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ABTRACT

By basing on the same physical model and treatment method, as used

in our recent work (Van Cong, 2024), we will investigate the critical
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radius, raca), the x- concentration, and finally the high d(a)-density, N,
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critical impurity density Nepy,(cpp) (Fae).x) in the MIT, as that given in

Eq. (8), by using an empirical Mott parameter M, = 0.25, and (ii)-the density of electrons
(holes) localized in the exponential conduction (valence)-band tails (EBT),
mggg,:mp}{ raca»), as that given in Eq. (26), by using our empirical Heisenberg parameter,
Ham = 047137 , as given in Eqg. (15), according to: for given ray) and X,
Nebatcop | rata)x) 2 Nepnieop)(Tag)»%), with a precision of the order of 2.92 x 1077, as
observed in Tables 2-4 in Appendix 1. In other words, physically, such the critical d(a)-

density, Nepninop(Tace.%), is just the density of electrons (holes) localized in the EBT,

N patcop)( TdgyX), respectively.
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KEYWORS: [GaP, . As,(Te,,Sb,)] - crystalline alloys; critical impurity density in the Mott
MIT.

INTRODUCTION

By basing on the same intrinsic energy-band-structure parameters, physical model and
treatment method, as used in our recent works (Van Cong, 2024), and also other works
(Green, 2022; Kittel, 1976; Moon et al., 2016; Van Cong et al., 2014; Van Cong & Debiais,
1993; Van Cong et al., 1984), we will investigate the critical impurity density in the metal-

insulator transition (MIT), obtained in three n(p)-type degenerate X(x)- crystalline alloys,
X(x)= [GaP;_,As,(Te,, Sb, )] — crystalline alloys,0 = x = 1, being due to the effects of the
size of donor (acceptor) d(a)-radius, ras), the X- concentration, and finally the high d(a)-
density, N, assuming that all the impurities are ionized even at T=0 K. In such n(p)-type
degenerate crystalline alloys, we will determine

(i)-the critical impurity densities Neppenp) (Tage-x) in the MIT, as that given in Eq. (8), by
using an empirical Mott parameter M., = 0.25, and

(ii)-the density of electrons (holes) localized in the exponential conduction(valence)-band
tails (EBT), Néf,g,:mp}( raa)%), as that given in Eq. (26), by using the empirical Heisenberg
parameter, M, = 0.47137, as that given in Eq. (17), according to: for given rs(s and X,
NEBa(cop){ Ta@x) 2 Nepncepp) (Tag»x), With a precision of the order of 2.92 x 107, as
observed in Tables 2-4 in Appendix 1. In other words, physically, such the critical d(a)-
density, Nepninog)(Tace.%), is just the density of electrons (holes) localized in the EBT,
N&Batcop)( Tdge)X), respectively.

In the following, we will determine those functions: Nepniepp)(Tapx) and

NEbatcop)( Tatnx).

Critical Density in The Mott Mit
Such the critical impurity density Nepp(cop)(Taga). %), €xpressed as a function of rgq) and X, is

determined as follows.

Effect of x-concentration
Here, the values of the intrinsic energy-band-structure parameters, such as (Van Cong, 2023,
2024): the effective average number of equivalent conduction (valence)-band edges g.+;(x),

the unperturbed relative effective electron (hole) mass in conduction (valence) bands

WwWw.wjert.org 1SO 9001: 2015 Certified Journal 15




Cong. World Journal of Engineering Research and Technology

M. (x)/m,, m, being the electron rest mass, the reduced effective mass m,(x)/m., the

unperturbed relative dielectric static constant =, (x), the effective donor (acceptor)-ionization

Edu:jm:lj':X:' _
:| , at T'd(a) = Idalaal

energy Egoae) (), and the isothermal bulk modulus Bagae)(®) = —————= P
| L=y \Fdo(eo)

are given respectively in Table 1 in Appendix 1.

Table 1 in Appendix 1
Therefore, one gets:

13600 [mepy(x)/mg]
(2ol
Edorzoyle)

Ednl:ﬂD}(X] = mE?, and (1)

Bao(ao)(x) = )

Effects of impurity size, with a given x

Here, one shows that the effects of the size of donor (acceptor) d(a)-radius, ra4), and the x-
concentration strongly affects the changes in all the energy-band-structure parameters, which
can be represented by the effective relative static dielectric constant =(rs.4.%) (Van Cong,
2023, 2024; Van Cong et al., 1984), in the following.

At rgca) = raorae), the needed boundary conditions are found to be, for the impurity-atom
volume V= (4m/3) x {rd,:aj}a, Vio(as) = (41/3) x {rdn.:ac,}}a, for the pressure p, as: p, =0,

and for the deformation potential energy (or the strain energy) o, as: o, = 0. Further, the two

. : . - . d
important equations, used to determine the o-variation: Ac= o—o, = g, are defined by: d—ﬂ%

and pz—g . giving: :—v(g): g. Then, by an integration, one gets

1
.,?

[86(a0 9], =Batoas 69 X(V—Vigree )X 1N (52)= Eagaoy 00 x| (22) — 1] x 1n (222) 2 0.

dofac) Tdo{ac) Fdo{ao)
3)

Furthermore, we also shown that, as rar.) > rag(as) (Tara) < de(as)), the compression

(dilatation) gives rise to: the increase (the decrease) in the energy gap Egnorzpe) (Tara)x), and
in the effective donor (acceptor)-ionization energy Ed.:g}{l"d.:ajj %) in the absolute values, being

obtained from the effective Bohr model, and then such the compression (dilatation) is

represented respectively by: + [ﬁc(rd,:E}Jx}]nl,p},

Eg.'un:jg'pnj':rd:jayx:] - Egn{x:] = Ed:js.j':rd:jayx:] - Edn:js.nj':x:] = Eﬂn:janj':x:] X

(i) _ 1] =4 [ﬂ':f{t'ﬂ::ar"]]u::m

E(Tagayl
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for Td(a) = T'da(aah and for Id(a) = I'dafaa)

ol%)
Egun[g:pnj':rﬂujayx:] - Egn{x:] = Eﬂ[aj':rﬂujayx:] - Edn[anj':x:] = Eﬂn[anj':x:] * [(:Taﬂ

- (4)

Therefore, from above Equations (3) and (4), one obtains the expressions for relative

) -1] = - lsoteacwml,

dielectric constant (ra¢.y,%) and energy band gap Egntep (raa-x), as:

Eo ()
" Tdim . " Tdim)
(2} fx1n 22
Tdojeo) Tdo(ao

Egnotgpe) (et %) — Ego(3) = Eatw (rater®) — Bantao) 0 = Eaotaor 0 x (2] — 1] x1m(Z22)" 2 0,
(5)

according to the increase in both Egpgp (racanx) and Ega (race.x), for a given x, and

(i)-for Td(a) = I'da(aa) since E(I‘d,:a:”}s{jl: ]
1+
N

sS Eg(x),

Eq (X

Ty 8 BT
|I dia) } -1 x'-ﬂli dia) }
Fdojeo) Tdorao

(ii)-for rg(a) = ragrag), SINCE £(rarq)x)= - > £,(x), With a condition,

N

given by: [(—”u—) - 1] x In (—ﬂLL) <1,

Tdofao) Tdo fac)
Egnotepa) (Fata) %) — Ego(x) = Eata (rata-x) — Edotaa) () = ~Egotan) () X [(fﬁ) - 1] % lﬂ(,d—ddt)
=0, (6)

corresponding to the decrease in both Ey gy (race.x) and Egpg (raca.x), for a given x.

Furthermore, the effective Bohr radius ag, gy (ras) is defined by:

z':rmjajx}xﬁ""z 053 % 10~ cm x 2irdrmx)

Agni FaranwX ) = P o’
BI!'.ILBF':'( dia) } ml;-,:wl:x}Xq" ml:'[Vj':x}-"lmcI’

()

where —q is the electron charge.

Then, the critical donor (acceptor)-density in the Mott MIT, Nepninog)(Tacapx) , IS
determined, using an empirical Mott parameter, M, = 0.25, for each the conduction

(valence) band, as:
is
[NCDn':NDp} (rd(a},}{:}] 3 X Ean.:Bp}(rd(a}JX} = Mn(p} = 0.25, (8)
Noting that M, could be chosen in general case so that the obtained numerical

Nepniwop (Taca. %) -results, being found to be in good agreement with the corresponding

experimental ones.
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In the following, these obtained numerical results can also be justified by calculating the
numerical results of the density of electrons (holes) localized in exponential conduction
(valence)-band (EBT) tails, NEp i cop) ( Faga)x).

NE[B:I(L'DP} (rd(a}!xj_ EXPRESSION
In order to determine N&ga(cop)( racx), we first present our physical model and also our

mathematical methods.

Physical model

In n(p)-type degenerate X(x) -crystalline alloys, if denoting the Fermi wave number
by: Kpngeg)(N,x) = (31T2N,'rg:.:v}(x}}1;3, N being the total impurity density, assuming that all
the impurities are ionized even at 0 K, the effective reduced Wigner-Seitz radius ryep),
characteristic of interactions, is defined by

1/3

1 Myl ) /mg

Ientep) (N Taray x) = (Eg::_f:X})

9)

So, the ratio of the inverse effective screening length k., to Fermi wave number kgy g IS

defined by:

— 11723 % 10° x {E"f;-":"})m X

8En(Ep) rd ) e rda)x)

I-'isn::spj _ kEI;_l::Fp:l -R

. . — . ~TFan(sp)
. T enWS(spWs) + [RsnTlespTF} Rsnﬁ.-‘-’&lxspﬁ.-‘-’S}]E i) o 1.
Fo(Fo) 8117 50

Ren(ep) (N ey X) =
(10)

These ratios, R, (zprr) and Roywysispws), are determined in the following.

First, for N > Nepn(npp) (Tacapx), according to the Thomas-Fermi (TF)-approximation, the

ratio Reprrentr) IS reduced to

_ kanTFspTH l"l?t‘;:jij |4‘r'f'sn:jspj|:3faf‘d:ja:ux:|
RBHTF{NJI‘d,:E},X} = — = ) = "\||| L 1, (11)
Fo(Fp) snTFspTE) ™

being proportional to N~1/%,

Secondly, N < Ncpn(wog) (Taray), @ccording to the Wigner-Seitz (WS)-approximation, the ratio
Renws(zpws) 1S reduced tof*!

r:

ksnl‘.’S:j:pl‘.'Sj _ (5 _ 'i[ EEL'SE‘lXEEE:) % 0.5
— — 1\ ’ 1

Ranws(apws) (N, Faga)x) = KFnFp) o ETp—

(12) where Ecg (N, rd.;a},}:} is the majority-carrier correlation energy (CE), being determined

by:
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Lo7SEs (1=l
—0.87553 s0E4ry o @
0.0908 +rep 1+0038477 2B xr Lo S o0

HIn(rep ey ) —0.093288

ECE{NJ I‘d,:a},}{} =

So, n(p)-type degenerate X(x)- crystalline alloys, the physical conditions are found to be

given by

kEé:‘Fp‘n Nn(p) 1 kE;Iu'Fpﬁ *EPno(Fpo)
= = = ——==R_ NorgranX) =1, AN, rgigux) = ————,

8En(Ep) CEFno(Fpoy Ao k;rfu'sm snlxsp}{ rd(a): } m‘p}{ r-d(a) } Noip)

(13)

Here, +Egns(rpo) IS the Fermi energy at 0 K, and nyg, is defined in next Eq. (15),

B2 kpn gy Nag)® ~ZInN 9. -1/2

sram 4 Fen(ep)

as: iEFnDI:Fpo}(NJX} = = ﬂJnnl:p::l(NJ rd(a}ix} =

2y (%)
Then, the total screened Coulomb impurity potential energy due to the attractive interaction
between an electron (hole) charge, —q(+q), at position ¥, and an ionized donor (ionized
acceptor) charge: +g{—q) at position E,, randomly distributed throughout X(x)- crystalline
alloys, is defined by:

Vi) = Ly vi(0) + 7, (14)

where W is the total number of ionized donors (acceptors), V, is a constant potential energy,
and the screened Coulomb potential energy v;(r) is defined as:

vi(r) = — a*xexp(~Kan(ap X[F-Ry)

=14 I-"d.jaj}>'<|?—m

where k., is the inverse screening length determined in Eq. (11).

Further, using a Fourier transform, the v;-representation in wave vector E-espace IS given by

= a* 4n 1
vi(k)=— X — X ————
J{ } s(ram) 0 kRG]

where 11 is the total X(x)- crystalline alloy volume.
Then, the effective auto-correlation  function  for  potential  fluctuations,

W oy (Vnpy: Nora ey ) = (V@V(r')), was determined,*¥ as :

-F T._I:ijﬂi n -mxl:N T4 "i‘x:

. == I
W gy (Vaepy N Taay X) = N gpy X €xp : ~oT -
: 2, [nge

)’ Mnce) (N-Far ) = g 25 % @ an (spyy

FE

v, ENx=E—m———
m‘p}( e } +EFno(Fpo) (N

Horg = 047137 . (15)

Here, E is the total electron energy, and the empirical Heisenberg parameter H,,, = 0.47137

was chosen above such that the determination of the density of electrons localized in the
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conduction(valence)-band tails will be accurate, noting that as E — +oe, |vaem|— o, and
therefore, Wy, = na g

In the following, we will calculate the ensemble average of the function: (E — V) =i= E; ,

fora=1,E.= :—m being the kinetic energy of the electron (hole), and V{r) determined

in Eq. (16), by using the two following integration methods, which strongly depend on

Wi o '::"f'u:jp:u N.rg [ a:wx} .

MATHEMATICAL METHODS
Kane integration method (KIM)

Here, the effective Gaussian distribution probability is defined by:

_vi
:wm:m]' (16)

* exp

P(V)=
( } 1{-'2'1'[1"-’“::[_-}'_-,

So, in the Kane integration method, the Gaussian average of (E —V =i= El_f:_i is defined by

{(E v} E_*}}qu {El{ }}{]\,1 ffm{E —'V}“_‘i * P(?}d‘i’, for a =1.

Then, by variable changes: s = (E —V)/ [Wag and

_ * EFnoiFpo Hn oy Rang . . .

y=FE/Wo) = "B X V(g X exp | —E2—=LF | ‘and using an identity:

v alp _— P I
LB 4){‘\! |""ﬂ.:: 53]

Jy %75 x exp(—ys— D)ds = [(a +2) x exp(y2/4) X D_, 1),

where D___:(y) is the parabolic cylinder function and I'(a+ ) is the Gamma function, one

—E.——

thus has:
( }]{I‘-i exp(—y e4}><‘l‘-’n B) o M(a+ } «D a--(}’) exp(— e4}><nnE « Exp(_Hn::p:-XR,[}lim:.xiiza—l}) X
VI 8x [[vnp)
X

a+3=D_, =

(a+3x _E_Efy} (16)
Feynman path-integral method (FPIM)
Here, the ensemble average of (E — )=z = E;_i is defined by

_1 a—3 h=i T"EH'- a—= ! (& Waig)”

((E=V)*2dgpra =(E, “dppra = Y } f_ (it)~ {% - j"ij} dt ;

i2=—1
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Noting that as a=1, (it) 3 x exp{—'—t‘fTT?j} is found to be proportional to the averaged

Feynman propagator given the dense donors (acceptors). Then, by variable changes:

— + EFnaf Hnr r
t=- k and V= +E-f\|'wnl:p} = < EFno(Fpo) W ‘I"rl:llzp:l X exp (LM) , for n(p)_type

x::v'rﬂl:ﬁ_\l Nn(p) 4xﬂ||\'ﬂl:P:l|
respectively, and then using an identity
o= L g% ' q
J7.G8) "I x exp{iys — T} ds = 27 x 1(3/2) x exp(—y?/4) X D_, _+(¥),
= I

One finally obtains: (Ey *)epmna = (Ey, “sans, (Ey, )iy being determined in Eq. (16).

In the following, with the use of asymptotic forms for D___:(y), those given for

(E-W) “‘i}m}, can be obtained in the two following cases.

First case: n-type (E = 0) and p-type (E = 0)

As E-+wm , one has: vy —++Fw and y—Fco . In this case, one gets:
D_, :(y— Foo) ® ],Flzf-_] x €7 x (Fy)*~% and therefore from Eq. (16), one gets:
z __E. E

{E;_i}mn N EST,
(17)

Further, as E — +0, one has: v, = +0 and y = F0. So, one obtains:

D_, :ly—+0) ~pla) x 'Efﬁ'-'iii({‘--"'E +—13]Y—1L:,+i] - pla), B =+TE3 (18)

2442 2
1gal ™% [+
(3+3]]

Therefore, as E — +0, from Eq. (16), one gets: {E;_i}}mi = 0.

Thus, in this case, one gets:
(Ey D B (19)

Second case: n-type-case (E = 0) and p-type-case (E = 0)

1

z

As E - F0, one has: (Y, vup) — 20 and by putting f(a) = “—ifx [(a+ 3 xpla), Eq. (18)

W2

yields:

1
By han
Hupy(Vngp = £0.N. Tapq.x.3) = —E—— =exp |-

f(a) VE + )y (el - 0. (20)

=) e T
LaaT

HppyBengppel2a-1) _ (

Bx_‘ff|1.-,.,._c_~|

Further, as E-—+Fe , one has: (Y, wypm)—<xee . Thus, one gets:

z

D_yrsy- o) Sy Exe S o0,

Therefore, from Eq. (16), one gets:
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-3

(B, “'erm n
Knp) (Vap) = £00, Norgggx.8) = — (= |3|15_‘| exp(— %J X (Apgg X Vng) T 20, (21)
Noting that g(a) _—P being equal to: for a=
i+_\ ;4)-(]"! (5/4)
It should be noted that those ratios: —-—== =, obtained in Equations (20) and (21), can be taken

in an approximate form as:

FI:I[pj ':"f'u[pja-“]s Faraye® a) = Ku[pj ':vu[pj*}']* Fapgy« a} + [Hu[pj {vu[pj*m* Fpgy ¥ a) — Ku[pj ':vl:l[pj* N, TS 3:'] *
Cz
ExF'[_CL X {ﬂu[pjvu[pj} ]

)

(22)
so  that:  Fup(VagyNorae.xa) = Hypy (VapyNorgeoxa) for  0=wv, =16 , and
Farp) VamyN ra . a) = Ky (Ve Norg 0% 2) for vy = 16, Here, the constants ¢, and ¢,
may be respectively chosen as: ¢; = 107*? and ¢, = 80, as a = 1, being used to determine the
critical density of electrons (holes) localized in the exponential conduction(valence) band-
tails (EBT), N&pa(enp) (NTacay,%), given in the following.

Here, by using Eq. (18) for a=1, the density of states ©(E) is defined by:

1

Ecr v__. oV % L Ecow) [Ty % E}{'FI|:—::—::|><"JFE .
(DED kM = - ( r.:'—') ¥ (Ed)ggm = — { - ) X% 1"{;} » D_%{yj = D(E). (23)

Going back to the functions: H,, K, and F,,, given respectively in Equations (20-22), in which

1

the factor & "‘”_:; is now replaced by:
':Ei;][{[h-[ D(Ez0)
?(IZE =T, Fage) Vagy Noreg xa =1) :
- =iz —
[ l [ [ 3
Do(N,rgapx,a=1) = zecrX(mawyiene)un x Bla), pla=1) =5—— (24)

In*hE TaxT(5/4)

Therefore, N&5 gy (M. racay, %) can be defined by: NEB 1 copy (Niraay, %) = [_D(E = 0)dE,

T o Bery¥(Megy) Mg EFnoipoy) [ 116 .
NE[E:I&U:DP:-':NJ FaraypX) = P il W {_D fla=1)x Fu.jpj(‘*'u.jpjs N.rgpap®a = 1) dvg g + [I:I['pj} '
(25)  where
z
- e ~[AnErvam) -3,‘
Inip) = Jr15 Bla=1)x Kn.;p:.'["'n'ip}i-“]* Tira).¥.a = 1} dvp i = »'rlEu & z X '[An' p}""n'p}} dVn(p)

Then, by another variable change: t = [Aq g Vars /2], the integral 1, yields:
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. 4 _ Uibzgm 2
Im:p} = :5!4;"“5:}" * Znip) tbletdt = :5!4}{::?:;", where b = —11‘4' v Zpigy = [15‘!.51”':[3},!;\'}?] , and
T(b, Znp)) IS the incomplete Gamma function, defined by:

_ e (b—-1)b—-2)..(b—i)
0 2oy = 2355 x o770 [ 1.4 538, SR

“nrm)
Finally, Eq. (25) now yields:

EET _ _
Neonteop) N = Nepntpp) (Fagey %) FageyX] =

1 S—
e M) Mupy (2 Epng o) 16
;__[:tg B % -rn Pla=1)x Fu:jpj{"u:jp:u”s Fgray- %3 = 1} dvppy +

rh ZDI;CI

25/ %Ay 1-;-} (26)

being the density of electrons (holes) localized in the EBT, respectively.

In n(p)-type degenerate X{x) - crystalline alloys, the numerical results of
NEET (cop1 [N = Nepnounp)(faray - X). Faray-x] = Nepnceop ( Tacax), for a simplicity of presentation,
evaluated using Eq. (26), are given in following Tables 2-4 in Appendix 1, in which those of
other functions such as: Byg(ae), €, Eznotepey Neparcopy  aNd NEpaepy) are computed, using
Equations (2), (5, 6), (8), and (26), respectively, noting that the relative deviations in absolute

EET
1— NEDnicom
NCDncDm

values are defined by: |RD| = ‘

Tables 2-4 in Appendix 1

CONCLUSION

In those Tables 2-4, some concluding remarks are given and discussed in the following.
(1)-For a given x, while £(rag)x) decreases (), the functions: Enoepe)(Taray) »
Nepn(cop) (Ta@) %) and NE Ty (Tagay,®) increase (), with increasing () racq), due to the
impurity size effect.

(2)-Further, for a given rg., while s{rd.;ﬂ;.,x} also decreases ( ), the functions:
Ecno(zpa) (Tdra)¥)s Neparcop) (Tagay ) and NE T cp oy (Tagay, %) also increase (), with increasing
(7) =

(3)- In those Tables 2-4, one notes that the maximal value of |RD| is found to be given by:
2.92 x10~7, meaning that Ngp: 2 Neps. In other words, such the critical d(a)-density
Nepn(nog)(Tace).%), IS just the density of electrons (holes), being localized in the EBT,
N atcop) (T x), respectively.

(4) Finally, once Nepn(cop) IS determined, the effective density of free electrons (holes), N¥,

given in the parabolic conduction (valence) band of the n(p)-type degenerate X(x)- crystalline

alloy, can thus be defined, as the compensated ones, by:
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N*(N,ra7a)%) =N—Nepatvop 2 N — NGB Ticop),

needing to determine the optical, electrical, and thermoelectric properties in such n(p)-type

degenerate X(x)-crystalline alloys, as those studied in n(p)-type degenerate crystals (Van
Cong, 2023; Van Cong et al., 2014; Van Cong & Debiais, 1993; Van Cong et al., 1984).
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APPENDIX 1
Table 1: The values of various energy-band-structure parameters are given in various

crystalline alloys as follows.

In Gap,_.as, -alloys, in which ragus = rpey =0.110 nm  (0.126 nm), we have:

B = 1XX+1X(1—x) : Mgy (X)/ Mg = 0.066 (0.291) X% +0.13(0.5) X (1 —x)
(%) =13.13Xx +11.1 X (1 — %), Ege(®) = 152X K+ L.796X (1 —x),

In Gap,_,Te, -alloys, in which ragae = rpge; =0.110 nm  (0.126 nm), we have:
Eem(®) =1xx+1x(1-x) , My (%)/ Mg = 0.209(0.4) X x +0.13(0.5) % (1 —x)
g(X) =123xx+11.1x (1 —x), Egg(x) = 1796 xx+ 1.7%6 % (1 —x),

In Gap,_,sb, -alloys, in which rayus = rpes =0.110 nm (0.126 nm), we have:
Eem(® =1xx+1x(1-x) , Mgy (%)M = 0.047(0.3) X x +0.13(0.5)x (1 —x)

Ep(x) =15.69xx+11.1 % (1 —x), Ego(®) = 0.B1xx+1.796X% 1—=),

Table 2: In the GaPF,_.As. -alloy the numerical results of EEﬂ,:.,:m:,, £ Eg_.nn,:gp:.:,, N.;Du,:cnp:,, and [‘I.;"E[E;,',E,',:.;[;,wI are computed, using

Equations (2), (5, 6), (8), and (26), respectively, noting that the relative deviations in absolute values are defined by:

MEET __ .
|rRD| = |1 - N“';" “:D | giving rise to their maximal value equal to 2. 92 x 1077, meaning that such the critical d(a)-density
COnCdr}

Neonoog (P gy %) determined in Eq.{8).is just the density of electrons (holes) localized in the EBT, NEEE{EDPJ': FarayE),

determined in Eq. (26), respectively. Here, on notes that in the limiting conditions: x=0, 1, these results are reduced to those given in

GaP-and-GaAs crystals, respectively, as observed in Table 1.

Donor P As

rg (nm) 7 ry,=0.110 0.118

X 7 0, 05,1 0, 05,1

Ba. (x) in 107 (N/m®) 4.123179, 2.60924, 1.4960608

elr,x) 111, 12.115,13.13 10.83572, 11.82655, 12.817384
Epos (Fax) gV 7 1.796, 1.658,1.52 1.796708, 1.658448, 1.5202571

Mepa (tax) in 10%* em™ 7

N%:(ux} in 10** em™

16.859958, 5.5552466, 1.3330088
16.859954, 5.5552451, 1.3330084

18.123934, 5.9717184, 1.4329432
18.123929, 5.9717168, 1.4329428

|RD|in 1077 2.60, 264,287 2.72, 271,258
Donor Sh Sn

rg (nm) 7 0.136 0.140

X 7 0, 05,1 0, 05,1
ey 8.868820, 9.679798, 10.490775 8.3478503, 9.111190, 9.8745293

Ep (rax)eV 7

Mepa (Fax) in 10%* em™ 7

E'{%Il:rd_,x} in 10** em™

|rD[in 1077

1.8041281, 1.663144, 1.5229492

33.054297, 10.891176, 2.6133913

33.054288, 10.891173, 2.6133906
2.70, 2.84,2.72

1.8070212, 1.664974, 1.5239990

39.637063, 13.060155, 3.1338483

39.637053, 13.060151, 3.1338475
2.59, 2.84,2.65
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Acceptor Ga Mg

Iy (NM) A r5;=0.126 0.140

X 7 0, 05,1 0, 05,1

B..(x) in 107 (N/m")
Elr,a)

Eppe (Tex) 6V 7
Mepg(Feex) in 10°F cm

M (r. %) in 10%F cm ™

-
=7

"

~

1.055177, 0.700649, 0.4388991
11.1, 12.115,13.13
1.796, 1.658,1.52
9.5926026, 3.6514435, 1.142563
9.5926000, 3.6514425, 1.1425627

10.5002, 11.4604, 12.42055
1.8024849, 1.66231, 1.5226974
11.332043, 4.3135651, 1.3497457
11.332040, 4.3135640, 1.3497453

|RD|in 1077 2.71, 2.72,2.59 245, 2.61,2.82
Acceptor In Cd

rg (nm) 7 0.144 0.148

X 7 0, 05,1 0, 05,1

elr.x) ~ 10.143959, 11.0715, 11.999115 9.7367823, 10.62713, 11.51747

Eppe (r.xieV 7

Mepg (Fe ) in 10°% cm

NET(r.x) in 10° cm™

|RD|in 1077

T

.

1.8068933, 1.665233, 1.5245311
12.568487, 4.7842197, 1.4970169
12.568483, 4.7842184, 1.4970165

2.92, 2.70,2.81

1.8125359, 1.66898, 1.5268781
14.212125, 5.4098739, 1.6927886
14.212121, 5.4098724, 1.6927881

2.84, 2.71,2.74

Table 3: In the GaP, _,Te,-alloy the numerical results of Bagracy, & Egnorepey, Neoncog, and NEEE:.EDW are computed, using

Equations (2), (5, 6), (8), and (26), respectively, noting that the relative deviations in absolute values are defined by:

NEET
|ro| = |1 —LOnCon

Neoniar

, giving rise to their maximal value equal to 2,92 x 1077 meaning that such the critical d(a)-density

Neonoog (P gy %) determined in Eq.{8).is just the density of electrons (holes) localized in the EBT, NEE&::EDPJ': FarayE),

determined in Eq. (26), respectively. Here, on notes that in the limiting conditions: x=0, 1, these results are reduced to those given in

GaP-and-GaTe crystals, respectively, as observed in Table 1.

Donor P As
rg (nm) A rg,=0.110 0.118
X 7 0, 05,1 0, 051

Ba (x) in 10° (N/m®) 7
Elra, )

E;n: I:Eﬂ-'x} ev 7
Mepa(Taex) in 1077 em™

NEEI':H-X} in 10*" em™

ra

4.123179, 4.83874,5.398472
111, 117,123
1.796, 1.796,1.796
1.6859958, 3.1911476, 5.1489527
1.6859954, 3.1911468, 5.1489513

10.83572, 11.4214, 12.00714

1.796708, 1.79683, 1.79693
1.8123934, 3.4303851, 5.5349650
1.8123929, 3.4303842, 5.5349635

|rD|in 1077 2.60, 2.62,2.74 2.72, 2.72,2.67
Donor Sh Sn

rg (nm) 7 0.136 0.140

X 7 0, 05,1 0, 05,1
elram 8.868820, 9.348216, 9.8276112 8.3478503, 8.799085, 9.2503207

E;n: I:Eﬂ-'x} ev 7
Mepaifax) in 107 em™
N:EE:I:ri.x} in 10*" em™

|RD|in 1077

ra

1.8041281, 1.8055388, 1.806642

3.3054297, 6.2563110, 10.094628

3.3054288, 6.2563093, 10.094625
2.70, 2.79,2.50

1.8070212, 1.808934, 1.8104301

3.9637063, 7.5022558, 12.104974

3.9637053, 7.5022538, 12.104971
2.59, 2.68, 2.65
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Acceptor Ga Mg

Iy (NM) A r5;=0.126 0.140

X 7 0, 05,1 0, 05,1

B.o(x) in 107 (N/m®) 1.055177, 0.854756, 0.687465

Elren) 11.1, 117,123 10.5002, 11.06782, 11.63596
Eppe (Tex) 6V 7 1.796, 1.796, 1.796 1.8024849, 1.8012532, 1.800225
Mepg (Fex) in 10°F cm™ 7 9.5926026, 5.9713885, 3.6096078 11.332043, 7.0541893, 4.2641433
H:EE:( r,x)in10%® em™ 7 9.5926000, 5.9713869, 3.6096068 11.332040, 7.0541874, 4.2641421
|RD|in 1077 2.71, 2.64,2.72 245, 2.65, 2.75
Acceptor In Cd

r, (nm) 7 0.144 0.148

X 7 0, 05,1 0, 05,1

glr.a 10.143959, 10.69228, 11.240603 9.7367823, 10.26309, 10.78941
Eppe (Fex) gV 7 1.8068933, 1.804824, 1.8030972 1.8125359, 1.809395, 1.806773
Mepg (Fee) in 10°% em ™ 7 12.568487, 7.8238743, 4.7294055 14.212125, 8.8470379, 5.3478913
NE (X} in 107 em™ 7 12.568483, 7.8238722, 4.7294042 14.212121, 8.8470356, 5.3478899
|RD|in 1077 2.92, 273,281 2.84, 2.60, 2.67

Table 4: In the GaP,_,5h.-alloy the numerical results of Bagracy, & Egnorzpe;, MeDnecog, and NE[H:E:'EDW are computed, using

Equations (2), (5, 6), (8), and (26), respectively, noting that the relative deviations in absolute values are defined by:

NEET
|ro| = |1 —LOnCon

Neoniar

, giving rise to their maximal value equal to 2. 92 x 1077, meaning that such the critical d(a)-density

Neonoog (P gy %) determined in Eq.{8).is just the density of electrons (holes) localized in the EBT, NEE&::EDPJ': FarayE),

determined in Eq. (26), respectively. Here, on notes that in the limiting conditions: x=0, 1, these results are reduced to those given in

GaP-and-GasSb crystals, respectively, as observed in Table 1.

Donor P As

rg (nm) A rg,=0.110 0.118

X B 0, 05,1 0, 05,1

Ba. (x) in 107 (N/m®) " 4.123179, 1.92749, 0.7460823

Blra ) 11.1, 13.395,15.69 10.83572, 13.07607, 15.316432
Epme sV 7 1.796, 1.303,0.81 1.796708, 1.303331, 0.8101282
Mep, () in 10°% em ™ 7 16.859958, 3.0268927, 0.28211106 18.123934, 3.2538161, 0.30326067
MET(ryx) in 10" em™ 7 16.859954, 3.0268919, 0.28211099 8.123929, 3.2538152, 0.30326059
[RElin 1077 2.60, 2.60, 2.62 2.72, 2.63,2.65

Donor Sh Sn

rg (nm) 7 0.136 0.140

X B 0, 05,1 0, 05,1

elram 8.868820, 10.70251, 12.536197 8.3478503, 10.073825, 11.799780
B (Ta) €V 7 1.8041281, 1.306800, 0.8114708 1.8070212, 1.3081522, 0.8119943
Meps (Fax) in 10%% em ™ 7 33.054297, 5.9342859, 055308458 39.637063, 7.1160994, 0.66323142
MET(ryx) in 10 em™ 7 33.054288, 5.9342843, 0.55308443 39.637053, 7.1160975, 0.66323124
[RD|in 1077 2.70, 2.68,2.77 2.59, 2.69,2.77
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Acceptor Ga Mg

Iy (NM) A r5;=0.126 0.140

X B 0, 05,1 0, 05,1

B.o(x)in 107 (N/m®) 1.055177, 0.579663, 0.316866

Elren) 11.1, 13.395, 15.69 10.5002, 12.6712, 14.8422252
Eppe(Foxl eV 7 1.796, 1.303,0.81 1.8024849, 1.306562, 0.8119474
Mepg (Fooit) in 10°%F cm™ 7 9.5926026, 2.7947772, 0.73365234 11.332043, 3.3015583, 0.86668661
NE(r,x)in 10 em™ 7 9.5926000, 2.7947765, 0.73365214 11.332040, 3.3015574, 0.86668638

|RD|in 1077 2.71, 2.65,2.68 2.45, 2.63, 2.67

Acceptor In Cd

rg (nm) 7 0.144 0.148

X 7 0, 05,1 0, 05,1

elr,x) 10.143959, 12.24129, 14.338622 9.7367823, 11.74993, 13.763073

By (ru3) 0V 7

Mepg (Fe ) in 10°% cm

MET(r.x) in 10°F em™

o

|RD|in 1077

1.8068933, 1.308984, 0.8132712

T 12.568487, 3.6617925, 0.96125108

£ 12.568483, 3.6617915, 0.96125083

2.92, 2.77,2.62

1.8125359, 1.312084, 0.8149657
14.212125, 4.1406617, 1.0869583
14.212121, 4.1406606, 1.0869580

2.84, 2.62,2.87
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