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method, as used in our recent works.? we will investigate (1)-the

critical impurity densities in the Mott metal-insulator transition (Mott-

criterium, EQ. (8), being investigated in Eq. (9b), (2)-the density of
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electrons (holes) localized in the exponential conduction (valence)-

NEba(cop)( Tata)x) 2 Nepncepp) (Taga»x), With a precision of the order

of 2.89 x 10~7, as observed in Tables 1n and 1p, which could be

concluded that Nepnicop) IS @lso the density of electrons (holes) localized in the EBT, and
(3)-the optical band gap, E.uy(gpn(N%ra.xT) , determined in  Eg. (28),
N*(N,rgeay%x) =N—Nepaivop) showing  that the numerical results  of
Egn1(gpn) (N% rar,x = 0,T = 20 K) are in good agreement with experimental ones, obtained

by Wagner and del Alamo (1988), with maximal relative deviations: 5.38 % (9.07 %), and
2.06 % (5.16 %), as observed in Tables 2n and 2p; further, for x(=0, 0.5, 1), the numerical
results of E_qy(zp1y (N% raga),x T = 20 K) are given in Tables 3n and 3p.
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INTRODUCTION

By basing on the same intrinsic energy-band-structure parameters, physical model and
treatment method, as used in our recent work,™ and also other works,'>*? we will investigate
the critical impurity density in the metal-insulator transition (MIT), obtained in the n(p)-type

degenerate X(x)= [5i;—.(Ge,)]crystalline alloy, 0 = x = 1, being due to the effects of the size
of donor (acceptor) d(a)-radius, ra;s), the x- concentration, and finally the high d(a)-density,

N, assuming that all the impurities are ionized even at T=0 K. In such n(p)-type degenerate

crystalline alloy, we will determine.

(i)- the critical total impurity density Nepgicop)(rag).x) in the Mott-MIT, in which the
assumption of the one conduction (valence)-band was used, as that given in Eq.!®! using an
empirical Mott parameter M,,,, = 0.25, and the density of electrons (holes) localized in the
exponential conduction(valence)-band tails (EBT), NE5rcp( race.x), as that given in Eq.[%
with the use of the empirical Heisenberg parameter },(x) = 047137, as that given in
Eq.! according to: for given race and X, NEET p0y( rac) %) 2 Nepnrcop) (fage) ), with a
precision of the order of 2.89 x 10~7 (2.88 x 10~7), as seen in Tables 1n and 1p, respectively,
being more accurate compared with the corresponding ones 9.99 x 10~% (1.49 x 107}, given
in our recent work.!! in which the assumption of 3-conduction bands and 2-valence bands
was taken, and (ii)-the optical band gap (OBG), Egnl.;gpl;;.{m*: racap% T), N*= N — Nepn(nDp),
as that given in Eq.[?®1 in which the effective average number of equivalent conduction
(valence)-band edges was used as: g.(x) =4 xx+6x(1—x), g,(x) =2xx+2x(1—-x);
then, its numerical results are reported in Tables 2n, 2p, 3n and 3p, showing, in particular, in
Tables 2n and 2p, in which for raca) = rpee), X=0 and T=20 K, the numerical results of

Ez-n1(zp1) @re found to be in good agreement with the data, obtained by Wagner & del Alamo

(1988), with maximal relative deviations: 5.38 % (9.07 %), and 2.06 % (5.16 %), respectively.

In the following, we will determine those functions: Nepaccop) (Tace) %), Nematcop ( Tata)x),

and finally, Egni(gp) (N%Taca.x T).
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CRITICAL DENSITY IN THE MOTT MIT
Such the critical impurity density Neppcop) (Taga).x), €xpressed as a function of rs.) and X, is

determined as follows.

Effect of x-concentration
Here, the values of the intrinsic energy-band-structure parameters, such as: the unperturbed

relative effective electron (hole) mass in conduction (valence) bands mg,(x)/m,, m, being

the electron rest mass, the reduced effective mass m,(x)/m,, the unperturbed relative

dielectric static constant =, (x), the intrinsic energy gap, Eg,(x)

m.(x)/m,=012 xx+ 037353 = (1—x), m,(x)/m, =03 xx+ 054038 = (1 —x),

e () my{x)

M0/ Mo = e

£,(x) =158 xx +114x (1—x),
Eoo(x)ineV=07412xx +117x (1-x) , and the isothermal bulk modulus

Edorao) )

- , 7 ¢ — I = ey = . . .
—5':4’1Tf"3}x|._rdu::anj:| determined at raa) = Tgo(ac) = Tsi(si) = 0.117 nm (0.117 nm )

Bag {ao) (X} =

Therefore, the effective donor (acceptor)-ionization energy Eg,aq)(x) and the isothermal bulk

modulus By, .. (x) are found to be given by:
13600 [mervy(x)/mg]
[eol=]?
Edorzoylx)
T . F B
I:Q’H;fﬂj}('__rdu;:auj:l

Edn,:ﬂn} () = meV and (1)

Bdn{an}(x} = (2)

Effects of impurity size, with a given x

Here, one shows that the effects of the size of donor (acceptor) d(a)-radius, ra;), and the x-
concentration strongly affects the changes in all the energy-band-structure parameters, which

can be represented by the effective relative static dielectric constant (rsay.x), as follows.

At rara) = r'daras) the needed boundary conditions are found to be, for the impurity-atom
3 3
volume V= (41/3) X (racsy) ) Vaatae) = (47/3) X (raoe) , for the pressure p, as: p, =0,

and for the deformation potential energy (or the strain energy) o, as: o, = 0. Further, the two

. i . i . d
important equations, used to determine the c-variation: Ac= c—o, = g, are defined by: d—s,z—g

do .. d do, E . .
and p=——-. giving: (- =5 Then, by an integration, one gets:

r

[‘ﬂu{rﬂiif"x:]]n::P:,:Bﬂn:janj {xjx(v_vﬂn{anj)x In (1—): Edoram (¥) % [(ﬁ)! - 1] ® lﬂ(_‘i;)! =0. (3)

b Tdr
! . Canr
Ydofao) dofac]
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Furthermore, we also shown that, as rars) = ras(as) (Tara) < rde(as)), the compression
(dilatation) gives rise to: the increase (the decrease) in the energy gap Egnn.:gpnj.{rd,:@x}, and
in the effective donor (acceptor)-ionization energy Ea¢(rac),x) in the absolute values, being

obtained from the effective Bohr model, and then such the compression (dilatation) is

represented respectively by: + [ﬁc(rd,:a}Jx}]m,p},

(ﬂ) - 1] =+ [*':"':":'-"d[a:wx]]

Eg‘un[g‘pnj{rdiayx:] - Egn(x:] = Eﬂ[ij{t‘ﬂ[i)’x] _Eﬂnujan){x:] = Eﬂn[anj':x:] X 2{racmy)

n(p)’

for Id(a) = I'do(ac) and for Tdia) = Ida(ac)

Eg‘un[g‘pnj{rdiayx:] - Egn(x:] = Eﬂ[aj':rﬂujaij] _Eﬂmjan)':x:] = Eﬂn[anj':x:] X

() - 1] ~ [a0trae @], . (4)

Therefore, from above Equations (3) and (4), one obtains the expressions for relative

dielectric constant (rg¢,y%) and energy band gap Egn(ep) (racw ), as:

Eo ()

(i)-for I‘d,:ﬂ:,E I'da(aa) since E(I‘d,:a:”}s{jl: T <gy(x],

T, B T B
l1+ [ dea) } -1 ){ln( dea) }
Tdogmo) Tdorzo)

,‘-!
Egncape (%) — Ego () = Bt (ra0%) — Betao (9 = Baton 09 % | (2221) — 1] x1n (22" 2 0,(5)

Tdo ID) o)

according to the increase in both Eyigp (racarx) and Egpy (racw.x), for a given x, and

Eq (%)

(ii)-forrd,:a::, = T'da(ac) since E(I‘d,:a},le: T

| Ty 2 Ben
,1_[( drs) } —l]xlnli drg) }
N Tdofaoy Tdo[ao)

- > £,(x), With a condition,

given by: [( <= —1]x|n —=J—)°=::1,

Tdn fac)
Ecnolzpo) (rae.x) — Eg(x) = Egta) (Fata) %) — Edotan) () = —Eqglan) (X) ¥ [(fﬁ) -
=0, (6)
Corresponding to the decrease in both Egpy(gy (racsy.x) and Egem (racw.x), for a given x.

Furthermore, the effective Bohr radius agngp)(raca)) is defined by:

_ elrggma) =kt

aBﬂ':Bp:l(rdI:a}.lX} = =053 w 1{]—3 cm E'-.rlil:a}-x}

- IR
Mgy %) =g? Mgy (%) fmg

(7)

Where —q is the electron charge.
In the n(p)-type degenerate Si,_,Ge,- crystalline alloy, in which the assumption of one
conduction (valence)-band is used, the critical total donor (acceptor)-density in the Mott-

MIT, Ncpn(wop) (Tara.x), is determined by:

1."
Nepnicop) (TdiapX) 3 X agn(ep)(Tag) ) = My, My = 0.25. (8)
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Eq. (8) is thus the Mott-criterium, used to determine Nepn(cng), depending on the choice of
empirical parameters, given in Eq. (7), such as: m;(x) Or ,(x), S0 that the numerical results

Of Nepngeop) (Tara).x), Deing in good accordance with those, observed in experiments.

In the following, these obtained numerical results can also be justified by calculating those of

the density of electrons (holes) localized in exponential conduction (valence)-band (EBT)

tails, NEIB:IE':CD[J}{ Faa)X).

EBT _
NCDn{CDp] (rd{aj,X]- Expression
In order to determine N3~ ) ( raa).x), we first present our physical model and also our

mathematical methods, in such the assumption of one conduction (valence)-band.

Physical model (Origin of the Mott’s criterium)
In the n(p)-type degenerate Si, _..Ge.~ crystalline alloy, if denoting the Fermi wave number
bY: kpnrp)(N) = (3n2N) /3, N being the total impurity density with an assumption that all the

impurities are ionized even at temperature T=0 K, the reduced effective Wigner-Seitz (WS)

radius  regepy characteristic of interactions, is defined by:
_ 3 L2 1 _ o 1 /2 M oy (3] Ty

an ey (Noragey ) = () % e = L1723 X 10° x ()" x T (9a)

explaining thus the origin of the excellent Mott’s criterium.

Here, one notes that, at N =Neparcop)(Tarepx) ,  Tencep)(Nepaceop) (Taga» ) Tacapx) =

2.4852548, being determined from Eq. (9a), as those also observed in Tables 1n and 1p in
Appendix 1. In other words, the above Mott’s criterium (8) can also be explained by Eq. (9a),

as:
1, 3 1/3 1
NCDnI:CDp}(rdI:a}J X} 13X aBn(Bp}(rd(a}Jx} = (;) 7 agEo54n = 02496124 = ms}m}} o Mn.(p} =
0.25
, With a relative deviation (=1.5504 x 1073), (9b)

Then, the ratio of the inverse effective screening length k.., to Fermi wave number kg,

is defined by

kangep) kFniFm

Rsn(sp}{NJ Tdia) X} = = Rsn'l-‘-’S(sp'l-‘-’S} + [RsnTFispTF} - Rsnﬁ.-‘-’S[sp'l-‘-’S}]E_rmim <1 (10)

kenFe)  Koprem

These ratios, Ryt (eprr) and Rogwsispws), are determined in the following.
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First, for N > Nepn(npp (Tacapx), according to the Thomas-Fermi (TF)-approximation, the

ratio Reprrentr) IS reduced to

ksnTFspTF) kEnFm _ ||4‘r"-"3n[3pj'._N.-l-"diBfl-'-“:| w1

kFn Fp) K iTRepTE ¥ m

RsnTF{Ner(a}JK} = , (11)

being proportional to N=1/%,
Secondly, N < Nepn(npg) (Taray), according to the Wigner-Seitz (WS)-approximation, the ratio

Renwsspws) 1S reduced to [3]:

ksnWs (apWs Ii[rz e “ECE]
R , Nrgapx) = ———— = |2 —y—==2E = | %05
Smﬂ;gl‘smﬂ;s}{ +-d(a) } kFnFp I Araniap) '

(12) where Ecg (N, rd.;a},}:} is the majority-carrier correlation energy (CE), being determined

0.E7353
—0.B7553 -
0.0908 +rep 1+0038477 2B xr Lo S o0

M-,
[ [ = L) In(r g opy) —0.093288

ECE{N: I‘d,:a},}{} =

So, n(p)-type degenerate X(x)- crystalline alloys, the physical conditions are found to be

given by :
kEé:‘Fp‘n Nn(p) 1 kE;Iu'Fpﬁ TEpnFp)

== — = —==R__ Mrgro,x) <1, A (N rgrax) = —. (13
3En(Ep) EFnoFpe)  Anp)  Kapap antep) (N Fa(a) %) a(e) (N Ta(a%) Mn(p) (13)

Here, £Egqgp) is the Fermi energy at 0 K, and n,y is defined in next Eq. (15), as:

L kpnFpl n)®

2R mppex)

I 21 —1/2
X A K epy-

iEFn{Fp}(NJX} = =0, nn{p}(NJ rd.:g_};x} =

2l{rd;a)

Then, the total screened Coulomb impurity potential energy due to the attractive interaction
between an electron (hole) charge, —q(+q), at position r, and an ionized donor (ionized
acceptor) charge: +q{—g) at position E,, randomly distributed throughout X{x)- crystalline
alloys, is defined by:

V(r) = B, vi(r) + V,, (14)

where H is the total number of ionized donors (acceptors), V, is a constant potential energy,
and the screened Coulomb potential energy v;(r) is defined as:

a*xexp(—kan(sp % [F-R;D)
E':'-"d[nj:'xlF_ﬂ '
where k.pep) IS the inverse screening length determined in Eq. (11).

vi(r) = —

Further, using a Fourier transform, the v;-representation in wave vector ﬁ-espace is given by

- z 4m 1
(@)oo Tyt
! elram) 0 kz"'k!zm'!p‘l

WWW.wjert.org 1SO 9001: 2015 Certified Journal 85




Cong. World Journal of Engineering Research and Technology

where 11 is the total X(x)- crystalline alloy volume.
Then, the effective auto-correlation  function  for  potential  fluctuations,

Waip (Vi) Nora ey ) = (VIV(r')), was determined, [4, 5] as :

T T'_::]J:IXRG n "FB"rN T4 -:i:-_x:l

_ 3 . _ ~ImR 3 —1/2
Wa gy (Vacpy N Fagay %) = N X exp ] ) Mo (N Fay X) = s;-r;.f‘-x 9Kz (apy
' n,-|"‘r-::1:z1| | T
EN,x) = TE Hoo = 0.47137 15
Vae)(ENX) = o Han = 0. : (15)

Here, E is the total electron energy, and the empirical Heisenberg parameter H,,, = 0.47137

was chosen above such that the determination of the density of electrons localized in the

conduction(valence)-band tails will be accurate, noting that as E — +eo , |va(gy| = o2, and

therefore, Wy, = na 5

In the following, we will calculate the ensemble average of the function: (E —V =i= E;_~,

Rowk®

fora=1,E.= Py—— being the kinetic energy of the electron (hole), and V(r) determined

Ml
in Eq. (16), by using the two following integration methods, which strongly depend on

Wi o '::"f'u:jp:u N.rg [ a:wx} .

MATHEMATICAL METHODS
Kane integration method (KIM)
Here, the effective Gaussian distribution probability is defined by:

| (16)

P(V)=
( } IWnipy

* exp

_\.-' InWnip

So, in the Kane integration method, the Gaussian average of (E —V =i= El_f:_i is defined by

(E-V) a_;:}}mi = {EZ_;E}K]M = ffm{E - ?}E_% = P(V)dv, for a= 1.

Then, by variable changes: s =(E —V)/,[Wam and
—_ + EFn( Hur r } } }
y=+E//Wpp) = _nh.]'fpj X Vg X LM) and using an identity:
nip)

4X\!I|1'n::p:||
Jy s*75 X exp(—ys— £)ds = T(a +32) xexp(y2/4) x D_,_=(¥),
where D___:(y) is the parabolic cylinder function and I'(a+ ) is the Gamma function, one

thus has
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28-1
a— exp(—y2/4)xW_2 - expl -y ,.4})-Cn Fy ¥Ramr g % (28-1)
—'E" —.E. _n(p] (3p
( "}Jcm BEL % F(a+ ] * D_E_ (y) BB 5 exp I () *Mem (g "
JIn

I Bxﬂ'|\‘m:m|

V&

M(a+3xD_,:() (16)

Feynman path-integral method (FPIM)

Here, the ensemble average of (E —V =i= ; e is defined by

28/2%/In 2R3

g2 i [ .
(E-V E_E}Fpm {E }F'P]ME F - ]" E+} f_ (it)~ Ex EXP{E——H‘M} dt, i =—1

noting that as a=l1, (it) 3 x exp{——t""TTj} is found to be proportional to the averaged

Feynman propagator given the dense donors (acceptors). Then, by variable changes:

+ Epnr Hnrpy*Ranp
t=—_t and y=FE/ Wy = —F“'F‘*xvn.;p}xm(—“-m ’“-“’-‘) ,  for n(p)-type

\;"ﬂl:ﬁ:l Mn(m 4}{\':"‘;'“,::;:,'

respectively, and then using an identity

J22.8) ~Ex exp fiys — ] ds = 27 x 1(3/2) x exp(~y/4) xD_, 1),

one finally obtains: (E; ®)eom = (E;, ), (Ep. 2hian being determined in Eq. (16).

In the following, with the use of asymptotic forms for D___:(y), those given for

((E — V)* Z)yq can be obtained in the two following cases.

First case: n-type (E = 0) and p-type (E = 0)

As E—+too , oOne has: wvg,,— Foo and y— Foo . In this case, one gets:

alp)

D_iy— Foo) ¥ a ]x & x (Fy)*7%, and therefore from Eq. (16), one gets:
(Ep *ham ™ E*7%. (17)

Further, as E = +0, one has: v,y = ¥0 and y — F0. So, one obtains:

alp)

11’.@?—>+ﬂ:]"|3{3:]><exp({‘v3+_!:]Y_1%+_L] B, B(ﬂ——Tg- (18)

1ga? =11
ol

Therefore, as E — +0, from Eq. (16), one gets: {E;_i}mm - 0.

Thus, in this case, one gets
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{E;_i}}ﬂli ~ E5E (19)

Second case: n-type-case (E = 0) and p-type-case (E = 0)

1

As E — F0, one has: (Y, v,,) — *0.and by putting f(a) = “—*mx I'(a+ 3 x pla), Eq. (18) yields

=Efq3:'m.\|
Hppy(Vny = £0 . M.rgpq.x8) = —E—= = exp

fla) \Va +—‘3]:. ~(+i-L| = 0. (20)

Lt

_Hna[:\}{R;n-m-Xl::!—l:l _ (
Ex\;:ll'n‘_cfl 18T

Further, as E-—Fec , one has: (Y, wup)—~*ce . Thus, one gets:

2

D_s 55 1) Sy Ex e T 50

Therefore, from Eq. (16), one gets

a3

(B 7 nip) ™ nip
Kpp) (Vg = 02 . Norgq.x.3) = kaan e E'_:-" W{—g:] % (Angy X vny) T 100 (21)
noting that p(a) __—P being equal to: for a=
_+_~. 3 x Ti5/4)
It should be noted that those ratios: —-—== =, obtained in Equations (20) and (21), can be taken

in an approximate form as

Fu.jp:. ':""I:I[pj:"]* Tdpay. % a) = Ku.jp:. {vuljij:"]J Pdpay* a) + [Hl:l[pj ("f'u[p:w:"]s Pdpay ¥ a) - Ku[pj {vu[pj:"]* Pdpaya % 3]] *
Lz
E’CP[_H x {*j‘l:l[pj""u[pj} ]

so  that:  Fup)(VapyNorsexa) = Hoypy (VappNoraexa)  for 0=wvw,=16 , and
Faip) V)N ram® a) = Kng (Vage),Nota g% a) for vy = 16. Here, the constants ¢, and c,
may be respectively chosen as: ¢; = 107*? and ¢, = 80, as a = 1, being used to determine the
critical density of electrons (holes) localized in the exponential conduction(valence) band-

tails (EBT), N&pa(cnp) (N.aga), %), given in the following.

Here, by using Eq. (18) for a=1, the density of states T(E) is defined by:

. 1
¢y
3 exp| —i—}l =W3

ITMape 2 L Mgy % \ 3
(DE = oz () % B = ox () x — = xI(2) x D_3() = D(E). (23)

im ~ I

Going back to the functions: H,, K,, and F,,, given respectively in Equations (20-22), in which

1
1-: Yicrm

the factor - w—

is now replaced by
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iEil_ YK D(E=0)

|.fﬂ'-l|:'|'v1 s mg:l 5,-'5}( Mnp
et e ga),

= Fn,:p}{vn,:pjj N.rgez.%a = 1}, D, (N, Td(ap¥,a = 1) =

fla=1)  Tg ImERE
Bla=1) =4—"—, (24)
ZaxT({5/4)

Therefore, N&paeng) (N, rara).x) can be defined by: NE§ Ty (Norapay, %) = [’ D(E = 0)dE,

- . I:I:n:-:,'a: ::]' : im ?B?X[i EF W (F -:I 16 .
NEBaccop (M Ta(ayX) = 2% (" B(a = 1) X Faggy (Vagy N Fagey %8 = 1) dvagy + Ingm )y (25)
where
-1
® o ~Anprng) —3/2
Inip) = fis Pla=1)xK ., '[""n'ip}i N.ry.x.a = 1—} dvp g = fie e : b '[*""*n'ip}""ﬂ'ip}} AV ).

Then, by another variable change: t = [Aq ) Vars /V2] , the integral I, yields

. 1 _ bEg gy 2
In{p} = 15,,-'.4‘_.;':1'.:}" x Znim) thle tdt = —.—15:4};5;, where b = -1/4, Zaim = [15!%“,:[:,},“1\-"5] , and
T(b, Zn(p)) is the incomplete Gamma function, defined by:

z

- —_— (b-1)(b—2)...(b—)
F{:hj an:[:I:I} e Zbl:pjj W g Cn(p) [1 + ]1:61 —j—J:|

i n(p)
Finally, Eq. (25) now yields

132 —
(m::_\rj.= ) n.”'ln{p_)x':iEFr_:Fp;.)

e k2

EET - - o — , -
NCDn[CDp) N= NCDI:I[NDpJ(rd[aijJJ I:'l:l[:l:wx] = ® Ifn Pla=1)x Fu[pj {"fn[py N1y apkha=
F[h_z,—,m;}

1)ty + ] . (26)

Being the density of electrons (holes) localized in the EBT, respectively.

In  n(p)-type degenerate X(x) - crystalline alloys, the numerical results of
NEET (c0p1 [N = Neomounp)(faray» X): Fagay %] = Nenceom ( Tacapx), for a simplicity of presentation,
evaluated using Eq. (26), are given in following Tables 1n and 1p in Appendix 1, in which
those of other functions such as: Bag(ae: &, Egnozne) Neoaceop) aNd Nepa(ey) are computed,

using Equations (2), (5), (6), (8) and (26), respectively, noting that the relative deviations in

BEET
_ NcDnicom

,giving rise to the maximal values of
NCDn(CDm

absolute values are defined by: |[RD| = ‘1

|RD|: |RD|ax{= 2.89 x 1077 and 2.88 x 1077), respectively.

WWW.wjert.org 1SO 9001: 2015 Certified Journal 89




Cong. World Journal of Engineering Research and Technology

Tables 1n and 1p in Appendix 1.

Table 1n. The numerical results of By, , €, E,,, , Ncp,, and NEET are computed, using

Equations (2), (5), (6), (8), and (26), respectively, noting that the relative deviations in

[EBT

. N - . .

absolute values are defined by: |RD| = ‘1—% , giving rise to a maximal value of
O D

|RD|,..(=2.89 x 1077). Here, the value of the effective reduced Wigner-Seitz radius,
obtained in Eq. (9a): at N = Nep, (74, %), Top (Nepn (74, %), 74, %)= 2.4852548. Further, we
obtain, at x=0 and rz = 75 : NE5T(r_,x) = 3.5201415x 10" cm™®, in good accordance
with that (=3.52 x 10™® cm™?), observed in the n-type Si-crystal [10, 11], and at x=1 and
re=1 . NEET(r,x)  =4.3840013x 10 cm™® being higher than that

(=4.038 x 10%° cm™%), given in the n-type Ge-crystal [12].

Donor P Si

rg (nm) 7 0.110 ryo=0.117

x 7 0, 05,1 0, 05,1

B, (x) in 10° (N /m") 9.334069, 4.3327235, 1.5610697
e(rax 11.58254, 13.81777, 16.052996 11.4, 13.6,15.8
E,..(rax)ev 7 1.168778, 0.955033, 0.7409956 1.17, 0.9556, 0.7412

Nepa(Fex) in 10°F em™ 7 3.5201424, 0.59776747, 0.043840025  3.6919625, 0.62694484, 0.045979882

NET(ryx) in10¥ em™ 7 3.5201415, 0.59776731, 0.043840013  3.6919615, 0.62694467, 0.045979870
IRD|in 1077 2.69, 2.73,2.65 2.65, 2.67,2.70

Fon (N (73 ) 75, ) 24852548, 2.4852548, 2.4852548 2.4852548, 2.4852548, 2.4852548
X 0, 0.5,1 0, 0.5,1

elryx) 10.165683, 12.12748, 14.089280 9.6901858, 11.56022, 13.4302575
E e (rax) eV 7 1.1800687, 0.960274, 0.7428839 1.1850114, 0.962568, 0.7437106

Nepa(rsx) in 10°% em™ 7 5.2066951, 0.88416678, 0.064844435 6.0113986, 1.0208163, 0.074866253

NET(ryx) in10¥ em™ 7 5.2066937, 0.88416655, 0.064844418  6.0113970, 1.0208160, 0.074866233
|RD|in 1077 2.65, 2.65,2.66 2.70, 2.89,2.74
TN =NET,r,x) 24852548, 2.4852548, 2.4852548 2.4852548, 2.4852548,2.4852548

Table 1p. The numerical results of B,,, €, Eg,,, Nep,, and NEST are computed, using

Equations (2), (5), (6), (8), and (26), respectively, noting that the relative deviations in
~EET
-

Dy
il

absolute values are defined by: |[RD| = ‘1— , giving rise to a maximal value of

oo
|RD|,...(= 2.88 X 1077). Here, the value of the effective reduced Wigner-Seitz radius,
obtained in Eq. (9a): at N = Ngp, (7,,%), Ty (Npy (7, %),7,, x) = 2.4852548. Further, we

obtain, at x=0 and r, = r5: NEiI (r,,x) = 4.0602418X 10*® em™, in good accordance
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with that (=4.06 x 10™® cm™?), observed in the p-type Si-crystal [10, 11], and at x=1 and

T, =7g | Ngpl(r,x)  =2.6095232x 107 em™ | being higher than that
(=1.7347 x 10*7 em™?), given in the p-type Ge-crystal [12].

Acceptor B Si

ry (nm) 7 0.088 r3,=0.117

x 3 0, 051 0, 05,1

B..(x) in 10° (N/m") 13.50345, 7.377736, 3.002674

e(r,x) 15.9777, 19.0611, 22.1445 114, 136,158

, i
E, . (T x) eV J

Nepg( e ) in 10°%F em™ 7

NEETl"

|RD|in 1077

‘s — ng EET
Tol(N=NETr,x)

bp Lz X)in 10%F em™

~

1.14224, 0.94043, 0.73318
4.0602429, 1.1243180, 0.26095239
4.0602418, 1.1243177, 0.26095232

2.76, 2.47,2.77

2.4852548, 2.4852548, 2.4852548

1.17, 0.9556, 0.7412

11.178374, 3.0953929, 0.71843565

11.178371, 3.0953921, 0.71843546
2.88, 2.62,2.64

2.4852548, 2.4852548,2.4852548

b 4 s
e(rox) »

Eg:n I:ry H:] eV 7

0, 05,1
9.191081, 10.9648, 12.73851
1.200448, 0.97223, 0.749999

0, 05,1
8.687132, 10.36360, 12.0401
1.210834, 0.97791, 0.75300

Nepy (7o) in 10°F em™ 7 21.330127, 5.9065055, 1.3708903 25.261773, 6.9952139, 1.6235777

Nfg:[r“, x)in10* em™ 7

21.330122, 5.9065040, 1.3708899

2.55, 2.61,2.60
24852548, 2.4852548, 2.4852548

25.261767, 6.9952120, 1.6235773
2.55, 2.67.2.55
24852548, 2.4852548, 2.4852548

|RD|jn 1077

( py — pg EET
Py N = Nep ot xJ

Thus, Nepainpg), determined in Eq. (8), is just Nepnicpp), given in Eq. (26), being the
density of electrons (holes) localized in the EBT, respectively. This is a new result.

Finally, the effective density of free electrons (holes), N* given in the parabolic conduction
(valence) band of the n(p)-type degenerate Si, _..Ge..- crystalline alloy, can thus be expressed
by N*=N — Nepanpp) = N — Nggzl;:cnp}- (27)

Optical band gap

Here, the optical band gap (OBG), Egni(gpn) (N Taa)% T), is defined by (Van Cong, 2024;
2023)

Egnl(gpl}{msj Taia) X T} = Egnﬂ(gpﬂ}{N $er|:ﬂ:|.lx.l T} t EFH':FP:'(N’RJXJ T},

EEHZ':EPE}{N$J Fala) T} = Egnﬂ'igpo}{rd'ia}ix} — AT(T) — ﬁEgn‘igp}(N$er'ia}rK}, (28)
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where Ezpnazp2 IS the reduced band gap, meaning that the band gap Eonaigpe). givVen in
Equations (5, 6), is reduced by the effect of temperature, AT(T), being given in next Eq. (30),
and that of high doping, ﬁEgn.;gp;.{N*er.;a},x}, being determined in next Equations (31n, 31p),
and finally, + Eg, ) (N*x,T) is the Fermi energy, being determined in next Eq. (32). Then, it
should be noted that, in the calculation of AE_, .,) and Egngy), the effective mass m 4 (x) is
now replaced by the reduced mass m,(x). Further, the reduced effective Wigner-Seitz radius,
renisp) » Characteristic of interactions, determined in Eq. (9a), and the Fermi wave

number, kg ey, are now replaced by:

(%) /My

. Ecpvy () 13 . _— 1/8
rgu,:gm{f\] ,rﬂ,:gj,x} =1.1723 x 10° x (E—’] * m, Ken(pp) (N". Tg(q).%) = {Eﬂ‘f»] ,-‘g,:,:,,.j{xj} . (29)

Here, in the n(p)-type degenerate X(X)= [Si; —.(Ge,)] crystalline alloy,0 = x = 1, the effective
average number of equivalent conduction (valence)-band edges is determined by
g.x)=4dxx+b6x{1—x),g.(x)=2xx+2x({1—-x).

Now, the expressions of AT, AE_,(zp) and + Eg, (g are determined in the following.

AT(T)-Determination

Here, we have

(30)

AT(T) = 10~% x T? x [3.525}:;: 2.54xu1—x}]_

T+34 K T+I4 K

AE gy () (N*,r44),%) —Determination

Then, the band gap narrowing AE.,,(N*,x, T) is found to be given by

£yl 1/3 () 2
AE,(N*,rg,x) = a; X m;‘;} x N.'° +a; x ﬁ x NEx (2,503 x [—E, (ron) X, ]) + a3 %
]

A 5/4 e ’ e ey 7 LN B
[i}] x [ NME b g, x 2Bl NY ><2+a5x[z°(x’]“><N:
2lrda T

N m_ 4 z(rgx) e(rgx)

where a; = 4.492098 x 103(eV), a, = 7.6875582 x 10™%(eV), az = 3.3114218 x 107 3(eV),
a, = 6.64704 x 1073 (eV) and az = 9.5796678 x 107*(&V), and

;. . i L . a5/4
BEg(N',To%) =2 X 2 x NY® +a; X 22 x N3 x (2,503 X [~Eqp(rsp) X 1)) + 25 x [22] 7 x

::_r;_x) £l E:I’i_.'('

— — 3 i
[mg 1/4 | 25(x) 1/2 [En(x} ]= :
XN 7 +2a, X | }er +a;x X NP

-\l m, 4 2(rg.x 2(rg,%)

Ne= (o) (31p)
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where  a; = 0.0183654 (eV) , &, =3.14145x107%(eV) , a; = 0.014064 (eV)
ay = 0.0270503(eV) and as = 3.91473 x 1073 (eV),

Further, the correlation energy of an effective electron gas, Eqnep) (N* rara), %), is given as:

0.ETSEE 2[1-1n(2)] . -
-0.87553 +D.D9ns+rm:-,m+[ e )x1n(esnspy) -0.093288

0.0%08+ ran ap) 1+0.0384772 B Xrpn o =78

E:nl:r_-p}{N*J rdl:ﬂ.:l.l X} =

and rgy .y, Is determined in Eq. (29).

=)
It should be noted in Equations (31n) and (31p) that, for given rs., andx, the values of

AE_,(zp) Increase with increasing N.

+ Epn(rp) (N*,x, T) —Determination
Here, as given in our previous work,® for the n(p)-type, the Fermi energy + Egzp Was

investigated, with a precision of the order of 2.11 x 107%, as:

Epp(u) (_EFP':U:'} _ Clul+AuBFiu)

keT © kgt TranE A= 0.0005372 and B = 4.82842262, (32)

where u is  the reduced  electron  density, u(N%Tx)=———
Ny (T

mﬁx_\xkETE —1 P( }_ z 14b _3 _E _;

N.:u:v}(T,K:]I =2 g:(v}(x} K{ — } (cm } , ul = aus( 4+ bu =4+ cu 5) J

— 2.!" 2 e o _E
a=[(3va/4) xu”, p=10) o= (¢ and G(w =~ Ln(w) +272 X ux e,

d = 23/ [:—i] = 0.

Here, one notes that

(i) asu = 1, according to the degenerate case, Eq. (32) is reduced to the function F(u),

(I I) Eppiu#l) —Epplu«l)
kgT kgT

) << —1, to the non-degenerate case, Eq. (32) is reduced to the function

G(u), and for given ry;,) andx, the values of +Eg, s, increase with increasing N*.

Now, going back to Eq. (28),

(1)-the numerical results of Egqy(gpn (N raca)x = 0,T = 20K) are calculated, being in good
agreement with experimental ones obtained by Wagner and del Alamo (1988), with maximal
relative deviations: 5.38 % (9.07 %), and 2.06 % (5.16 %), as observed in the following
Tables 2n and 2p in Appendix 1.
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Tables 2n and 2p in Appendix 1
(2)-for N = Nepnreog (rare,x), the numerical results of the OBG, given in the n(p)-type,
Egnl{N *rarap% T = 20 K), are obtained, using Eq. (28), as functions of N and raca), for x=0,

0.5, 1, respectively, being reported in following Tables 3n and 3p in Appendix 1.

Table 2n. Here, the numerical results of the optical band gap, given in the n(p)-type,
E.n1 (N%rg =15,x=0,T), expressed in eV, are obtained by using Eq. (28), respectively,

Exp.
JE_ T

noting that the maximal values of ‘ =21 DeINg the experimental values given

RD =1 —EEQ%
by Wagner and del Alamo (1988), are found to be given respectively, at T=20 K and T=300
K, by: 5.38 % (9.07 %).

N in 10%¥ em™ 4 8.5 15 50 80 150
E:::"r:N',rWEEIK:I' 1.138 1.133 1.129 1.131 1.132 1.133
E,m (N Tpx = 0,20K) 1.161 1.158 1.157 1.165 1.174 1.194
|RD|in % 2.07 221 2.52 3.04 3.70 5.38
N in 10* em™ 4 8.5 15 50 80 150
E:_jf (N", rp 300K) 1.020 1.028 1.033 1.050 1.056 1.059
E,n (N rpx =0, 300K) 1.024 1.071 1.085 1.113 1.131 1.155
|RD|in % 0.48 424 5.10 5.97 7.15 9,07

Table 2p. Here, the numerical results of the optical band gap, given in the n(p)-type,

E.pi (N*r, =rg,x=0,T), expressed in eV, are obtained by using Eq. (28), respectively,
noting that the maximal values of ‘RD =1 _EQ%‘ , E;':f being the experimental values given
Ept

by Wagner and del Alamo (1988), are found to be given respectively, at T=20 K and T=300
K, by: 2.06 % (5.16 %).
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N in 10** em™ 6.5 11 15 26 60 170 400
E::f'l:N',rE,EUK:I 1.142 1.140 1.139 1.142 1.142 1.162 1.178
E,p (Nrg,x = 0, 20K) 1.156 1.142 1.136 1.127 1.121 1.138 1.202
IRD|in % 1.26 0.23 0.23 1.29 1.87 2.05 2.06
N in 10** em™ 6.5 11 15 26 60 170 400
E::f'l:l'i',ra, 300K)V 1.036 1.044 1.048 1.051 1.062 1.086 1.102
E,: (N%rg.x = 0, 300K) 1.077 1.079  1.078 1.081 1.081 1.095 1.158
IRDlin % 3.96 3.38 292 291 1.81 0.91 5.16

Tables 3n and 3p in Appendix 1

Finally, in this degenerate X(x)- crystalline alloy, as noted in Equations (31n), (31p) and (32),
because both two functions: AE. ey and + Egneey), fOr given rgeqyandx, increase with
increasing N*¥, Egnl{N *raga)% T = 20 K), determined in Eq. (28), and expressed as functions

of N¥, thus randomly varies.

Table 3n. Here, for N = Np,.(rg.x), the numerical results of the optical band gap,
E.n1 (N%rgx T = 20 K), are obtained by using Eq. (28), as functions of N and ry , for x=0,
0.5, 1, respectively. Here, for given N and ry, E_,; decreases with increasing x, since

E_no (r4,%) decreases, as observed in Table 1n.
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N in 10** em™ 4 8.5 15 50 80 150
x=0
Epea (N rpxT) in eV 1.161 1.158 1.157 1.165 1.174 1.194
Eyos (Nr5;x T)ineV 1.161 1.157 1.156 1.164 1.173 1.194
Epa (NP X ThineV 1.169 1.168 1.179 1.189 1.211
Eyes (N F5x ThineV 1.174 1.173 1.185 1.195 1.219
x=0.5
Epa (N TpxT)ineV 0.924 0917 0911 0.905 0.908 0.920
Eyms (N5 x ThineV 0.924 0.917 0912 0.906 0.909 0.923
Epex (N T % T)ineV 0.932 0.926 0.922 0.923 0.929 0.948
Ea (NS rgexThineV 0.936 0.930 0.927 0.929 0.937 0.958
x=1
E,a (NSrpxTiineV 0.616 0.576 0.539 0.438 0.392 0.327
Epe: (Nrs: % Tl ineV 0.617 0.578 0.542 0.445 0.400 0.339
Epe (N xT) in eV 0.631 0.598 0.568 0.491 0.459 0.419
Eyr: (N rsexT)ineV 0.637 0.605 0.578 0.509 0.482 0.450

Table 3p. Here, for N = Ny (r,,x), the numerical results of E_,4 (N*,r_,x, T = 20 K), are

obtained by using Eqg. (28), as functions of N and r, , for x=0, 0.5, 1, respectively. Here, for

given N and r,, E_,; decreases with increasing X, since E_,, (r,,x) decreases, as observed in

Table 1p.
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N in 10*f cm™ 6.5 11 15 26 60 170 400
x=0
Eyps (N"rg. T)ineV 1.156 1.142 1.136  1.127 1.121 1.138 1.202
Eyos (N5, ThineV 1.132 1.125 1.133 1.183 1.291
E,o: (N1, Tlin eV 1.165 1.175 1.241 1.371
Eyps (N“rea. Tlin eV 1.186 1.186 1.256 1.391
x=0.5
Eyps (N“re, T) in eV 0.872 0.851  0.838 0.814 0.777 0.744 0.759
Eype (Nr. T)ineV  0.889 0.874  0.866 0.855 0.848 0.879 0.977
Egor (N"T1. TlineV  0.935 0909 0901  0.896 0.903 0.963 1.102
Eyoe (N°Fe, TlineV 0919 0912  0.906 0.916 0.983 1.131
x=1
E,; (N%re.T)ineV 0549 0.507 0480 0427 0.336 0.227 0.185
E,p (N%rs. T)ineV  0.601 0.578 0564 0541 0.516 0.539 0.673
Ep: (Nr.TlineV  0.638 0.622 0615 0.605 0.612 0.699 0.916
E,p: (Nrea. TlineV  0.647 0.633  0.627  0.621 0.634 0.735 0.971
CONCLUSION

In those Tables, some concluding remarks are given and discussed in the following.

(1)-For a given x, while e(rawx) decreases (), the functions: E.narepe(TarayX)
Nepn(cop) (Ta@) %) and NE§ Ty (Tagay,¥) increase (), with increasing () racq), due to the
impurity size effect, as observed in Tables 1n and 1p in Appendix 1.

(2)-Further, for a given rgr), while z{rd.;a;ux} also decreases ( =), the functions:
Ecno(zpa) (Tdra)¥)s Neparcop) (Tagay ) and N1 cp oy (Tagay, %) also increase (), with increasing
(#) %, as observed in Tables 1n and 1p in Appendix 1.

(3)- In those Tables 1n and 1p, one also notes that the maximal value of |RD| is found to be

given by: 2.89 x 1077, meaning that NEFT. o ) 2 Nepacepp)- IN Other words, such the critical
d(a)-density Nepninog) (Tacs.%). is just the density of electrons (holes), localized in the EBT,

NEEE'CD p}( Fd(ay X}, I’eSpeCtiver.
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(4) Finally, once Nepnicop is determined, the effective density of free electrons (holes), N¥,

given in the parabolic conduction (valence) band of the n(p)-type degenerate X{x)- crystalline

alloy, can thus be defined, as those defined in the compensated crystals, by:

N*(N,ra¢a)%x) =N—Nepainog) = N— NS oicop),

Needing to determine the optical, electrical, and thermoelectric properties in such n(p)-type

degenerate X(x)-crystalline alloys, as those studied in n(p)-type degenerate crystals [3-12].
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Appendix 1

Table 1: The numerical results of Ex., £, Eyaz, Nepa, and MEET are computed, using Equations (2), (5), (6), (8), and (26),
respectively, noting that the relative deviations in absolute values are defined by: |RD| = |1 —:—“| giving rise to a
maximal value of |RDly..(=2.89x1077). Here, the value of the effective reduced Wigner-Seitz radius, obtained in
Eq. (92): at N =Nga(rex), rumlNoa(rexdra )= 2.4852548. Further, we obtain, at x=0 and rs=rp: NET(ryx)
=3.5201415 % 10°" em™, in good accordance with that (=3.52 = 10° em™), observed in the n-type Si-crystal [10, 11],
and at x=1 and ra =rp: NEET(r, x) = 43240013 = 10°* em™, being higher than that (=4.032 x 10°® em™), given in the n-

type Ge-crystal.*?

Donor P Si

rg (Nm) 7 0.110 rgp=0.117

X 7 0, 05,1 0, 05,1

B, () in 107 (N/m") 9.334069, 4.3327235, 1.5610697
Elrgx) 11.58254, 13.81777, 16.052996 114, 13.6, 15.8

Epme (Taml eV 7 1.168778, 0.955033, 0.7409956 1.17, 0.9556,0.7412

Mepeitax) in 10°F cm™ 7

[*.',.Egjliri.x} in 10** em™

Sy

|rD|in 1077

Fon (Mep, (P a3 r .20

3.5201424, 0.59776747, 0.043840025
3.5201415, 0.59776731, 0.043840013
2.69, 2.73,2.65
24852548, 2.4852548, 2.4852548

3.6919625, 0.62694484, 0.045979882
3.6919615, 0.62694467, 0.045979870
2.65, 2.67,2.70
2.4852548, 2.4852548, 2.4852548

Donor Sh Sn

rg (Nm) 7 0.136 0.140

X 7 0, 051 0, 05,1

elrgn) 10.165683, 12.12748, 14.089280 9.6901858, 11.56022, 13.4302575

Epoe (Fax) @V 7
Mepa(Tax) in 10°% cm™ 7
MET(ryx) in10%F em™ 7
|RDlin 1077

Iy L = N:EEL,:, Fa.x)

1.1800687, 0.960274, 0.7428839
5.2066951, 0.88416678, 0.064844435
5.2066937, 0.88416655, 0.064844418

2.65, 2.65, 2.66
2.4852548, 2.4852548, 2.4852548

1.1850114, 0.962568, 0.7437106
6.0113986, 1.0208163, 0.074866253
6.0113970, 1.0208160, 0.074866233

2.70, 2.89,2.74
24852548, 2.4852548, 2.4852548

Table 1p: The numerical results of E,., £, E,., Mcrg, and MEET are computed, using Equations (2), (5), (6), (8), and (26),
WEET
respectively, noting that the relative deviations in absolute values are defined by: |RD| = |1 —f| giving rise to a

maximal value of |RDly..(=2.88x 1077}, Here, the value of the effective reduced Wigner-Seitz radius, obtained in Eq.
(9a): at M= Ny (r.x), ralNe,(roxlr.x) = 24852548, Further, we obtain, at x=0 and r.=re: NET(r.x)
= 40602418 » 10°° cm™, in good accordance with that (=4.06 = 10°% cm™), observed in the p-type Si-crystal [10, 11],
and at x=1 and r. = rg: N5 (1) = 26095232 =% 10°7 em™, being higher than that (=1.7347 x 10°7 em™), given in the p-

type Ge-crystal.*?

Acceptor B Si

rgy (Nnm) s 0.088 ry,=0.117

X 7 0, 05,1 0, 05,1
B.(x)in 10° (N/m%) ~ 13.50345, 7.377736, 3.902674
Blr.x 15.9777,19.0611, 22.1445 11.4, 13.6,15.8
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Epe(r) eV 7

Mepg (o) in 10°F em™ 7

M (r.x)in 10 em™ 7

|rD|in 107

(mg — pg EET
Iy LIS —h:n;wrux:l

1.14224, 0.94043, 0.73318
4.0602429, 1.1243180, 0.26095239
4.0602418, 1.1243177, 0.26095232

2.76, 247,277

2.4852548, 2.4852548, 2.4852548

1.17, 0.9556, 0.7412
11.178374, 3.0953929, 0.71843565
11.178371, 3.0953921, 0.71843546

2.88, 2.62,2.64
2.4852548, 2.4852548, 2.4852548

Acceptor In Cd

r, (nm) 7 0.144 0.148

X 7 0, 051 0, 051
elr,x) 9.191081, 10.9648, 12.73851 8.687132, 10.36360, 12.0401

Eppe (Fex) €V 7

Mepg (Fer) in 10°% cm ™ 7

NET(r,x) in 10 em™ 7

|RD|in 1077

(ms — ny EET
Faph M _[\:L,:I,r,_,x_:l

1.200448, 0.97223, 0.749999
21.330127, 5.9065055, 1.3708903
21.330122, 5.9065040, 1.3708899

2.55, 2.61,2.60
2.4852548, 2.4852548, 2.4852548

1.210834, 0.97791, 0.75300
25.261773, 6.9952139, 1.6235777

25.261767, 6.9952120, 1.6235773

2.55, 2.67,2.55
2.4852548, 2.4852548, 2.4852548

Table 2: Here, the

numerical results of the optical

band gap, given in the n(p)-type,

E,.. (N ry = rpx=0,T), expressed in eV, are obtained by using Eq. (28), respectively, noting that the maximal values

of ‘RD::L—

T

respectively, at T=20 K and T=300 K, by: 5.38 % (9.07 %).

, E:;‘f" being the experimental values given by Wagner and del Alamo (1988), are found to be given

N in 10° gm™ 4 85 15 50 80 150
E;‘::"I:N',rw 20K) 1.138 1.133 1.129 1.132 1.133
Epmy (N rpx = 0, 20K) 1.161 1.158 1.157 1.174 1.194
[RDlin % 207 221 2.52 3.04 3.70 5.38

N in 10° cm™ 4 8.5 15 50 80 150

EE‘"(N', rp. 300K 1.020 1.028 1.033 1.050 1.056 1.059

Epen (Mo rpx = 0, 300K) 1.024 1.071 1.085 1.131 1.155
[RDlin % 048 424 5.10 7.15 9.07

Table 2p: Here, the

numerical results of the optical

band gap, given in the n(p)-type,

E,.. (N r, =rex = 0,T), expressed in eV, are obtained by using Eq. (28), respectively, noting that the maximal values

Egm:

of ‘RD::L—

oo

respectively, at T=20 K and T=300 K, by: 2.06 % (5.16 %6).

, E::' being the experimental values given by Wagner and del Alamo (1988), are found to be given

6.5 11 15

26 60 170 400

EET (N, pg, 20K
Dl

Epp (Nre.x = 0, 20K)

1.142 1.140 1.139

1156 1.142 1136 1.127

1.142 1142  1.162 1.178
1121 1.138 1.202
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IRDlin % 126 0.23 0.23 1.29 1.87 2.05 2.06

N in 10° em™ 6.5 11 15 26 60 170 400
Eif'(l\",r;;;ilﬂﬂ&’] \ 1.036 1.044 1.048 1.051 1.062 1.086 1.102
Eyp (M rg.x = 0, 300K) 1.077 1079 1.078 1.081 1.081 1.095 1.158
[RDlin % 396 3.38 2.92 291 181 0.91 5.16

Table 3n: Here, for M = N, (r.x), the numerical results of the optical band gap, E,.. (N%rsxT = 20K), are obtained
by using Eq. (28), as functions of N and r,, for x=0, 0.5, 1, respectively. Here, for given N and r,, E,.. decreases with

increasing X, since E,, (rs.x) decreases, as observed in Table 1n.

re]

N in 10% cm™ 4 8.5 15 50 80 150

x=0

Ep (WrpxnT)in eV 1.161 1.158 1.157 1.165 1.174 1.194
Epm (MorxThineV 1.161 1.157 1.156 1.164 1.173 1.194
Eper (NrmxT)in eV 1.169 1.168 1.179 1.189 1.211
Epma (NorzxT)in eV 1.174 1.173 1.185 1.195 1.219
x=0.5

Epmx (NurpxT)in eV 0.924 0.917 0.911 0.905 0.908 0.920
Epm (Mo xThin eV 0.924 0.917 0.912 0.906 0.909 0.923
Epoy (MNP mT)in eV 0.932 0.926 0.922 0.923 0.929 0.948
Epmr (NorzxT)in eV 0.936 0.930 0.927 0.929 0.937 0.958
x=1

Ep (N T) in eV 0.616 0.576 0.539 0.438 0.392 0.327
Epm (HorxThin eV 0.617 0.578 0.542 0.445 0.400 0.339
Epoy (MNP mT)in eV 0.631 0.598 0.568 0.491 0.459 0.419
Epma (NurzxT)in eV 0.637 0.605 0.578 0.509 0.482 0.450

Table 3p: Here, for ¥ = Mo, (r..x), the numerical results of E,. (N*r..x.T = 20K}, are obtained by using Eq. (28), as
functions of N and r., for x=0, 0.5, 1, respectively. Here, for given N and r., E,;; decreases with increasing X, since

E,p (r %) decreases, as observed in Table 1p.

N in 10*¥ em™ 6.5 11 15 26 60 170 400

x=0
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E,. (NoreT)ineV  1.156 1142 1.136 1.127 1.121 1.138 1.202
E,m (N5rs, T) in eV 1.132 1.125 1.133 1.183 1.291

Ep (N Tl in eV 1.165 1.175 1.241 1.371

E,o (Nhre, TTin eV 1.186 1.186 1.256 1.391

x=0.5

E, (NoreT)ineV  0.872 0851  0.838  0.814 0.777 0.744 0.759

E, (Nr=.TlineV  0.889 0874 0.866  0.855 0.848 0.879 0.977

e (NrTlineV 0935 0909 0901  0.89 0.903 0.963 1.102

Epo (Norea T)in eV 0919 0912  0.906 0.916 0.983 1.131

x=1

Ey (Nore T)ineV 0549 0507 0480  0.427 0.336 0.227 0.185

Eye (Nors. T)ineV  0.601 0578 0564  0.541 0.516 0.539 0.673

E,.: (NrTlineV 0638 0622 0615  0.605 0.612 0.699 0.916

Epe (Nrea. TlineV  0.647 0633 0627 0621 0.634 0.735 0.971
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