frac{2a-1}{4}}}{\sqrt{2\pi}} \times \Gamma(a + \frac{1}{2}) \times D_{-a-\frac{1}{2}}(y) = \\ &\frac{\exp(-y^2/4) \times \eta_{n(p)}^{a-\frac{1}{2}}}{\sqrt{2\pi}} \times \exp\left(-\frac{\mathcal{H}_{n(p)} \times R_{sn(sp)} \times (2a-1)}{8 \times \sqrt{|\nu_{n(p)}|}}\right) \times \Gamma(a + \frac{1}{2}) \times D_{-a-\frac{1}{2}}(y) \end{split}$$

(16)

Feynman path-integral method (FPIM)

Here, the ensemble average of $(E - V)^{a - \frac{1}{2}} \equiv E_k^{a - \frac{1}{2}}$ is defined by

$$\begin{split} \langle (E-V)^{a-\frac{1}{2}}\rangle_{FPIM} &\equiv \langle E_k^{a-\frac{1}{2}}\rangle_{FPIM} \equiv \frac{\hbar^{a-\frac{1}{2}}}{2^{3/2}\times\sqrt{2\pi}} \times \frac{\Gamma(a+\frac{1}{2})}{\Gamma(\frac{3}{2})} \times \int_{-\infty}^{\infty} (it)^{-a-\frac{1}{2}} \times exp\left\{\frac{iEt}{\hbar} - \frac{(t\sqrt{W_{n(p)}})^2}{2\hbar^2}\right\} dt, \, i^2 = -1, \end{split}$$

noting that as a=1, $(it)^{-\frac{3}{2}} \times exp\left\{-\frac{(t\sqrt{W_p})^2}{2\hbar^2}\right\}$ is found to be proportional to the averaged

Feynman propagator given the dense donors (acceptors). Then, by variable changes: t =

$$\frac{_{\hbar}}{\sqrt{w_{n(p)}}} \quad \text{and} \quad y = \mp E/\sqrt{W_{n(p)}} \equiv \frac{_{\pm} E_{Fno(Fpo)}}{\eta_{n(p)}} \times \nu_{n(p)} \times exp \left(\frac{\mathcal{H}_{n(p)} \times R_{sn(sp)}}{_{4 \times \sqrt{|\nu_{n(p)}|}}} \right) \; , \quad \text{for} \quad n(p) \text{-type}$$

respectively, and then using an identity:

$$\int_{-\infty}^{\infty} (is)^{-a-\frac{1}{2}} \times \exp\left\{iys - \frac{s^2}{2}\right\} ds \equiv 2^{3/2} \times \Gamma(3/2) \times \exp(-y^2/4) \times D_{-a-\frac{1}{2}}(y),$$

one finally obtains: $\langle E_k^{a-\frac{1}{2}} \rangle_{FPIM} \equiv \langle E_k^{a-\frac{1}{2}} \rangle_{KIM}, \langle E_k^{a-\frac{1}{2}} \rangle_{KIM}$ being determined in Eq. (16).

In the following, with the use of asymptotic forms for $D_{-a-\frac{1}{2}}(y)$, those given for $(E-V)^{a-\frac{1}{2}}_{KIM}$ can be obtained in the two following cases.

First case: n-type $(E \ge 0)$ and p-type $(E \le 0)$

As $E \to \pm \infty$, one has: $\nu_{n(p)} \to \mp \infty$ and $y \to \mp \infty$. In this case, one gets: $D_{-a-\frac{1}{2}}(y \to \mp \infty) \approx$

$$\frac{\sqrt{2\pi}}{\Gamma(a+\frac{1}{2})} \times e^{\frac{y^2}{4}} \times (\mp y)^{a-\frac{1}{2}}$$
, and therefore from Eq. (16), one gets:

$$\langle E_k^{a-\frac{1}{2}}\rangle_{KIM}\approx E^{a-\frac{1}{2}}.$$

Further, as $E \to \pm 0$, one has: $\nu_{n(p)} \to \pm 0$ and $y \to \pm 0$. So, one obtains:

$$D_{-a-\frac{1}{2}}(y\to \overline{+}0) \simeq \beta(a) \times exp \left((\sqrt{a} \ + \frac{_1}{_{16a}}) \ y - \frac{y^2}{_{16a}} + \frac{y^3}{_{24\sqrt{a}}} \right) \to \beta(a), \quad \beta(a) = \frac{\sqrt{\pi}}{_{2}\frac{_{2a+1}}{_{4}}\Gamma(\frac{a}{2} + \frac{3}{4})]}.$$

Therefore, as $E \to \pm 0$, from Eq. (16), one gets: $\langle E_k^{a-\frac{1}{2}} \rangle_{KIM} \to 0$.

Thus, in this case, one gets

$$\langle E_k^{a-\frac{1}{2}} \rangle_{KIM} \cong E^{a-\frac{1}{2}}. \tag{19}$$

Second case: n-type-case $(E \le 0)$ and p-type-case $(E \ge 0)$

As $E \to \mp 0$, one has: $(y, \nu_{n(p)}) \to \pm 0$, and by putting $f(a) \equiv \frac{\eta_{n(p)}^{a-\frac{1}{2}}}{\sqrt{2\pi}} \times \Gamma(a+\frac{1}{2}) \times \beta(a)$, Eq. (18) yields:

$$H_{n(p)} \big(\nu_{n(p)} \to \pm 0 \text{ , N, } r_{d(a)} \text{, x, a} \big) = \frac{\langle E_k^{a - \frac{1}{2}} \rangle_{KIM}}{f(a)} = exp \left[- \frac{\mathcal{H}_{n(p)} \times R_{sn(sp)} \times (2a - 1)}{8 \times \sqrt{|\nu_{n(p)}|}} - \left(\sqrt{a} + \frac{1}{2} \right) \right] + \frac{1}{2} \left[- \frac{\mathcal{H}_{n(p)} \times R_{sn(sp)} \times (2a - 1)}{8 \times \sqrt{|\nu_{n(p)}|}} - \left(\sqrt{a} + \frac{1}{2} \right) \right] + \frac{1}{2} \left[- \frac{\mathcal{H}_{n(p)} \times R_{sn(sp)} \times (2a - 1)}{8 \times \sqrt{|\nu_{n(p)}|}} - \left(\sqrt{a} + \frac{1}{2} \right) \right] + \frac{1}{2} \left[- \frac{\mathcal{H}_{n(p)} \times R_{sn(sp)} \times (2a - 1)}{8 \times \sqrt{|\nu_{n(p)}|}} - \left(\sqrt{a} + \frac{1}{2} \right) \right] + \frac{1}{2} \left[- \frac{\mathcal{H}_{n(p)} \times R_{sn(sp)} \times (2a - 1)}{8 \times \sqrt{|\nu_{n(p)}|}} - \left(\sqrt{a} + \frac{1}{2} \right) \right] + \frac{1}{2} \left[- \frac{\mathcal{H}_{n(p)} \times R_{sn(sp)} \times (2a - 1)}{8 \times \sqrt{|\nu_{n(p)}|}} - \left(\sqrt{a} + \frac{1}{2} \right) \right] + \frac{1}{2} \left[- \frac{\mathcal{H}_{n(p)} \times R_{sn(sp)} \times (2a - 1)}{8 \times \sqrt{|\nu_{n(p)}|}} - \left(\sqrt{a} + \frac{1}{2} \right) \right] + \frac{1}{2} \left[- \frac{\mathcal{H}_{n(p)} \times R_{sn(sp)} \times (2a - 1)}{8 \times \sqrt{|\nu_{n(p)}|}} - \left(\sqrt{a} + \frac{1}{2} \right) \right] + \frac{1}{2} \left[- \frac{\mathcal{H}_{n(p)} \times R_{sn(sp)} \times (2a - 1)}{8 \times \sqrt{|\nu_{n(p)}|}} - \left(\sqrt{a} + \frac{1}{2} \right) \right] + \frac{1}{2} \left[- \frac{\mathcal{H}_{n(p)} \times R_{sn(sp)} \times (2a - 1)}{8 \times \sqrt{|\nu_{n(p)}|}} - \left(\sqrt{a} + \frac{1}{2} \right) \right] + \frac{1}{2} \left[- \frac{\mathcal{H}_{n(p)} \times R_{sn(sp)} \times (2a - 1)}{8 \times \sqrt{|\nu_{n(p)}|}} - \left(\sqrt{a} + \frac{1}{2} \right) \right] + \frac{1}{2} \left[- \frac{\mathcal{H}_{n(p)} \times R_{sn(sp)} \times (2a - 1)}{8 \times \sqrt{|\nu_{n(p)}|}} - \left(\sqrt{a} + \frac{1}{2} \right) \right] + \frac{1}{2} \left[- \frac{\mathcal{H}_{n(p)} \times R_{sn(sp)} \times (2a - 1)}{8 \times \sqrt{|\nu_{n(p)}|}} - \left(\sqrt{a} + \frac{1}{2} \right) \right] + \frac{1}{2} \left[- \frac{\mathcal{H}_{n(p)} \times R_{sn(sp)} \times (2a - 1)}{8 \times \sqrt{|\nu_{n(p)}|}} - \left(\sqrt{a} + \frac{1}{2} \right) \right] + \frac{1}{2} \left[- \frac{\mathcal{H}_{n(p)} \times R_{sn(sp)} \times (2a - 1)}{8 \times \sqrt{|\nu_{n(p)}|}} - \left(\sqrt{a} + \frac{1}{2} \right) \right] + \frac{1}{2} \left[- \frac{\mathcal{H}_{n(p)} \times R_{sn(sp)} \times (2a - 1)}{8 \times \sqrt{|\nu_{n(p)}|}} - \left(\sqrt{a} + \frac{1}{2} \right) \right] + \frac{1}{2} \left[- \frac{\mathcal{H}_{n(p)} \times R_{sn(sp)} \times (2a - 1)}{8 \times \sqrt{|\nu_{n(p)}|}} \right] + \frac{1}{2} \left[- \frac{\mathcal{H}_{n(p)} \times R_{sn(sp)} \times (2a - 1)}{8 \times \sqrt{|\nu_{n(p)}|}} - \left(\sqrt{a} + \frac{1}{2} \right) \right] + \frac{1}{2} \left[- \frac{\mathcal{H}_{n(p)} \times R_{sn(sp)} \times (2a - 1)}{8 \times \sqrt{|\nu_{n(p)}|}} \right] + \frac{1}{2} \left[- \frac{\mathcal{H}_{n(p)} \times (2a - 1)}{8 \times \sqrt{|\nu_{n(p)}|}}} - \left(\sqrt{a} + \frac{1}{2} \right) \right] + \frac{1}{2} \left[- \frac{\mathcal{H}_{n(p)}$$

$$\frac{1}{\frac{3}{16a^{\frac{3}{2}}}} y - \left(\frac{1}{4} + \frac{1}{16a}\right) y^2 - \frac{y^3}{24\sqrt{a}} \to 0.$$
 (20)

Further, as $E \to \overline{+}\infty$, one has: $(y, \ \nu_{n(p)}) \to \pm \infty$. Thus, one gets: $D_{-a-\frac{1}{2}}(y \to \pm \infty) \approx$ $v^{-a-\frac{1}{2}} \times e^{-\frac{y^2}{4}} \to 0$

Therefore, from Eq. (16), one gets:

$$K_{n(p)}(\nu_{n(p)} \to \pm \infty, N, r_{d(a)}, x, a) \equiv \frac{\langle E_k^{a-\frac{1}{2}} \rangle_{KIM}}{f(a)} \simeq \frac{1}{\beta(a)} \times \exp(-\frac{(A_{n(p)} \times \nu_{n(p)})^2}{2}) \times (A_{n(p)} \times A_{n(p)} \times A_{n(p)}$$

$$\nu_{n(p)})^{-a-\frac{1}{2}} \to 0,$$
 (21)

noting that
$$\beta(a) = \frac{\sqrt{\pi}}{2^{\frac{2a+1}{4}}\Gamma(\frac{a}{2} + \frac{3}{4})}$$
, being equal to: $\frac{\sqrt{\pi}}{2^{\frac{3}{4}} \times \Gamma(5/4)}$ for $a = 1$, and $\frac{\sqrt{\pi}}{2^{3/2}}$ for $a = 5/2$.

It should be noted that those ratios: $\frac{\langle E_k^{a-\frac{1}{2}} \rangle_{KIM}}{f(a)}$, obtained in Equations (20) and (21), can be taken in an approximate form as:

$$F_{n(p)}(\nu_{n(p)}, N, r_{d(a)}, x, a) = K_{n(p)}(\nu_{n(p)}, N, r_{d(a)}, x, a) + [H_{n(p)}(\nu_{n(p)}, N, r_{d(a)}, x, a) - K_{n(p)}(\nu_{n(p)}, N, r_{d(a)}, x, a)] \times \exp[-c_1 \times (A_{n(p)}\nu_{n(p)})^{c_2}],$$
(22)

so that: $F_{n(p)}(\nu_{n(p)}, N, r_{d(a)}, x, a) \to H_{n(p)}(\nu_{n(p)}, N, r_{d(a)}, x, a)$ for $0 \le \nu_n \le 16$, and $F_{n(p)}(\nu_{n(p)}, N, r_{d(a)}, x, a) \to K_{n(p)}(\nu_{n(p)}, N, r_{d(a)}, x, a)$ for $\nu_{n(p)} \ge 16$. Here, the constants c_1 and c_2 may be respectively chosen as: $c_1 = 10^{-40}$ and $c_2 = 80$, as a = 1, being used to determine the critical density of electrons (holes) localized in the exponential conduction(valence) band-tails (EBT), $N_{CDn(CDp)}^{EBT}(N, r_{d(a)}, x)$, given in the following.

Here, by using Eq. (18) for a=1, the density of states $\mathcal{D}(E)$ is defined by:

$$\langle \mathcal{D}(E_{k})\rangle_{KIM} \equiv \frac{g_{c(v)}}{2\pi^{2}} \left(\frac{2m_{c(v)}}{\hbar^{2}}\right)^{\frac{3}{2}} \times \langle E_{k}^{\frac{1}{2}}\rangle_{KIM} = \frac{g_{c(v)}}{2\pi^{2}} \left(\frac{2m_{c(v)}}{\hbar^{2}}\right)^{\frac{3}{2}} \times \frac{\exp\left(-\frac{y^{2}}{4}\right) \times W_{n}^{\frac{1}{4}}}{\sqrt{2\pi}} \times \Gamma\left(\frac{3}{2}\right) \times D_{-\frac{3}{2}}(y) = \mathcal{D}(E). \tag{23}$$

Going back to the functions: H_n , K_n and F_n , given respectively in Equations (20-22), in which the factor $\frac{\langle E_k^{\frac{1}{2}} \rangle_{KIM}}{f(a=1)}$ is now replaced by:

$$\frac{\langle E_k^{\frac{1}{2}} \rangle_{KIM}}{f(a=1)} = \frac{\mathcal{D}(E \le 0)}{\mathcal{D}_o} = F_{n(p)} \left(\nu_{n(p)}, N, r_{d(a)}, x, a = 1 \right)$$

$$\mathcal{D}_o(N, r_{d(a)}, x, a = 1) = \frac{g_{c(v)} \times \left(m_{c(v)} \times m_o\right)^{3/2} \times \sqrt{\eta_{n(p)}}}{2\pi^2 \hbar^3} \times \beta(a) \qquad , \qquad \beta(a = 1) = \frac{\sqrt{\pi}}{\frac{3}{2^{\frac{3}{4}} \times \Gamma(5/4)}}$$

(24)

Therefore, $N_{CDn(CDp)}^{EBT}(N, r_{d(a)}, x)$ can be defined by: $N_{CDn(CDp)}^{EBT}(N, r_{d(a)}, x) = \int_{-\infty}^{0} \mathcal{D}(E \le 0) dE$,

$$N_{CDn(CDp)}^{EBT}(N, r_{d(a)}, x) =$$

$$\tfrac{g_{c(v)} \times \left(m_{c(v)}\right)^{3/2} \sqrt{\eta_{n(p)}} \times (\pm \, E_{Fno(Fpo)})}{2\pi^2 \hbar^3} \times \left\{ \int_0^{16} \beta(a=1) \times F_{n(p)} \! \left(\nu_{n(p)}, N, r_{d(a)}, x, a=1 \right) d\nu_{n(p)} \right. + \\ \left. \left(\int_0^{16} \beta(a=1) \times F_{n(p)} \! \left(\nu_{n(p)}, N, r_{d(a)}, x, a=1 \right) d\nu_{n(p)} \right) \right\} + \\ \left. \left(\int_0^{16} \beta(a=1) \times F_{n(p)} \! \left(\nu_{n(p)}, N, r_{d(a)}, x, a=1 \right) d\nu_{n(p)} \right) \right\} + \\ \left. \left(\int_0^{16} \beta(a=1) \times F_{n(p)} \! \left(\nu_{n(p)}, N, r_{d(a)}, x, a=1 \right) d\nu_{n(p)} \right) \right\} \right\} + \\ \left. \left(\int_0^{16} \beta(a=1) \times F_{n(p)} \! \left(\nu_{n(p)}, N, r_{d(a)}, x, a=1 \right) d\nu_{n(p)} \right) \right\} \right\} + \\ \left. \left(\int_0^{16} \beta(a=1) \times F_{n(p)} \! \left(\nu_{n(p)}, N, r_{d(a)}, x, a=1 \right) d\nu_{n(p)} \right) \right\} \right\} + \\ \left. \left(\int_0^{16} \beta(a=1) \times F_{n(p)} \! \left(\nu_{n(p)}, N, r_{d(a)}, x, a=1 \right) d\nu_{n(p)} \right) \right\} \right\} + \\ \left. \left(\int_0^{16} \beta(a=1) \times F_{n(p)} \! \left(\nu_{n(p)}, N, r_{d(a)}, x, a=1 \right) d\nu_{n(p)} \right) \right\} \right) \right\} + \\ \left. \left(\int_0^{16} \beta(a=1) \times F_{n(p)} \! \left(\nu_{n(p)}, N, r_{d(a)}, x, a=1 \right) d\nu_{n(p)} \right) \right\} \right) \right\} + \\ \left. \left(\int_0^{16} \beta(a=1) \times F_{n(p)} \! \left(\nu_{n(p)}, N, r_{d(a)}, x, a=1 \right) d\nu_{n(p)} \right) \right\} \right) \right\} + \\ \left. \left(\int_0^{16} \beta(a=1) \times F_{n(p)} \! \left(\nu_{n(p)}, N, r_{d(a)}, x, a=1 \right) d\nu_{n(p)} \right) \right] \right) \right\} \right) + \\ \left. \left(\int_0^{16} \beta(a=1) \times F_{n(p)} \! \left(\nu_{n(p)}, N, r_{d(a)}, x, a=1 \right) d\nu_{n(p)} \right) \right\} \right) \right\} \right) + \\ \left. \left(\int_0^{16} \beta(a=1) \times F_{n(p)} \! \left(\nu_{n(p)}, N, r_{d(a)}, x, a=1 \right) d\nu_{n(p)} \right) \right) \right\} \right) \right) + \\ \left. \left(\int_0^{16} \beta(a=1) \times F_{n(p)} \! \left(\nu_{n(p)}, N, r_{d(a)}, x, a=1 \right) d\nu_{n(p)} \right) \right) \right) \right) \right) \left(\int_0^{16} \beta(a=1) \times F_{n(p)} \! \left(\nu_{n(p)}, N, r_{d(a)}, x, a=1 \right) d\nu_{n(p)} \right) \right) d\nu_{n(p)} \right) d\nu_{n(p)} + \\ \left(\int_0^{16} \beta(a=1) \times F_{n(p)} \! \left(\nu_{n(p)}, N, r_{d(a)}, x, a=1 \right) d\nu_{n(p)} \right) d\nu_{n(p)} d\nu_{n(p)} + \\ \left(\int_0^{16} \beta(a=1) \times F_{n(p)} \! \left(\nu_{n(p)}, x, a=1 \right) d\nu_{n(p)} \right) d\nu_{n(p)} d\nu_{n(p)} + \\ \left(\int_0^{16} \beta(a=1) \times F_{n(p)} \! \left(\nu_{n(p)}, x, a=1 \right) d\nu_{n(p)} d$$

$$I_{n(p)}$$
, (25) where

$$\begin{split} I_{n(p)} & \equiv \int_{16}^{\infty} \beta(a=1) \times K_{n(p)} \big(\nu_{n(p)}, N, r_{d(a)}, x, a=1 \big) \, d\nu_{n(p)} \ = \int_{16}^{\infty} e^{\frac{- \left(A_{n(p)} \times \nu_{n(p)} \right)^2}{2}} \times \\ & \left(A_{n(p)} \nu_{n(p)} \right)^{-3/2} \, d\nu_{n(p)}. \end{split}$$

74

Then, by another variable change: $t = [A_{n(p)}v_{n(p)}/\sqrt{2}]^2$, the integral $I_{n(p)}$ yields:

$$I_{n(p)} = \tfrac{1}{2^{5/4}A_{n(p)}} \times \int_{z_{n(p)}}^{\infty} t^{b-1} \, e^{-t} dt \equiv \tfrac{\Gamma(b,z_{n(p)})}{2^{5/4}\times A_{n(p)}}, \ \ \text{where} \ \ b = -1/4 \, , \quad z_{n(p)} = \left[16A_{n(p)}/\sqrt{2}\right]^2,$$

and $\Gamma(b,\,z_{n(p)})$ is the incomplete Gamma function, defined by: $\Gamma(b,z_{n(p)})\simeq z_{n(p)}^{b-1}\times z_{n(p)}^{b-1}$

$$e^{-z_{n(p)}} \Bigg[1 + \sum_{j=1}^{16} \frac{(b-1)(b-2)...(b-j)}{z_{n(p)}^{j}} \Bigg].$$

Finally, Eq. (25) now yields:

$$\begin{split} N_{CDn(CDp)}^{EBT}[N &= N_{CDn(NDp)}(r_{d(a)},x), r_{d(a)},x] = \frac{g_{c(v)} \times \left(m_{c(v)}\right)^{3/2} \sqrt{\eta_{n(p)}} \times (\pm E_{Fno(Fpo)})}{2\pi^2 \hbar^3} \times \\ \left\{ \int_0^{16} \beta(a=1) \times F_{n(p)} \left(\nu_{n(p)}, N, r_{d(a)}, x, a=1\right) d\nu_{n(p)} + \frac{\Gamma(b, z_{n(p)})}{2^{5/4} \times A_{n(p)}} \right\}, \end{split}$$

being the density of electrons (holes) localized in the EBT, respectively.

In n(p)-type degenerate X(x)- crystalline alloys, the numerical results of $N_{CDn(CDp)}^{EBT}[N=N_{CDn(NDp)}(r_{d(a)},x),r_{d(a)},x] \equiv N_{CDn(CDp)}^{EBT}(r_{d(a)},x)$, for a simplicity of presentation, evaluated using Eq. (26), are given in Tables 2-8 in Appendix 1, in which those of other functions such as: $B_{do(ao)}$, ε , $E_{gno(gpo)}$, and $N_{CDn(CDp)}$ are computed, using Equations (2), (5), (6), and (8), respectively, noting that the relative deviations in absolute values are defined by: $|RD| \equiv \left|1 - \frac{N_{CDn(CDp)}^{EBT}}{N_{CDn(CDp)}}\right|$.

Tables 2-8 in Appendix 1

CONCLUSION

In those Tables 2-8, some concluding remarks are given and discussed in the following.

- (1)-For a given x, while $\epsilon(r_{d(a)},x)$ decreases (\searrow), the functions: $E_{gno(gpo)}(r_{d(a)},x)$, $N_{CDn(CDp)}(r_{d(a)},x)$ and $N_{CDn(CDp)}^{EBT}(r_{d(a)},x)$ increase (\nearrow), with increasing (\nearrow) $r_{d(a)}$, due to the impurity size effect.
- (2)-Further, for a given $r_{d(a)}$, while $\epsilon(r_{d(a)},x)$ also decreases (\searrow), the functions: $E_{gno(gpo)}(r_{d(a)},x)$, $N_{CDn(CDp)}(r_{d(a)},x)$ and $N_{CDn(CDp)}^{EBT}(r_{d(a)},x)$ also increase (\nearrow), with increasing (\nearrow) x.
- (3)- In those Tables 2-8, one notes that the maximal value of |RD| is found to be given by: 2.91×10^{-7} , meaning that $N_{CDn}^{EBT} \cong N_{CDn}$. In other words, such the critical d(a)-density

 $N_{CDn(NDp)}(r_{d(a))}, x)$, is just the density of electrons (holes), being localized in the EBT, $N_{CDn(CDp)}^{EBT}(r_{d(a)}, x)$, respectively.

(4) Finally, once $N_{CDn(CDp)}$ is determined, the effective density of free electrons (holes), N^* , given in the parabolic conduction (valence) band of the n(p)-type degenerate X(x)- crystalline alloy, can thus be defined, as the compensated ones, by:

$$N^*(N, r_{d(a)}, x) \equiv N - N_{CDn(NDp)} \cong N - N_{CDn(CDp)}^{EBT},$$

needing to determine the optical, electrical, and thermoelectric properties in such n(p)-type degenerate X(x)-crystalline alloys, as those studied in n(p)-type degenerate crystals (Van Cong, 2023; Van Cong et al., 2014; Van Cong & Debiais, 1993; Van Cong et al., 1984).

REFERENCES

- 1. Green, M.A. et al. Solar cell efficiency tables (version 60). *Prog. Photovolt. Res. & Appl.*, 2022; 30: 687-701.
- 2. Kittel, C. Introduction to Solid State Physics, Wiley, New York, 1976; 84-100.
- 3. Moon S. et al. Highly efficient single GaAs thin-film solar cell on flexible substrate. *Sci. Rep.*, 2016; 6: 30107.
- 4. Van Cong, H. New Critical Impurity Density in the Metal-Insulator Transition, obtained in various n(p)-Type Degenerate Crystalline Alloys, being just That of Carriers Localized in Exponential Band Tails, being accepted for publication in *World Journal of Engineering Research and Technology*, 2024; 10(4).
- 5. Van Cong, H. Critical Impurity Densities in the Mott Metal-Insulator Transition, Obtained in Three n(p)- Type Degenerate Ga As_{1-x}Te_x(Sb_x, P_x) -Crystalline Alloys. *European Journal of Applied Sciences, Engineering and Technology*, 2024; 2(1): 34-49.
- 6. Van Cong, H. Accurate expressions of the optical coefficients, given in n(p)-type degenerate GaAs-crystals, due to the impurity-size effect, and obtained by an improved Forouhi-Bloomer parameterization model (FB-PM). *SCIREA J. Phys.*, 2023; 8: 172-197. Same maximum figure of merit ZT(=1), due to effects of impurity size and heavy doping, obtained in n(p)-type degenerate InP-crystal, at same reduced Fermi energy and same minimum (maximum) Seebeck coefficient, at which same Mott ZT (=1). *SCIREA J. Phys.*, 2023; 8: 91-114; Same maximum figure of merit ZT(=1), due to effects of impurity size and heavy doping, obtained in n(p)-type degenerate GaAs-crystal, at same reduced Fermi energy and same minimum (maximum) Seebeck coefficient, at which same Mott

ZT (=1). SCIREA J. Phys., 2023; 8: 133-157; Same maximum figure of merit ZT(=1), due to effects of impurity size and heavy doping, obtained in n(p)-type degenerate InSb-crystal, at same reduced Fermi energy and same minimum (maximum) Seebeck coefficient, at which same Mott ZT (=1). SCIREA J. Phys., 2023; 8: 383-406; Same maximum figure of merit ZT(=1), due to effects of impurity size and heavy doping, obtained in n(p)-type degenerate InAs-crystal, at same reduced Fermi energy and same minimum (maximum) Seebeck coefficient, at which same Mott ZT (=1). SCIREA J. Phys., 2023; 8: 431-455.

- 7. Van Cong, H. et al. Optical bandgap in various impurity-Si systems from the metal-insulator transition study. *Physica B*, 2014; 436: 130-139.
- 8. Van Cong, H. & Debiais, G. A simple accurate expression of the reduced Fermi energy for any reduced carrier density. *J. Appl. Phys.*, 1993; 73: 1545-1546.
- 9. Van Cong, H. et al. Size effect on different impurity levels in semiconductors. *Solid State Communications*, 1984; 49: 697-699.
- 10. Critical Impurity Densities in the Mott Metal-Insulator Transition, Obtained in Three n(p)- Type Degenerate $GaAs_{1-x}Te_x(Sb_x, P_x)$ -Crystalline Alloys

APPENDIX 1

 $Table \ 1: The \ values \ of \ various \ energy-band-structure \ parameters \ are \ given \ in \ various \ crystalline \ alloys \ as \ follows.$

```
In InAs_{1-x}P_x-alloys, in which r_{do(ao)} = r_{As(in)} = 0.118 nm (0.144 nm), we have: g_{c(v)}(x) = 1 \times x + 1 \times (1-x), m_{c(v)}(x)/m_o = 1 \times x + 1 \times (1-x)
0.077(0.5) \times x + 0.09(0.3) \times (1-x), \ \varepsilon_o(x) = 12.5 \times x + 14.55 \times (1-x), \ E_{go}(x) = 1.424 \times x + 0.43 \times (1-x), \ \text{and}
In InAs_{1-x}Sb_x-alloys, in which r_{do(ao)} = r_{As(1n)} = 0.118 nm (0.144 nm), we have: g_{c(v)}(x) = 1 \times x + 1 \times (1-x), m_{c(v)}(x)/m_o = 1 \times x + 1 \times (1-x)
0.1(0.4) \times x + 0.09(0.3) \times (1-x), \, \varepsilon_o(x) = 16.8 \times x + 14.55 \times (1-x), \, E_{oo}(x) = 0.23 \times x + 0.43 \times (1-x).
                                                                                               _____
In GaTe_{1-x}As_x-alloys, in which r_{do(ao)} = r_{Te(Ga)} = 0.132 nm (0.126 nm), we have: g_{c(v)}(x) = 1 \times x + 1 \times (1-x), m_{c(v)}(x)/m_o = 1
0.066 \ (0.291) \times x + 0.209 \ (0.4) \times (1-x), \ \varepsilon_o(x) = 13.13 \times x + 12.3 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.52 \times x + 1.796 \times (1-x), \ E_{go}(x) = 1.79
In GaTe_{1-x}Sb_x-alloys, in which r_{do(ao)} = r_{Te(Ga)} = 0.132 nm (0.126 nm), we have: g_{c(v)}(x) = 1 \times x + 1 \times (1-x), m_{c(v)}(x)/m_o = 1 \times x + 1 \times (1-x)
0.047(0.3) \times x + 0.209(0.4) \times (1-x), \varepsilon_0(x) = 15.69 \times x + 12.3 \times (1-x), E_{qo}(x) = 0.81 \times x + 1.796 \times (1-x), \text{ and } x = 1.000 \times x + 1
In GaTe_{1-x}P_x-alloys, in which r_{do(ao)} = r_{Te(Ga)} = 0.132 nm (0.126 nm), we have: g_{c(v)}(x) = 1 \times x + 1 \times (1-x), m_{c(v)}(x)/m_o = 0.132
0.13(0.5) \times x + 0.209(0.4) \times (1-x), \, \varepsilon_o(x) = 11.1 \times x + 12.3 \times (1-x), \, E_{ao}(x) = 1.796 \times x + 1.796 \times (1-x).
 .....
In CdTe_{1-x}S_x-alloys, in which r_{do(ao)} = r_{S(Cd)} = 0.104 nm (0.148 nm), we have: g_{c(v)}(x) = 1 \times x + 1 \times (1-x), m_{c(v)}(x)/m_o = 1 \times x + 1 \times (1-x)
0.197 \ (0.801) \times x + 0.095 (0.82) \times (1-x), \ \varepsilon_o(x) = 9 \times x + 10.31 \times (1-x), \ E_{go}(x) = 2.58 \times x + 1.62 \times (1-x), \ \text{and} \ x + 1.62 \times (1-x), \ x + 1.62 \times (1-x)
In CdTe_{1-x}Se_x-alloys, in which r_{do(ao)} = r_{S(Cd)} = 0.104 nm (0.148 nm), we have: g_{c(v)}(x) = 1 \times x + 1 \times (1-x), m_{c(v)}(x)/m_o = 1 \times x + 1 \times (1-x), m_{c(v)}(x)/m_o = 1 \times x + 1 \times (1-x)
0.11(0.45) \times x + 0.095(0.82) \times (1-x), \ \varepsilon_o(x) = 10.2 \times x + 10.31 \times (1-x), \ E_{ao}(x) = 1.84 \times x + 1.62 \times (1-x).
```

Table 2: In the InAs_{1-x}P_x-alloy the numerical results of $B_{do(ao)}$, ϵ , $E_{gno(gpo)}$, $N_{CDn(CDp)}$, and $N_{CDn(CDp)}^{EBT}$ are computed, using Equations (2), (5), (6), and (8), and (26), respectively, noting that the relative deviations in absolute values are defined by: $|RD| \equiv \left|1 - \frac{N_{CDn(CDp)}^{EBT}}{N_{CDn(CDp)}}\right|$, giving rise to their maximal value equal to 2.76×10^{-7} , meaning that such the critical d(a)-density

 $N_{CDn(NDp)}(r_{d(a))}, x)$, determined in Eq. (8), is just the density of electrons (holes) localized in the EBT, $N_{CDn(CDp)}^{EBT}(r_{d(a)}, x)$, determined in Eq. (26), respectively. Here, on notes that in the limiting conditions: x=0, 1, these results are reduced to those given in GaAs-and-GaTe crystals, respectively, as observed in Table 1.

Donor	P	As
r_{d} (nm) \nearrow	0.110	r_{do} =0.118
x 1	0, 0.5, 1	0, 0.5, 1
$B_{do}(x)$ in 10^8 (N/m ²) \nearrow		1.3458086, 1.4450362,1.5600463
$\varepsilon(r_d, x) \setminus$	14.85002, 13.8039, 12.75774	14.5 5, 13.525, 12.5
$E_{gno}(r_d, x) eV \nearrow$	0.4297687, 0.926752, 1.42373	0.43 , 0.927, 1.424
$N_{CDn}(r_d,x)$ in $10^{16}~cm^{-3}$ /	2.3363729, 2.3230107, 2.3075214	2.4838989, 2.469693, 2.4532257
$N_{CDn}^{EBT}(r_d,x)$ in $10^{16}~cm^{-3}$ /	2.3363723, 2.3230101, 2.3075208	2.4838983, 2.4696924, 2.4532251
RD in 10 ⁻⁷	2.75 , 2.57, 2.56	2.57, 2.57, 2.62
Donor	Sb	Sn
r_{d} (nm) \nearrow	0.136	0.140
x 1	0, 0.5, 1	0, 0.5, 1
$\varepsilon(r_d, x) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	13.139864, 12.214203, 11.28854	12.552119, 11.667863, 10.78361
$E_{gno}(r_d, x) eV \nearrow$	0.431307, 0.9284039, 1.4255157	0.431987, 0.9291335, 1.4263033
$N_{CDn}(r_d,x)$ in $10^{16}~cm^{-3}$ /	3.3724874, 3.3531995, 3.3308411	3.868760, 3.8466338, 3.8209854
$N_{CDn}^{EBT}(r_d, x)$ in 10^{16} cm ⁻³ \nearrow	3.3724865, 3.3531986, 3.3308402	3.868759, 3.8466328, 3.8209844
RD in 10 ⁻⁷	2.74, 2.74, 2.60	2.67, 2.62, 2.64
Acceptor	Ga	Mg
r_a (nm) \nearrow	0.126	0.140
х	0, 0.5, 1	0, 0.5, 1
$\varepsilon(r_a,x)$ \	15.6192444, 14.5189196, 13.4185948	14.6000832, 13.571555, 12.5430268
$E_{gpo}(r_a, x) eV \nearrow$	0.4274517, 0.9230677, 1.4182455	0.429868, 0.9267963, 1.4237019
$N_{CDp}(r_a,x)$ in $10^{18}~cm^{-3}$ /	0.74366797, 2.1946863, 5.4298054	0.91052768, 2.6871166, 6.6481122
$N_{CDp}^{EBT}(r_a, \boldsymbol{x})$ in $10^{18}~cm^{-3}$ /	0.74366777, 2.1946857, 5.4298040	0.91052743, 2.6871159, 6.6481104
RD in 10 ⁻⁷	2.68, 2.76 , 2.68	2.77, 2.62, 2.74
Acceptor	In	Cd
r_a (nm) \nearrow	$r_{ao} = 0.144$	0.148
x 1	0, 0.5, 1	0, 0.5, 1
$B_{ao}(x) \text{ in } 10^8 \text{ (N/m}^2)$ 7	2.4684288, 3.808998, 5.5741072	
$\varepsilon(r_a, x)$ \	14.55 , 13.525, 12.5	14.4990401, 13.47763, 12.45622
$E_{gpo}(r_a, x) eV \nearrow$	0.43 , 0.927, 1.424	0.4301357, 0.9272094, 1.4243065
$N_{CDp}(r_a,x)$ in $10^{18}~cm^{-3}$ /	0.91996257, 2.7149606, 6.717	0.92969691, 2.7436882, 6.7880742
$N_{CDp}^{EBT}(r_{\text{a}},\textbf{x})$ in $10^{18}~\text{cm}^{-3}~\text{?}$	0.91996232, 2.7149599, 6.7169982	0.92969666, 2.7436875, 6.7880723
RD in 10 ⁻⁷	2.68, 2.75, 2.69	2.71, 2.63, 2.74

Table 3. In the $InAs_{1-x}Sb_x$ -alloy the numerical results of $B_{do(ao)}$, ϵ , $E_{gno(gpo)}$, $N_{CDn(CDp)}$, and $N_{CDn(CDp)}^{EBT}$ are computed, using Equations (2), (5), (6), and (8), and (26), respectively, noting that the relative deviations in absolute values are defined by: $|RD| \equiv \left|1 - \frac{N_{CDn(CDp)}^{EBT}}{N_{CDn(Cdp)}}\right|$, giving rise to their maximal value equal to 2.91×10^{-7} , meaning that such the critical d(a)-density

www.wjert.org ISO 9001: 2015 Certified Journal 78

 $N_{CDn(NDp)}(r_{d(a))}, x)$, determined in Eq. (8), is just the density of electrons (holes) localized in the EBT, $N_{CDn(CDp)}^{EBT}(r_{d(a)}, x)$, determined in Eq. (26), respectively. Here, on notes that in the limiting conditions: x=0, 1, these results are reduced to those given in GaAs-and-GaTe crystals, respectively, as observed in Table 1.

Donor	P		As	
r _d (nm) →	0.110		r_{do} =0.118	
х 1	0,	0.5, 1	0,	0.5, 1
$B_{do}(x)$ in 10^8 (N/m ²) \searrow			1.3458	086, 1.2239827, 1.1216264
$\varepsilon(r_d, x) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	14.85001,	15.998213, 17.14641	1	4.55 , 15.675, 16.8
$E_{gno}(r_d, x) \text{ eV } \nearrow$	0.4297687,	0.32979, 0.2298073		0.43 , 0.33, 0.23
$N_{\rm CDn}(r_{\rm d},x)$ in $10^{16}~{\rm cm}^{-3}$ /	2.3363729,	2.1976158, 2.0819762	2.4838	3989, 2.3363803, 2.2134389
$N_{CDn}^{EBT}(r_d, x)$ in 10^{16} cm ⁻³ \nearrow	2.3363723,	2.1976152 , 2.0819756	2.483	38983, 2.3363797, 2.2134383
RD in 10 ⁻⁷	2.75,	2.61, 2.67		2.58, 2.61, 2.81
Donor	Sb		Sn	
r _d (nm) ✓	0.1	36	0.140	
x /	0,	0.5, 1	0, 0	0.5, 1
$\varepsilon(r_d, x) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	13.139864	4, 14.15583, 15.171801	12.552	119, 13.52264, 14.49317
$E_{gno}(r_d, x) \text{ eV } \nearrow$	0.431307	5, 0.33119, 0.2310897	0.43198	37, 0.3318071, 0.231656
$N_{CDn}(r_d, x)$ in 10^{16} cm ⁻³ \nearrow	3.3724874	4, 3.1721955, 3.0052730	3.868	3760, 3.6389946, 3.4475089
$N_{CDn}^{EBT}(r_d, x)$ in 10^{16} cm ⁻³ \nearrow	3.372486	5, 3.1721946, 3.0052722	3.868	3759 , 3.6389936 , 3.4475080
RD in 10 ⁻⁷	2.7	4, 2.69, 2.61	:	2.67, 2.79, 2.70
Acceptor	Ga		Mg	
r _a (nm) /	0.126		0.140	
x 1	0,	0.5, 1	0, 0	5, 1
$\varepsilon(r_a, x) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	15.6192444, 16.82	269179, 18.0345915	14.600083, 15.72896	5, 16.857828
$E_{\rm gpo}(r_{\rm a},x)~{\rm eV}~{\cal I}$	0.4274517, 0.32	74384, 0.2274514	0.429868, 0.329867	3, 0.229868
$N_{CDp}(r_a,x)$ in 10^{18} cm ⁻³ \nearrow	0.74366797,	, 0.9444648, 1.1451343	0.91052768	3, 1.1563781, 1.4020726
$N_{\rm CDp}^{\rm EBT}({ m r_a},{ m x})$ in $10^{18}~{ m cm^{-3}}$ /	0.74366	777, 0.9444646, 1.1451340	0.9	1052743, 1.1563778, 1.40207
RD in 10 ⁻⁷	2.68,	2.64, 2.74	2.7	7, 2.83, 2.81
Acceptor	In		Cd	
r _a (nm) /	$r_{ao} = 0.144$		0.148	
x /	0,	0.5, 1	0,	0.5, 1
$B_{ao}(x)$ in 10^8 (N/m ²) \searrow	5.5741072, 3	3.6522677, 2.4686912		
$\varepsilon(\mathbf{r}_{a},\mathbf{x})$ \	14.55,	15.675, 16.8	14.499040, 15	.6201, 16.7411597
$E_{\rm gpo}(r_{\rm a},x)~{\rm eV}~{\cal I}$	0.43,	0.33, 0.23	0.4301357, 0.	3301364, 0.2301357
$N_{CDp}(r_a,x)$ in 10^{18} cm ⁻³ \nearrow	0.91996257,	1.1683605, 1.4166009	0.92969	9691, 1.1807232, 1.4315903
$N_{\rm CDp}^{\rm EBT}({ m r_a},{ m x})$ in $10^{18}~{ m cm^{-3}}$ /	0.91996232,	1.1683602, 1.4166005	0.92969	9666, 1.1807229, 1.4315899
RD in 10 ⁻⁷	2.68,	2.78, 2.82		2.71, 2.83, 2.91

Table 4: In the $GaTe_{1-x}As_x$ -alloy the numerical results of $B_{do(ao)}$, ε , $E_{gno(gpo)}$, $N_{CDn(CDp)}$, and $N_{CDn(CDp)}^{EBT}$ are computed, using Equations (2), (5), (6), and (8), and (26), respectively, noting that the relative deviations in absolute values are defined by: $|RD| \equiv \left| 1 - \frac{N_{CDn(CDp)}^{EBT}}{N_{CDn(Cdp)}} \right|$, giving rise to their maximal value equal to 2.91×10^{-7} , meaning that such the critical d(a)-density

www.wjert.org ISO 9001: 2015 Certified Journal 79

 $N_{CDn(NDp)}(r_{d(a))}, x)$, determined in Eq. (8), is just the density of electrons (holes) localized in the EBT, $N_{CDn(CDp)}^{EBT}(r_{d(a)}, x)$, determined in Eq. (26), respectively. Here, on notes that in the limiting conditions: x=0, 1, these results are reduced to those given in GaAs-and-GaTe crystals, respectively, as observed in Table 1.

Donor		P		As		Te	
r_d (nm)	1	0.110		0.118	r	$t_{do} = 0.132$	
X	1	0,	0.5, 1	0,	0.5, 1	0,	0.5, 1
B _{do} (x) in 10 ⁸ (0.8657759	(N/m^2)					3.1241155,	1.923362
$\varepsilon(\mathbf{r}_{d}, \mathbf{x}) \searrow$ 13.13		14.021105, 1	4.494174, 14.967244	12.937135	5, 13.3736, 13.81013	12.	3 , 12.715
$E_{gno}(r_d, x) \text{ eV}$ 1.52	1	1.7916707, 1	.6553346, 1.5188002	1.794195	, 1.656889, 1.51950	1.79	6 , 1.658
N _{CDn} (r _d , x) in 1 1.3330088	10 ¹⁶ cm ⁻³ ≯	34.760623, 8.9	9603097, 0.89991533	44.250678,	11.406579, 1.145602	7 51.489527	7, 13.27255
$N_{\rm CDn}^{\rm EBT}({\rm r_d},{\rm x})$ in 1.3330084	10 ¹⁶ cm ⁻³ ✓	34.760613, 8.9	603073, 0.899915083	44.250666, 1	11.406576, 1.1456024	51.489513	, 13.27254
RD in 10 ⁻⁷		2.78,	2.45, 2.72	2.78,	2.83, 2.74	2.74,	2.62
Donor			Sb		Sn		
r _d (nm)	1		0.136		0.140		
X	7		0, 0.5, 1			0, 0.5, 1	
$\varepsilon(r_d, x) \searrow$			12.248718, 12.66199, 1			522, 12.50373, 12.	
$E_{gno}(r_d, x) eV$			1.7961576, 1.6580971,			403, 1.658394, 1.5	
$N_{CDn}(r_d, x)$ in			52.138951, 13.439954,			913, 13.956776, 1	
$N_{CDn}^{EBT}(r_d, x)$ in	10 ¹⁶ cm ^{−3} /		52.138937, 13.439950,			398, 13.956772, 1.	
RD in 10 ⁻⁷			2.64 , 2.91 ,	2.11		74, 2.61, 2.	
Acceptor		В		Ga		Mg	
r _a (nm)		0.088		$r_{ao} = 0.126$		0.140	
X	1	0,	0.5, 1	0,	0.5, 1	0,	0.5, 1
$B_{ao}(x)$ in 10^8 ((N/m^2)			6.8746556, 5.55	6694, 4.388991		
$\varepsilon(r_a, x) \searrow 12.42055$		22.8400, 2	23.61066, 24.3812808	12.3	, 12.715, 13.13	11.6353	96, 12.0279
E _{gpo} (r _a , x) eV 1.522697	1	1.77047,	1.637365, 1.5037013	1.796,	1.658, 1.52	1.8002	25, 1.66141
N _{CDp} (r _a , x) in 1 1.3497457	10 ¹⁸ cm ⁻³ ⊅	0.56374752, 0	0.3288630, 0.17844517	3.6096078, 2	2.105671, 1.142563	4.264143	3, 2.487495
$N_{CDp}^{EBT}(r_a, \mathbf{x})$ in 1.3497453	10 ¹⁸ cm ^{−3} ⊅	0.56374737, 0.	3288629, 0.17844512	3.6096068, 2	.105670, 1.1425627	4.264142	1, 2.487494
RD in 10 ⁻⁷		2.71,	2.72, 2.71	2.72,	2.65, 2.59	2.75,	2.67, 2.82
Acceptor			In		Cd		
$r_a (nm)$			0.144		0.148		
X	1		0, 0.5, 1		0,	0.5, 1	

World Journal of Engineering Research and Technology

	r		-	
ш	П	VI	n I	h
	m	v	nı	ш.

$E_{gpo}(r_a, x) eV \nearrow$	1.803097, 1.66374, 1.5245311	1.806773, 1.666708, 1.5268781
$N_{CDp}(r_a,x)$ in $10^{18}~cm^{-3}$ /	4.7294055, 2.7589064, 1.4970169	5.3478913, 3.1197012, 1.6927886
$N_{CDp}^{EBT}(r_a, \mathbf{x})$ in $10^{18}~cm^{-3}$ /	4.7294042, 2.7589057, 1.4970165	5.3478899, 3.1197004, 1.6927881
RD in 10 ⁻⁷	2.81, 2.69, 2.81	2.67, 2.68, 2.74

Table 5: In the $GaTe_{1-x}Sb_x$ -alloy the numerical results of $B_{do(ao)}$, ε , $E_{gno(gpo)}$, $N_{CDn(CDp)}$, and $N_{CDn(CDp)}^{EBT}$ are computed, using Equations (2), (5), (6), and (8), and (26), respectively, noting that the relative deviations in absolute values are defined by: $|RD| \equiv \left| 1 - \frac{N_{CDn(CDp)}^{EBT}}{N_{CDn(Cdp)}} \right|$, giving rise to their maximal value equal to 2.87×10^{-7} , meaning that such the critical d(a)-density $N_{CDn(NDp)}(r_{d(a)}, x)$, determined in Eq. (8), is just the density of electrons (holes) localized in the EBT, $N_{CDn(CDp)}^{EBT}(r_{d(a)}, x)$, determined in Eq. (26), respectively. Here, on notes that in the limiting conditions: x=0, 1, these results are reduced to those given in GaAs-and-GaP crystals, respectively, as observed in Table 1.

Donor		P		As		Te		
r_d (nm)	1	0.110		0.118		$r_{do}=0.1$	32	
X ,	7	0,	0.5, 1	0,	0.5	, 1	0,	0.5, 1
$B_{do}(x)$ in 10^8 (N,	$/m^2$) \searrow						3.1241	155, 1.477934
0.4317606								
$\varepsilon(r_d, x) \setminus$		14.02110, 15	5.95328, 17.885458	12.937135,	14.71993	, 16.50273	12.3,	13.995, 15.6 9
$E_{gno}(r_d, x) eV \nearrow$		1.791671, 1.	300952, 0.8094017	1.794195,	1.302146	5, 0.80975	1.796 ,	1.303, 0.81
N _{CDn} (r _d , x) in 10 ³ 0.28211106	¹⁶ cm ⁻³ ∕	34.760623,	5.4209478,0.19045342	44.25067	78, 6.9009	297, 0.2424494	51.48952	27, 8.0298341
$N_{CDn}^{EBT}(r_d, x)$ in 10 0.28211099	¹⁶ cm ^{−3} ⁄	34.760613, 5	5.4209463, 0.19045337	44.2506	666, 6.900	9279, 0.2424493	51.4895	13, 8.0298320
RD in 10 ⁻⁷		2.78,	2.73 , 2.83	2.78,	2.64	1, 2.72	2.74,	2.66, 2.62
Donor			Sb			Sn		
r _d (nm)	7		0.136			0.140		
X	7		0, 0.5,	1		0,	0.5, 1	
$\varepsilon(r_d, x)$ \			12.248718, 13.93665,	15.624585		12.095622,	13.76246, 1	5.429293
$E_{gno}(r_d, x) eV \nearrow$			1.7961576, 1.303075,	0.8100218		1.7966403,	1.303303, 0	.8100885
$N_{CDn}(r_d, x)$ in 10	¹⁶ cm ⁻³ ⊅		52.138951, 8.1311125	5, 0.28566926		54.143913, 8.	.4437878, 0	29665444
$N_{CDn}^{EBT}(r_d, x)$ in 10	¹⁶ cm ^{−3} /		52.138937, 8.1311103	3, 0.28566918		54.143898, 8.	.4437855, 0	.29665436
RD in 10 ⁻⁷			2.64, 2.66,	2.70		2.51,	2.68,	2.69
A		В		Ga			r_	
Acceptor $r_a (nm)$		0.088		r _{ao} =0.126	6	0.1	I g 40	
	7	0, 0	5, 1	0		5, 1	0,	0.5, 1
$B_{a0}(x)$ in 10^8 (N)	/m²) ↘	-,	-,		•	3, 3.1686666	-,	,
$\varepsilon(r_a,x)$	ŕ	22.8400, 25	.987511, 29.134981		12.3,	13.995, 15.69	11.6	3540, 13.2388
14.842225								
$E_{gpo}(r_a, x) \text{ eV } \nearrow 0.8119474$		1.77047, 1.2	2857451, 0.798233	-	1.796 ,	1.303, 0.81	1.800	225, 1.305856
N _{CDp} (r _a ,x) in 10 ³ 0.86668661	¹⁸ cm ^{−3} ∕	0.56374752, 0.2	5639256, 0.11458161	3.60960	78, 1.6416	5509, 0.73365234	4.26414	33, 1.9393338

	5374737, 0.25639249, 0.11458158	3.6096068	8, 1.6416504, 0.73365214	4.2641421, 1.9393333,
0.86668638				
RD in 10 ⁻⁷	2.71, 2.62, 2.50	2.72,	2.82, 2.68	2.75, 2.50, 2.67
Acceptor	In		Cd	
r_a (nm) \nearrow	0.144		0.148	
x /	0, 0.5, 1		0,	0.5, 1
$\varepsilon(r_a, x) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	11.240603, 12.78961, 1	4.3386225	10.78941, 12.	27624, 13.763073
$E_{gpo}(r_a, x) eV \nearrow$	1.8030972, 1.3077969,	0.8132712	1.806773, 1.3	10282, 0.8149657
$N_{CDp}(r_a, x)$ in 10^{18} cm ⁻³ \nearrow	4.7294055, 2.1509352, 0	0.96125108	5.3478913, 2.43	322228, 1.0869583
$N_{CDp}^{EBT}(r_a, \mathbf{x}) \text{ in } 10^{18} \text{ cm}^{-3}$ /	4.7294042, 2.1509347,	0.96125083	5.3478899, 2.43	322221, 1.0869580
RD in 10 ⁻⁷	2.81, 2.53,	2.62	2.67,	2.70, 2.87

Table 6: In the $GaTe_{1-x}P_x$ -alloy the numerical results of $B_{do(ao)}$, ε , $E_{gno(gpo)}$, $N_{CDn(CDp)}$, and $N_{CDn(CDp)}^{EBT}$ are computed, using Equations (2), (5), (6), and (8), and (26), respectively, noting that the relative deviations in absolute values are defined by: $|RD| \equiv \left|1 - \frac{N_{CDn(CDp)}^{EBT}}{N_{CDn(Cdp)}}\right|$, giving rise to their maximal value equal to 2.91×10^{-7} , meaning that such the critical d(a)-density $N_{CDn(NDp)}(r_{d(a))}$, x, determined in Eq. (8), is just the density of electrons (holes) localized in the EBT, $N_{CDn(CDp)}^{EBT}(r_{d(a)},x)$, determined in Eq. (26), respectively. Here, on notes that in the limiting conditions: x=0, 1, these results are reduced to those given in GaAs-and-GaSb crystals, respectively, as observed in Table 1.

Donor		P		As		Te		
$r_{d}\;(nm)$	7	0.110		0.118	$r_{ m do}$	=0.132		
X	1	0,	0.5, 1	0,	0.5, 1	0,	0.5, 1	
B _{do} (x) in 10 2.386099	$N^8 (N/m^2)$ \searrow					3.1241	155, 2.8002,	
$\varepsilon(r_d, x) \setminus$		14.02111, 13	.337148, 12.653192	12.9371348,	12.30605, 11.67497	12.3,	11.7, 11.1	
$E_{gno}(r_d, x) e$	V /	1.791671, 1	.7921195, 1.7926934	1.794195,	, 1.794382, 1.7946214	1.79	6 , 1.796,	
1.796								
N _{CDn} (r _d , x) 1.6859958	in 10 ¹⁷ cm ⁻³ ✓	3.4760623, 2	.1543464, 1.1382172	4.4250678,	2.7425081, 1.4489638	5.148952	7, 3.1911476,	
$N_{CDn}^{EBT}(r_d, x)$ 1.6859954	in 10^{17}cm^{-3} /	3.47606213, 2.	1543458, 1.1382169	4.4250666,	2.7425074, 1.44896384	5.1489513	3, 3.1911468,	
RD in 10 ⁻⁷	,	2.78,	2.61, 2.64	2.78,	2.66, 2.90	2.74,	2.62,	
2.60								
Donor			Sb		Sn			
$r_{d} \; (nm)$	1		0.136		0.140			
X	7		0, 0.5	, 1	0,	0.5, 1		
$\varepsilon(r_d,x)$ \			12.248718, 11.65122, 11.053		12.095622, 11.50559, 10.9155611		155611	
$E_{gno}(r_d, x) e$	V 🗷		1.7961576, 1.796141	, 1.7961204 1.7966403, 1		1.796574, 1.7	1.796574, 1.7964890	
$N_{CDn}(r_d, x)$	in 10 ¹⁷ cm ⁻³ ↗		5.2138951, 3.2313968	8, 1.7072609 5.4143913		3.3556576, 1.	7729122	
$N_{CDn}^{EBT}(r_d, x)$	in 10 ¹⁷ cm ⁻³ ✓	4	5.2138937, 3.2313960	, 1.7072604	5.4143898,	3.3556567, 1.	7729117	
RD in 10 ⁻⁷	,		2.64, 2.65	, 2.77	2.74,	2.83, 2.	58	

Acceptor	В	Ga	Mg	9
$r_a (nm)$ /	0.088	$r_{ao} = 0.126$	0.1	40
х /	0, 0.5, 1	0,	0.5, 1	0, 0.5, 1
$B_{ao}(x)$ in 10^8 (N/m ²) \nearrow		6.8746556, 8.5475	56, 10.55177	
$\varepsilon(\mathbf{r}_{a}, \mathbf{x}) \searrow$ 10.500236	22.8400, 21.72589, 20.611745	12.3,	11.7, 11.1	11.635396, 11.06782,
E _{gpo} (r _a , x) eV ≠ 1.8024849	1.77047, 1.764258, 1.7568155	1.796,	1.796, 1.796	1.800225, 1.801253,
$N_{CDp}(r_a, x)$ in 10^{18} cm ⁻³ \nearrow 11.332043	0.56374752, 0.93260976, 1.4981699	3.6096078, 5.	9713885, 9.592602	4.2641433, 7.0541893,
$N_{CDp}^{EBT}(r_a, \mathbf{x}) \text{ in } 10^{18} \text{ cm}^{-3} \ \ \nearrow$ 11.332040	0.56374737, 0.93260951, 1.4981695	3.6096068, 5.9	9713869, 9.592600	4.2641421, 7.0541874,
RD in 10 ⁻⁷	2.71, 2.65, 2.52	2.72,	2.64, 2.71	2.75, 2.65, 2.45
Acceptor	In		Cd	
r _a (nm) ✓	0.144		0.148	
х 🗷	0, 0.5, 1		0,	0.5, 1
$\varepsilon(r_a,x)$ \	11.240603, 10.6923, 10.1	4396	10.789407, 10.26	5309, 9.7367823
$E_{\rm gpo}(r_{\rm a},x)~{\rm eV}~{\cal P}$	1.8030972, 1.80482, 1.80	68933	1.8067734, 1.809	93951, 1.812559
$N_{CDp}(r_a,x)$ in $10^{18}~cm^{-3}$ /	4.7294055, 7.8238743, 12.5	568487	5.3478913, 8.8470	379, 14.212125
$N_{CDp}^{EBT}(r_a, \mathbf{x}) \text{ in } 10^{18} \text{ cm}^{-3}$ /	4.7294042, 7.8238722, 12.5	568483	5.3478899, 8.8470	0356, 14.212121
RD in 10 ⁻⁷	2.81, 2.73, 2.91	<u> </u>	2.67,	2.60, 2.84

Donor	S	Se
r_d (nm) \nearrow	0.104	0.114
х	0, 0.5, 1	0, 0.5, 1
$\varepsilon(r_d, x) \setminus$	12.942503, 12.1202, 11.298015	11.2257881, 10.51261, 9.799427
$E_{gno}(r_d, x) eV \nearrow$	1.6155583, 2.09222, 2.567913	1.6180978, 2.096666, 2.5748234
$N_{CDn}(r_d, x)$ in 10^{16} cm ⁻³ \nearrow	4.1506041,18.345022, 55.640067	6.3608576, 28.113996, 85.269163
$N_{\rm CDn}^{\rm EBT}({\rm r_d},{\rm x}) \ {\rm in} \ 10^{16} \ {\rm cm}^{-3}$ /	4.1506030, 18.345017, 55.640052	6.3608559, 28.113988, 85.269141
RD in 10 ⁻⁷	2.6, 2.79, 2.66	2.73, 2.67, 2.59
Donor	Те	Sn
r_{d} (nm) \nearrow	$r_{do} = 0.132$	0.140
х /	0, 0.5, 1	0, 0.5, 1
$B_{do}(x)$ in 10^8 (N/m ²) \nearrow	2.0211442, 3.541925, 5.5001208	
$\varepsilon(r_d, x) \setminus$	10.31 , 9.655, 9	10.138688, 9.494571, 8.850455
$E_{gno}(r_d, x) \text{ eV } \nearrow$	1.62 , 2.1, 2.58	1.6204142, 2.100726, 2.5811272
$N_{CDn}(r_d, x)$ in 10^{16} cm ⁻³ \nearrow	8.2108893, 36.290847, 110.06938	8.6341767, 38.161712, 115.7436

$N_{CDn}^{EBT}(r_d,x)$ in $10^{16}~cm^{-3}$ /	8.2108871, 36.290837, 110.06935	8.6341743, 38.161702, 115.74364
RD in 10 ⁻⁷	2.72, 2.65, 2.63	2.76, 2.72, 2.56
Acceptor	Ga	Mg
$r_a (nm)$ \nearrow	0.126	0.140
х /	0, 0.5, 1	0, 0.5, 1
$\varepsilon(r_a, x) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	11.41926, 10.69404, 9.9685481	10.444552, 9.781004, 9.1174555
$E_{gpo}(r_a, x) eV \nearrow$	1.6006033, 2.078139, 2.5551356	1.6173143, 2.09697, 2.5765572
$N_{CDp}(r_a, x) \text{ in } 10^{19} \text{ cm}^{-3} \text{ /}$	3.8859101, 4.5690868, 5.4449915	5.0788748, 5.9717851, 7.1165903
$N_{CDp}^{EBT}(r_a, \mathbf{x}) \text{ in } 10^{19} \text{ cm}^{-3}$ /	3.8859090, 4.5690856, 5.4449900	5.0788734, 5.9717835, 7.1165884
RD in 10 ⁻⁷	2.75, 2.68, 2.82	2.679, 2.62, 2.67
Acceptor	In	Cd
r_a (nm) \nearrow	0.144	$r_{ao} = 0.148$
x /	0, 0.5, 1	0, 0.5, 1
$B_{ao}(x) \text{ in } 10^9 (N/m^2)$ \nearrow		1.2377251, 1.3950062, 1.5866282
$\varepsilon(r_a, x) \setminus$	10.343599, 9.686465, 9.0293303	10.31 , 9.655, 9
$E_{gpo}(r_a, x) eV \nearrow$	1.6193195, 2.099233, 2.5791277	1.62 , 2.1, 2.58
$N_{CDp}(r_a, x) \text{ in } 10^{19} \text{ cm}^{-3} \nearrow$	5.2290386, 6.148349, 7.3270019	5.2803284, 6.208656, 7.398870
$N_{CDp}^{EBT}(r_a, \mathbf{x}) \text{ in } 10^{19} \text{ cm}^{-3}$ /	5.2290372, 6.1483473, 7.3270000	5.2803270, 6.2086543, 7.398868
RD in 10 ⁻⁷	2.76, 2.78, 2.71	2.66, 2.68, 2.72

Table 8: In the $CdTe_{1-x}Se_x$ -alloy the numerical results of $B_{do(ao)}$, ε , $E_{gno(gpo)}$, $N_{CDn(CDp)}$, and $N_{CDn(CDp)}^{EBT}$ are computed, using Equations (2), (5), (6), and (8), and (26), respectively, noting that the relative deviations in absolute values are defined by: $|RD| \equiv \left|1 - \frac{N_{CDn(CDp)}^{EBT}}{N_{CDn(Cdp)}}\right|$, giving rise to their maximal value equal to 2.88×10^{-7} , meaning that such the critical d(a)-density $N_{CDn(NDp)}(r_{d(a))}$, x, determined in Eq. (8), is just the density of electrons (holes) localized in the EBT, $N_{CDn(CDp)}^{EBT}(r_{d(a)}, x)$, determined in Eq. (26), respectively. Here, on notes that in the limiting conditions: x=0, 1, these results are reduced to those given in GaAs-and-GaTe crystals, respectively, as observed in Table 1.

Donor	S	Se
r_{d} (nm)	0.104	0.114
х /	0, 0.5, 1	0, 0.5, 1
$\varepsilon(r_d, x) \setminus$	12.9425036, 12.87346, 12.804417	11.225788, 11.165903, 11.1060173
$E_{gno}(r_d, x) \text{ eV } \nearrow$	1.6155583, 1.7251561, 1.834745	1.6180978, 1.7279255, 1.8377496
$N_{CDn}(r_d, x)$ in 10^{16} cm ⁻³ \nearrow	4.1506041, 5.2976236, 6.6541722	6.3608576, 8.1186805, 10.197610
$N_{\rm CDn}^{\rm EBT}({\rm r_d},{\rm x})~{\rm in}~10^{16}~{\rm cm}^{-3}$ /	4.1506030, 5.2976222, 6.6541704	6.3608559, 8.1186783, 10.197607
RD in 10 ⁻⁷	2.60, 2.71, 2.73	2.73, 2.65, 2.77
Donor	Te	Sn
r_{d} (nm)	$r_{do} = 0.132$	0.140
х 1	0, 0.5, 1	0, 0.5, 1
$B_{do}(x)$ in 10^8 (N/m ²) \nearrow	2.0211442, 2.204162, 2.3910208	
$\varepsilon(r_d, x) \setminus$	10.31 , 10.255, 10.2	10.1386879, 10.084602, 10.030516
$E_{gno}(r_d, x) \text{ eV } \nearrow$	1.62 , 1.73, 1.84	1.6204142, 1.730452, 1.84049
$N_{CDn}(r_d,x)$ in 10^{16} cm ⁻³ \nearrow	8.2108893, 10.479968, 13.163547	8.6341767, 11.020231, 13.842153

U	ſ.,	T 7	n	h	
	и	\mathbf{V}	п	ш	

World Journal of Engineering Research and Technology

$N_{CDn}^{EBT}(r_d,x)$ in $10^{16}~cm^{-3}$ /	8.2108871, 10.479965, 13.163543	8.6341743, 11.020228, 13.842149	
RD in 10 ⁻⁷	2.72 , 2.42, 2.88	2.76, 2.38, 2.53	
Acceptor	Ga	Mg	
$r_a (nm)$ /	0.126	0.140	
х	0, 0.5, 1	0, 0.5, 1	
$\varepsilon(r_a, x) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	11.419526, 11.358607, 11.2976878	10.44455, 10.3888, 10.3331162	
$E_{gpo}(r_a, x) eV \nearrow$	1.6006033, 1.7148179, 1.8291247	1.617314, 1.72790, 1.8384942	
$N_{CDp}(r_a, x)$ in 10^{19} cm ⁻³ \nearrow	3.8859101, 1.8337552, 0.66323007	5.0788748, 2.3967135, 0.86684006	
$N_{CDp}^{EBT}(r_a, \mathbf{x}) \text{ in } 10^{19} \text{ cm}^{-3}$ /	3.8859090, 1.8337547, 0.66322989	5.0788734, 2.3967129, 0.86683983	
RD in 10 ⁻⁷	2.75, 2.61, 2.69	2.69, 2.58, 2.65	
Acceptor	In	Cd	
$r_a (nm)$ \nearrow	0.144	r_{a0} =0.148	
х	0, 0.5, 1	0, 0.5, 1	
$B_{ao}(x) \text{ in } 10^9 (N/m^2) \ \ \ \ \ \ \ \ \ \ \ \ $		1.2377251, 0.9687909, 0.69396862	
$\varepsilon(r_a, x) \setminus$	10.343599, 10.288420, 10.233241	10.31 , 10.225, 10.2	
$E_{gpo}(r_a, x) eV \nearrow$	1.6193195, 1.7294674, 1.8396185	1.62 , 1.73, 1.84	
$N_{CDp}(r_a,x)$ in 10^{19} cm ⁻³ \nearrow	5.2290386, 2.4675756, 0.89246936	5.2803284, 2.4917792, 0.90122328	
$N_{CDp}^{EBT}(r_a, \mathbf{x}) \text{ in } 10^{19} \text{ cm}^{-3}$ 7	5.2290372, 2.4675749, 0.89246911	5.2803327, 2.4917785, 0.90122304	
RD in 10 ⁻⁷	2.76, 2.65, 2.77	2.66, 2.69, 2.70	

www.wjert.org ISO 9001: 2015 Certified Journal 85