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ABSTRACT  

Using an unsteady Jeffrey-Darcy model, this work examines the 

stability of a mixed convective flow of a nanofluid across a horizontal 

porous layer. When evaluating the stability of a system, the base fluid 

is modeled as a Jeffrey fluid with scattered nanoparticles in a thermally 

equilibrium condition. This is done using linear stability theory. By 

employing Fourier decomposition to construct the stability equations 

as an eigenvalue issue, the higher orders Weighted Residual Galerkin 

Method (WRGM) is utilized to solve the problem and test the results 

analytically. The outcomes are displayed in terms of wave number, wave speed, and critical 

Darcy-Rayleigh number across nondimensional parameters. Furthermore, whereas the Vadasz 

number and the Jeffrey parameter have the opposite effect, nondimensional numbers like the 

thermal diffusivity ratio, the volume percentage of nanoparticles, and the horizontal pressure 

gradient have stabilizing effects. Furthermore, it has been noted that the stability zone shrinks 
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as the Jeffrey parameter increases. Even in the case of an infinite Vadasz number, the 

changing Jeffrey parameter alters the flow and hence nullifies the mathematical evidence of 

stability. The question of whether the basic flow is stable or unstable is answered by 

numerically addressing the eigenvalue problem across a finite range of the horizontal 

pressure gradient and Jeffrey parameter. These findings suggest that in order to increase the 

thermal efficiency of Jeffrey nanofluids, it is beneficial to estimate the volume percentage of 

nanoparticles that must be present in the base fluid. The effects of dimensionless parameters 

on physical systems are investigated using numerical and graphical studies, which shed light 

on the stability characteristics of the system under various circumstances. 

 

KEYWORDS: Jeffrey fluid, porous layer, nanofluid, instability, mixed convection, horizontal 

pressure gradient. 

 

INTRODUCTION 

In the field of fluid dynamics, mixed convective flows of non-Newtonian fluids are an 

intricate and captivating subject of research. These fluids show behaviors that differ from the 

traditional Newtonian fluid model. Examples of these fluids are slurries, biological fluids, 

and polymer solutions. Both buoyancy forces from temperature gradients and outside 

pressures and forces affect the fluid motion in mixed convective flows. It is essential to 

comprehend the behavior of mixed convective non-Newtonian fluids in a variety of industrial 

processes, including oil recovery, food processing, and polymer processing. In order to 

understand the complex dynamics of these fluids and improve procedures for effectiveness 

and performance, researchers, engineers, and scientists frequently utilize sophisticated 

numerical models and experimental methods. Applications such as solar collectors, nuclear 

reactors, subterranean energy storage, and geothermal reservoirs all depend on an 

understanding of mixed convection in porous media.  

 

Mixed convection in horizontal porous layers heated from below was studied by Prasad et 

al.
[1]

, providing insight into the principles behind heat transmission in such systems. The 

significance of comprehending flow instabilities in porous media systems was underscored 

by Sphaier and Barletta's
[2]

 investigation of unstable mixed convection in a heated horizontal 

porous channel. Through computer simulations, Ozgen and Varol
[3]

 conducted a numerical 

investigation of mixed convection in a channel filled with a porous material, offering 

important insights into heat transmission processes in porous media. Our understanding of 

mixed convection in porous media and its implications for many technical and environmental 
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applications has improved as a result of these research taken together. Researchers may find a 

thorough reference covering a range of topics related to porous media and its applications in 

Vafai.
[4]

 The potential of nanofluids to improve heat transmission in porous media was 

demonstrated by Kim and Vafai's
[5]

 study on the use of nanofluids to buoyancy-driven heat 

transfer in porous enclosures. Understanding the impact of solid barriers on mixed convection 

in a lid-driven cavity filled with a fluid-saturated porous media was given by Abu-Nada and 

Chamkha.
[6]

  

 

A thorough review of convection in porous media was given by Nield and Bejan
[7]

, who 

emphasized the significance of this process for a range of engineering applications. The 

knowledge of transport processes in porous media was expanded by Ingham and Pop
[8]

, who 

concentrated on theoretical and experimental issues. Using a porous medium model and the 

Navier slip boundary condition, Nield
[9]

 made a significant contribution to the formulation of 

boundary conditions for porous media simulations. The impact of a horizontal pressure 

gradient and temperature difference for the Newtonian fluids on the start of Darcy-Bénard 

convection in thermally non-equilibrium conditions was the subject of a study by 

Postelnicu
[10]

, which shed light on the interactions between pressure gradients and thermal 

non-equilibrium and clarified the mechanisms governing convective flow in porous media.  

 

The phenomenon of free convection in Jeffrey nanofluids across porous media has been 

studied extensively. In a variety of applications, the study of Jeffrey nanofluid convection in 

porous media has improved heat transfer efficiency and energy conservation. These fluids 

perform better at heat transmission than traditional fluids because they make use of the 

special qualities of Jeffrey fluids as well as the heat-transfer capabilities of nanoparticles. 

They are especially helpful in applications like heat exchangers, cooling systems, and thermal 

management where effective heat transmission is essential. Jeffrey nanofluids can also lessen 

their negative effects on the environment, increase stability in high-temperature settings, and 

increase energy efficiency.
[11]

 These characteristics highlight how exciting the topic of Jeffrey 

nanofluid convection research in porous media is, with enormous potential for real-world 

applications in a wide range of industries. As a result, the researchers were able to shed light 

on the thermal behavior of viscoelastic fluid flows in porous media and emphasize the 

significance of temperature differentials and pressure gradients in causing mixed convective 

instabilities. 
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In this work, we investigate the linear stability in mixed convection of Jeffrey's nanoporous 

fluid with the goal of improving our knowledge of the effects of porosity and nanoparticle 

properties on convection initiation. Since low-volume fraction and low-permeable porous 

channels are essential for controlling and optimizing convection, this discovery is especially 

pertinent to sectors like food processing and electronics cooling. We determine important 

parameters affecting convective motion using linear stability theory, as explained in the 

sections that follow. 

 

Mathematical Formulation 

The two-dimensional rectangular coordinate system  ,x z  is chosen, where the x -axis is 

taken along the plates of the horizontal channel and the z -axis is perpendicularly upwards in 

which gravity  g  is acting downwards. The plates at z d and 0z  are maintained at 

dissimilar constant temperatures cT and hT respectively, with h cT T a porous matrix in 

between the plates. It is filled with -nanofluid which is heated from below and cooled from 

above as illustrated in Figure 1. The free and forced convection flow is due to the buoyant 

force with temperature difference ( )h cT T T   and constant horizontal pressure gradient 

respectively leads to mixed convection flow. The following assumptions are made: 

 A fully developed and non-quiescent base flow is assumed with an applied horizontal 

pressure gradient. Due to the low permeability of the porous channel, the unsteady Darcy 

model is adopted. 

 The Boussinesq approximation 0 1( ( ))cT T     is used such that the density varies 

only with temperature. 

 The nanoparticle volume fraction is considered to be low and constant.
[12]

 

 The study is restricted to linear stability along with normal mode analysis. 

 The local thermal equilibrium between the fluid and solid phases holds in a porous 

medium. 

 

Based on the aforementioned assumptions, the governing equations are formulated following 

the approach outlined by Yadav.
[13]

 

. 0q             (1) 

(T )g
(1 )

nf nf

nf nf c

q
P T q

t K

 
 

 


    

 
      (2) 
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 
 

2.
nf

p nf

kT
q T T

t C





   


        (3) 

 

The corresponding boundary conditions are given by 

0q   at 0z   and dz  ,         (4) 

  hT T  at 0z   and cT T  at z d         (5) 

 

Thermo-Physical Properties Of Nanofluids 

The thermophysical properties of water-based nanofluid are used in the present study. The 

effective viscosity of the nanofluid, nf is computed using the base fluid viscosity bf  and a 

diluted suspension of tiny sphere-shaped nanoparticles,  

 
2.5

1

bf

nf








,                            (6) 

 

Through experimental research using oil-water nanofluids at temperatures ranging from 20 to 

50 degrees Celsius, the validation has been validated by.
[14]

 The results of the experiments 

that followed are in
[14]

 and show that it is entirely consistent. The
[15]

 model is used to 

approximate the nanofluid's thermal conductivity. The model explains how the thermal 

conductivity of nanofluid rises with the aid of suspended nanoparticles and is provided by  

   
   

2 2

2

np bf bf np

nf bf

np bf bf np

k k k k
k k

k k k k





   
 

    

                        (7) 

 

At the reference temperature, the nanofluids effective density and heat capacitance are 

computed as
[16,17]

 respectively as follows, 

 1nf bf np       and       1p p pnf bf np
C C C       ,                             (8) 

 

Following are the formulas for nanofluids volumetric expansion coefficient and thermal 

diffusivity for nanofluids respectively, 

   1 bf bf np npnf
         and 

 
nf

nf

p nf

k

C



 .                  (9) 
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The characteristics of nano-fluids are explained using a single-phase jeffrey nano-fluid 

model, which is appropriate for low-volume concentrations of nanoparticles.  

 

Table 1
[18]

 displays the thermophysical characteristics of a number of nanoparticles at room 

temperature. 

  

Non-Dimensional Governing Equations 

The physical quantities of length, velocity, time, pressure, and temperature of nanofluid in the 

governing equations (1) – (5) are made non-dimensionalized using the scales 

d ,
bf

d

 
,

2

bf

d


,

nf bf

K

 
 and T respectively and the following dimensionless governing 

equations in the cartesian coordinates are obtained by 

. 0q                        (10) 

 
1

1 ˆ
1

D

a

q q
P q R Tk

V t


   

  
                             (11) 

  2

1.
T

q T T
t




   


                    (12) 

 

Where   is the nondimensional Jeffrey parameter, 
bf bf

D

nf bf

K d g T
R

 

  


  is the Darcy-

Rayleigh number, 
1

nf nf

bf bf

q
 

 
 is the nano-particle volume fraction ratio of nanofluid to base 

fluid, 
1

nf

bf





  is the ratio of thermal diffusivity of nanofluid to base fluid, and 

2

nf

nf

d
Va

K

 


  

is the Vadasz number. 

 

The corresponding dimensionless boundary conditions are given by 

0q   at 0,1z  ,   1T   at 0z   and 0T   at 1z                  (13) 

 

Linear Stability Analysis 

The linear stability analysis of mixed convection assumes a non-quiescent basic state of fluid 

flow, influenced by a constant horizontal pressure gradient as described in the following 

form, 

   0, ,b bb wq u   , (  )bP P z and ( )bT T z .                (14) 
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The corresponding basic state solutions are given by 

bu   , 1bT z   and 
2

1P z
2

b D

z
q R

 
  
 

.                 (15) 

Further, we superimpose infinitesimally small perturbations on the basic state given in (15) in 

the form: 

q i q   , ( )bP P z P   and ( )bT T z T                   (16) 

 

The stability equations are derived by following a sequence of operations first we linearize 

equations (11) and (12) by substituting perturbed quantities given equation (16) then the 

pressure is eliminated by operating curl on the resultant equation ... and finally substituting 

stream function in the form u
z


 


 and w

x





, we get  

 

2 2

12 2

1 1

1
D

a

T
q R

V t xx z

      
     

       ,                  (17) 

2

1

T T
T

t x x




   
     

   
.                  (18) 

 

At this moment for a better understanding of the impact of all parameters on the wave 

number and frequency of perturbations, the solution of equations (17) and (18) are expressed 

in the form of normal modes given by 

   
( )

, ( ), (z)
ia x t

T z e





                      (19) 

 

where a  is the wavenumber and r ii     is the complex wave speed. The growth rate i  

marks the difference between stability ( 0)i   and instability ( 0)i  . Substituting Eq. (19) 

in Eqs. (17) and (18), we obtain the following equations 

 
 2 2

1

1
0

1
D

a

ia
D a iaq R

V




 
     

  

,                            (20) 

 2 2

1 0ia D a ia ia        
 

.                 (21) 

 

The corresponding boundary conditions are given by  

0   at 0z   and 0   at 1z  .                 (22) 
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Growth Rate Analysis 

The classical integral method, as described by Shankar and Shivakumara [19], is utilized to 

analyze the thermal instability in the limit as aV  approaches infinity. First, we operate 

 2 2D a  on Eq. (21) to eliminate   and obtain the above equation for   in the form, 

       
2

2 2 2 2 2 2 2

1 11 0Da q R D a ia D a ia D a            

 

Multiply  the complex conjugate form of   and integrate with respect to z over the limit 0 

to 1, which yields 

     

 

1 1 1
2

2 2 2 2 2

1 1

0 0 0

1

2 2

0

1

0

Da q R dz D a dz ia D a dz

ia D a dz

         

   

  



 

We apply integration by parts to the above equation, we arrive at the following equation, 

     

 

1 1 1
2 2 2 2 2 22 2 4 2

1 1

0 0 0

1
2 22

0

1 2

0

Da q R dz a a dz ia a dz

ia a dz

                

    

  



            (23) 

By evaluating the real part of Eq. (23), we obtain 

   

 

1 1
2 2 2 22 2 4

1 1

0 0

1
2 22

0

1 2D

i

a q R dz a a dz

a a dz





          



   

 



                          (24) 

 

Thus, one may conclude that  

(i) İf    
1 1

2 2 2 22 2 4

1 1

0 0

1 2Da q R dz a a dz            then 0i   indicating the 

system is stable, and  

(ii) if    
1 1

2 2 2 22 2 4

1 1

0 0

1 2Da q R dz a a dz            then 0i   the system 

becomes unstable. 

 

Method of Numerical Solutions 

Equations (20) and (21) form a complex eigenvalue problem and are solved utilizing WRGM 

(Finlayson). In this method, the test (weighted) functions are the same as the base (trail) 
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functions. Accordingly, ( )z  and ( )z  are expanded in a finite series of basis functions in 

the form, 

1

( )
N

i i

i

A z


   , and 
1

( )
N

i i

i

B z


                                (25) 

 

Where iA  and iB are constants while ( )j z and ( )j z  are the basis functions and are 

generally chosen to satisfy the respective boundary conditions, respectively N represents the 

number of terms considered in the Galerkin expansion. The basis functions are described by 

the power series that adhere to the pertinent boundary conditions 

1  i i

i iz z      ,               (26) 

 

These series are substituted back into Equations (20) and (21) and the WRGM procedure of 

demanding that the residues be normal to the basis functions is applied by multiplying the 

resulting Eq. (20) by ( )j z and Eq. (21) by ( )j z  integrating by parts with respect to z  

between 0z  and 1z  , and the boundary conditions are used to obtain the following 

system of algebraic equations: 

i ji i ji i jiA E B F AG                 (27) 

,i ji i ji i jiA H B I B J                 (28) 

 

The coefficients of jiE and jiJ involve the inner products and are given by 

 

2

1

2

2

1 1I .

1
, ,

1

G , ,

,

ji j i j i ji D j i

ji j i j i ji j i

a

ji j i j i ji j i

E D D a F iaq R

ia
D D a H ia

V

D D a ia J ia 

          
  

         
 

             
 

                                    (29) 

 

Where the inner product is defined by  
1

0
... ... dz   equations (27) and (28) can be written 

in the matrix form as 

AX BX                (30) 

 

Where 

ji ji

ji ji

E F
A

H I

 
  
 

,
0

0

ji

ji

G
B

J

 
  
 

 and 
i

i

A
X

B

 
  
 
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Equation (30) forms a generalized eigenvalue problem in which that A  and B are 2 2N N  

order complex matrices, X  is the eigenvector and r ii    is the complex eigenvalue.  

 

The integral occurring in the coefficients of jiE and jiJ  are analytically evaluated to avoid 

errors during the numerical integration. The main stages of the numerical procedure involved 

in solving Eq. (30) are as follows 

i) Among the 2N  eigenvalues, we identify the most growing or the least decaying mode 

having the largest imaginary part of the eigenvalue   and call that mode simply the most 

growing mode.  

ii) The largest value of i  is now forced to zero by varying DR  for a fixed value of wave 

number a  and other governing parameters. 

 

The computational software program MATHEMATICA 11.3 (Wolfram Research) is used to 

provide an ideal platform for the execution of both stages and the following built-in functions 

are used 

 ,    [ [ [ ]]] ( ) ,   0[ .[ DMax Im Eigenvalues A B EV say and Find Root EV R a   

 

RESULTS AND DISCUSSIONS 

This paper uses a generalized eigenvalue problem to analyse and computationally examine 

the mixed convective instability of Jeffrey nanofluid flow over a horizontal porous layer. The 

findings gained by adapting both single-term and higher-order Galerkin approaches are 

reported by evaluating the Galerkin expansion's convergence process while adding more 

words.  

 

Table (2-4) illustrates the WGRM's convergence process for a range of governing parameter 

values. It is observed that taking into account 10 terms in WGRM allows for the convergence 

of the critical Darcy-Rayleigh number, the associated critical wave number, and the critical 

frequency. We have carefully investigated and verified our numerical method's validity and 

convergence. The results are computed under the limiting situation in order to validate the 

numerical approach used, and it is shown that there is great agreement.  

 

A glance at Tables (2-4) shows that there is not much deviation in the values of critical 

stability parameters between the second ( 2N  ) and higher order ( 10N  ) (WGRM). Thus 

it is intuitive to look for the analytical solution for the eigenvalue problem with  Asin z   



Saravanakumar et al.                    World Journal of Engineering Research and Technology 

  

 

 

www.wjert.org                         ISO 9001: 2015 Certified Journal       

 

22 

and  Bsin z   as basis functions for the solutions of equations (20) and (21). By 

substituting these into Equations (20) and (21), we can express them in the matrix form as 

follows 

2

1

2

1

1
0

1
0

D

a

ia
iaq R

V

ia i a ia




  

  
      

                

              (31) 

where, 2 2 2 .a    

 

Equation (31) represents a homogeneous system and for a non-trivial solution, we should 

have 

2

1

2

1

1

01
D

a

ia
iaq R

V

ia i a ia




  

 
 

 

   
              (32) 

 

Solving this determinant for DR , we get 

   

 

2 2

1

2

1

(1 )

1

a

D

a

iV a i a
R

a qV

          


                (33) 

 

After rearranging this expression, it is represented in a complex form as follows,  

1 2  DR i                      (34) 

 

Where 

   
 

2 2

1 1

1 2

1

2 1

1

a a i i

a

V a V

a qV

           


,                (35) 

   

 

2

1

2 2

1

2 1

1

a i i

aqV

a V

a

         


.                 (36) 

 

Since DR  is a physical quantity, we take 2 0  ( 0)i   in Eq. (34) and this gives a 

dispersion relation of the form: 

1 0 0ib b   .                     (37) 

 

Where, 

2

1 aVb a   ,  
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 2

0

4

1 1ab aV       . 

 

Equation (37) reveals that for an appropriate combination of the governing parameters , 1q , 

1 ,  , and aV . The minimum value of DR  and i  over the wave number a  is numerically 

found for several values of controlling parameters. The results so obtained are also given in 

Table (2-4) in the last row and the results are in excellent agreement with those computed 

numerically from WGRM.  

 

The equation (34) suggests that the preferred mode is always oscillatory. Thus, for a 

Newtonian fluid, 1  1q   and 1  1   then equation (33) reduces to 

     
 

2 2

2

1

1

a

D

a

iV a i a
R

a V

        


 
              (38) 

 

The above expression in the equation (38), with 0  and 0  , subsequently reducing to 

 

4

2 1
DR

a




 
               (39) 

 

This expression matches with
[13]

 and represents the onset of stationary convection limiting the 

case to LTE. The above expression is in the equation (39) with   = 0 which coincides with 

Horton and Rogers, Lapwood's Problem.  

4

2

c

Dc

c

R
a


 .               (40) 

 

Analysis of the Growth Rate 

The critical wave number and growth rate i  are plotted in Figures 2-5 for various values 

of DR , ,  and different nanoparticles. The growth rate helps us comprehend the onset of 

instability in the  , ia  plane. The sign of i  determines the stability of the system: if 

0i  , the system is stable, and if 0i  , it is unstable. Figure 2 shows a plot for TiO2 

( 1 110, 0.97q   ) nanoparticles with 2, 0.3,    and 1aV   for various values of DR . 

We observe that the curve starts from a negative value and remains negative for lower values 

of DR  signifying that the base flow is always linearly stable, and for higher values of DR  the 

sign of i  changes from negative to positive indicating the possibility of the flow becoming 
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unstable. In Figure 3, for 250DR  , i  is positive for 0.9 and 0.7  , indicating the 

occurrence of transition from stability to instability for all considered values, whereas for 

0.3 and 0.5  , it is stable. In Figure 4, by varying   with 316DR  , while keeping other 

parameters fixed as mentioned above, it is observed that the fluid flow for 2,4,6   enters 

the positive regime of i  indicating the onset of instability, while for 8   the curve passes 

through the maximum in the negative region of i  ensuring the stability of the flow. A 

significant change in the curve's behavior is observed when considering different 

nanoparticles (Figure 5). Specifically, TiO2 and Al2O3 particles show instability, while CuO 

particles remain stable for the considered parametric values. 

 

Neutral Stability Curves 

The neutral stability curves presented in Figures (6-9) depict the relationship between the 

Darcy-Rayleigh number  DR  and a wave number  a  in  , Da R -plane by considering 

various physical parameters, including the Jeffrey parameter, horizontal pressure gradient, 

Vadasz number, thermal diffusivity ratio, and different nanoparticle ratios. These curves 

exhibit a uni-modal nature similar to those observed in classical Darcy–Bénard problems, 

indicating the occurrence of a single mode of convection. A deeper look at the graphs reveals 

a few crucial findings. Figure 6 illustrates how the stability zone decreases as the Jeffrey 

parameter increases. As the Vadasz number increased, similar behavior was observed (Figure 

9). This behavior can be explained by the higher fluid viscosity that results from higher 

Vadasz numbers and Jeffrey parameters, which obstruct fluid mobility and cause the system 

to become unstable. On the other hand, the stability area expands when the horizontal 

pressure gradient rises (Figure 7). This is because the fluid is subjected to a greater driving 

force, which improves fluid motion and encourages stability.  

 

Moreover, Figure 8 shows that the stability zone decreases with a drop in the Darcy-Rayleigh 

number brought on by nanoparticle ratios. This is explained by variations in convective heat 

transfer and fluid flow patterns brought about by the kind of nanoparticles altering the 

thermal conductivity and viscosity of the nanofluid. Furthermore, the decrease in the stability 

zone suggests that a rise in the Jeffrey parameter and nanoparticle ratios destabilizes the 

system. 
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Additionally, Figure 8 demonstrates the comparative stability of water-CuO, water- Al2O3 

and water TiO2 nanofluids. It suggests that CuO dispersed in water exhibits more excellent 

stability than water- Al2O3 and water TiO2 nanofluid, primarily due to the differences in 

thermal conductivity and thermal sensitivity of the nanoparticles. Specifically, CuO 

nanoparticles contribute to enhanced heat transfer and stability, whereas water TiO2 and 

Al2O3 nanofluids display instability owing to its higher thermal sensitivity, which can lead to 

thermal fluctuations and convective instability. In summary, the findings from the neutral 

stability curves provide valuable insights into the complex interplay between various 

parameters and their effects on the stability of Jeffrey nanofluid flow through porous media. 

These insights contribute to a deeper understanding of the underlying mechanisms governing 

convective behavior and have implications for designing and optimizing thermal management 

systems in various engineering applications. 

 

Critical Curves 

The behavior of DcR , ca , and ic  as functions of   is elucidated in Figures (10-12) for 

different values of the Jeffrey parameter  , specifically   = 0.3,   = 0.5, and   = 0.7. 

Figure (10) shows that the critical Darcy-Rayleigh number DcR  remains invariant for small 

values of , indicating a stable regime. However, beyond > 2,   starts to influence DcR , 

increasing its increase. Additionally, an increase in the Jeffrey parameter   is noted to 

decrease the critical Darcy-Rayleigh number DcR , thereby advancing the onset of convection. 

Figure (11) shows that the critical wave number ca  decreases with rising values of  , 

consequently diminishing the size of the convection cells. Conversely, in Figure (12), the 

necessary frequency ic decreases with increasing   values, indicating a stabilizing effect, 

while it increases with rising  , suggesting enhanced oscillatory behavior. 

 

Similarly, the behavior of DcR , ca , and ic  as functions of   are explored in Figures (13-15) 

for different values of the Vadasz number aV , specifically aV  = 1, aV = 10, and aV  = 20. In 

Figure (13), it is observed that in the critical Darcy-Rayleigh number DcR , the effect of small 

  values are negligible but start to increase beyond   = 1, signifying the influence of   on 

DcR  and subsequent destabilization. Moreover, an increase in aV  is observed to expand the 

stability region, thus delaying the onset of convection. Figure (14) shows that the critical 

wave number ca  decreases with an increase in aV  and   values, leading to a reduction in the 
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size of convection cells. Finally, in Figure (15), the critical frequency ic  is seen to increase 

with increasing   values, while it increases with increasing aV , reflecting the system's 

response to changes in flow parameters. 

 

Further, the plots of DcR , ca , and ic  as functions of   are illustrated in Figures. (16-18) for 

different values of aV  = 1, 10, and 20. Figure (16) reveals a linear decrease in the critical 

Darcy-Rayleigh number DcR  with increasing . Hence, it destabilizes the system. Also, a 

similar trend is observed with an increase in aV . In Figure (17), an increase in   and aV  is 

seen to increase and decrease ca , respectively, leading to changes in the size of convection 

cells. Finally, in Figure (18), the values of ic  are observed to increase with increasing aV  

values. In contrast, an opposite effect could be seen with an increase in  , indicating the 

system's response to variations in flow parameters. 

 

Analysis of the data presented in Table 5 reveals a consistent trend: as the Jeffrey parameter 

increases, there is a notable decrease in the critical Darcy Rayleigh number across all three 

types of nanoparticles under examination. This suggests that higher Jeffrey parameters 

enhance these nanofluids' convective stability. Specifically, when focusing on CuO 

nanoparticles, it becomes apparent that they exhibit a maximal critical Darcy Rayleigh 

number compared to the other nanoparticle types. This maximal value indicates that CuO 

nanoparticles possess superior thermal stability relative to their counterparts. On the other 

hand, the wave frequency demonstrates a contrasting behavior. Across all nanoparticle types, 

there is a discernible decrease in wave frequency. Notably, Al2O3 nanoparticles exhibit the 

highest frequency among the studied particles. Drawing insights from these observations, it 

can be inferred that the onset of convection varies across the different nanoparticles. For 

Al2O3 nanoparticles, the onset of convection appears to be at an intermediate stage. In 

contrast, for TiO2 nanoparticles, convection onset occurs more rapidly. Interestingly, for CuO 

nanoparticles, the onset of convection unfolds much more gradually compared to the other 

nanoparticle types. These nuanced distinctions in convection onset further underscore the 

complex interplay between nanoparticle characteristics and fluid dynamics. 
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Table 1: Thermo-physical properties of nanoparticles. 

Physical properties CuO Al2O3 TiO2 

Cp(J/KgK) 531.80 765.00 686.20 

ρ (Kg/m
3
) 6320.00 3970.00 4250.00 

k(W/mK) 76.50 40.00 8.95 

α × 10
7
 (m

2
/s) 227.60 131.70 307.00 

β × 10
5
 (1/K) 1.80 0.85 0.90 

 

Table 2: Convergence of the Wrgm for different values of   with 0.025  for TiO2 

nanoparticles. 

1 = 10, 1q = 0.97,   = 0.5, aV = 2 

 2   5   10         

N DcR  ca  ic  DcR  ca  ic  DcR  ca  ic  

3 293.5132 3.2659 0.0124 294.9386 3.2658 0.0310 300.0294 3.2655 0.0621 

4 270.3464 3.1342 0.0134 271.7703 3.1341 0.0337 276.8556 3.1337 0.0674 

5 271.5368 3.1412 0.0134 272.9608 3.1410 0.0335 278.0465 3.1407 0.0671 

6 271.6027 3.1415 0.0134 273.0267 3.1414 0.0335 278.1124 3.1410 0.0671 

7 271.6013 3.1415 0.0134 273.0253 3.1414 0.0335 278.1109 3.1410 0.0671 

8 271.6005 3.1415 0.0134 273.0245 3.1414 0.0335 278.1102 3.1410 0.0671 

9 271.6005 3.1415 0.0134 273.0245 3.1414 0.0335 278.1102 3.1410 0.0671 

10 271.6005 3.1415 0.0134 273.0245 3.1414 0.0335 278.1102 3.1410 0.0671 

One term 271.6005 3.1415 0.0134 273.0245 3.1414 0.0335 278.1102 3.1410 0.0671 

 

Table 3: Convergence of the Wrgm for different values Of   with 0.075  for Tio2 

nanoparticles. 

1 = 9.9075, 1q = 0.9387,   = 0.5, aV = 2 

 2   5   10   

N DcR  ca  ic  DcR  ca  ic  DcR  ca  ic  

4 276.7819 3.1342 0.0136 278.2668 3.1341 0.0340 283.5701 3.1337 0.0680 

5 278.0006 3.1412 0.0135 279.4857 3.1410 0.0338 284.7893 3.1406 0.0677 

6 278.0681 3.1415 0.0135 279.5531 3.1414 0.0338 284.8568 3.1410 0.0677 

7 278.0666 3.1415 0.0135 279.5517 3.1414 0.0338 284.8553 3.1410 0.0677 

8 278.0658 3.1415 0.0135 279.5509 3.1414 0.0338 284.8546 3.1410 0.0677 

9 278.0659 3.1415 0.0135 279.5509 3.1414 0.0338 284.8546 3.1410 0.0677 

10 278.0659 3.1415 0.0135 279.5509 3.1414 0.0338 284.8546 3.1410 0.0677 

One term 278.0659 3.1415 0.0135 279.5509 3.1414 0.0338 284.8546 3.1410 0.0677 
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Table 4: Convergence of the Wrgm for different values of   with 0.1   for Tio2 

nanoparticles. 

1 = 9.8113, 1q = 0.9182,   = 0.5, aV = 1 

 2   5   10   

N DcR  ca  ic  DcR  ca  ic  DcR  ca  ic  

5 271.0724 3.1411 0.0069 283.2749 3.1406 0.0137 288.5694 3.1390 0.0375 

6 281.2463 3.1416 0.0069 283.4489 3.1410 0.0137 288.7436 3.1394 0.0375 

7 281.2426 3.1416 0.0069 283.4451 3.1410 0.0137 288.7398 3.1394 0.0375 

8 281.4914 3.1416 0.0069 283.0340 3.1415 0.0171 288.5467 3.1413 0.0343 

9 281.4914 3.1416 0.0069 283.0340 3.1415 0.0171 288.5467 3.1413 0.0343 

10 281.4914 3.1416 0.0069 283.0340 3.1415 0.0171 288.5467 3.1413 0.0343 

One term 281.4914 3.1416 0.0069 283.0340 3.1415 0.0171 288.5467 3.1413 0.0343 

 

Table 5: Critical values of DcR , ca and ic  for different combinations of nanoparticles 

and Jeffrey parameter. 

 

CuO ( aV = 2,   = 5) 

1 173.2993, 0

)0

.965

75

7

( .0

q

 

 
 

Al2O3 ( aV = 2,   = 5) 

1 139.2427, 0

)0

.937

75

1

( .0

q

 

 
 

TiO2 ( aV = 2,   = 5) 

1 19.9075, 0.

)0

9387

0 5( . 7

q







 
 

  DcR  ca  ic  DcR  ca  ic  DcR  ca  ic  

0 2996.8773 3.14159 0.00690 1653.90400 3.14158 0.012876 419.30855 3.14139 0.050619 

0.3 2305.2904 3.14159 0.00531 1272.23450 3.14159 0.009910 322.55454 3.14143 0.039028 

0.5 1997.9184 3.14159 0.00460 1102.60350 3.14159 0.008591 279.55094 3.14145 0.033859 

0.7 1762.8692 3.14159 0.00406 972.88558 3.14159 0.007582 246.66508 3.14147 0.029899 

0.9 1577.3041 3.14159 0.00363 870.47668 3.14159 0.006785 220.70210 3.14148 0.026769 

 

 

Figure 1: Physical Configuration. 
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Figure 2: Growth rate i  versus wavenumber a  for different values of DR
. 

 

1 2 3 4
-0.2

-0.1

0.0

0.1

a

0.3

0.5

0.7

 

 

i



1= 10, Va =1, R
D
=250, q1= 0.97   

 

Figure 3: Growth rate i  versus wavenumber a  for different values of  . 
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Figure 4: Growth rate i  versus wavenumber a  for different values of  . 

 

 

Figure 5: A significant change in the curve's behavior is observed when considering 

different nanoparticles. 
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Figure 6: Neutral Stability curves for different values of   with 1 10  , 1 0.97q  , 

2  and 1aV  . 

 

 

Figure 7: Neutral Stability curves for different values of with 1 10  , 1 0.97q  , 

1aV  and 0.3  . 
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Figure 8: Neutral Stability curves for different nanoparticles with, 0.075  , 

5  , 2aV 
 
and 0.5  . 

 

 

Figure 9: Neutral Stability curves for different values of aV with 1 10  , 

1 0.97q  , 2  and 0.5  . 
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Figure 10: Critical curves of Darcy-Rayleigh number as a function of   for different 

values of   with 1 10  , 1 0.97q  , and 1aV  . 

 

 

Figure 11: Critical curves of wave number as a function of   for different values of   

with 1 10  , 1 0.97q  and 10aV  . 
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Figure 12: Critical curves of wave frequency as a function of   for different values of 

with 1 10  , 1 0.97q  and 1aV  . 

 

  

Figure 13: Critical curves of DcR  Vs   for different values of aV  with 

1 10  , 1 0.97q  and 0.3  . 
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Figure 14: Critical curves of ca  Vs   for different values of aV  with 

1 10  , 1 0.97q  and 0.3  . 

 

 

Figure 15: Critical curves of ic  Vs   for different values of aV  with 

1 10  , 1 0.97q  and 0.3  . 

 



Saravanakumar et al.                    World Journal of Engineering Research and Technology 

  

 

 

www.wjert.org                         ISO 9001: 2015 Certified Journal       

 

36 

 

Figure 16: Critical curves of DcR  Vs   for different values of aV  with 

1 10  , 1 0.97q  and 50  . 

 

 

Figure 17: Critical curves of ca  Vs   for different values of aV  with 5  , 2aV   and 

50  .
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Figure 18: Critical curves of ic  Vs.   for different values of aV  with 5  , 2aV   and 

50  . 

 

CONCLUSIONS 

In this study, we performed a thorough stability analysis of mixed convective flow with a 

volume fraction of Jeffrey nanofluid in a porous layer, using both numerical and analytical 

methods. The study utilized the unsteady Jeffrey-Darcy model, which includes the Jeffrey 

parameter to address retardation or relaxation effects. This model is particularly well-suited 

for situations involving low-volume fraction Jeffrey nanoparticles and porous layers with low 

permeability. Specifically, we utilized the Weighted Residual Galerkin Method (WRGM) for 

numerical analysis and the single-term Galerkin method for analytical investigation. It is 

shown that the results are in good agreement with N=8. Also, the growth rate of perturbations 

is numerically computed over a broad spectrum of governing parameters, revealing a notable 

change in the growth rate behavior for TiO2 and Al2O3 particles, exhibiting instability, while 

CuO particles remain stable within the considered parametric range. Some of the important 

results of this analysis can be outlined as follows 

 The neutral stability curves exhibit a single minimum, and we observe that the instability 

region diminishes with increasing nanoparticle volume fraction in the base fluid. This 

phenomenon suggests that higher volume fractions result in amplified resistance to flow. 

 Increasing   leads to an expansion of the stability region, indicating a stabilizing effect. 

Conversely, an increasing value of the Jeffrey parameter   results in a contraction of the 

stability region for all nanoparticles, implying a destabilizing influence.  
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 Increasing the Vadasz number is to decrease the Darcy-Rayleigh number hence advances 

the onset of convection.  

 An increase in the Jeffrey parameter   tends to decrease the critical values of DcR  and 

ic , accelerating the initiation of convective activity. However, ca  exhibits a reverse 

trend, decreasing ca  value with an increase of   for all nanofluids, indicating a 

stabilizing effect on convective cell size. 

 We observe that the Jeffrey parameter   can act as both a stabilizer and a destabilizer, 

depending on its combination with other parameters, highlighting its versatile role in 

influencing convective stability. These conclusions provide valuable insights into the 

complex interplay of parameters affecting the stability of mixed convective flow in 

Jeffrey nanofluids through porous media, contributing to a deeper understanding of 

thermal transport phenomena in such systems. 

 The critical Darcy-Rayleigh number for various nanoparticles exhibits an inequality of 

the form      
2 3 2

Dc Dc DcCuO Al O TiO
R R R  . 
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