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ABSTRACT

This article aims to introduce linear canonical-Mellin transform by

defining proper testing function space. Then, we prove some of its

differential properties which are very useful in solving differential
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function space, Mexican hat wavelet.

1. INTRODUCTION

Linear canonical transform (LCT) has been proven to be a very powerful tool in signal
processing. Several properties, including differentiation properties, of LCT have been studied
extensively in theory and applications both.™ With the help of differentiation properties of

LCT, one dimensional Mexican hat wavelet has been studied.!
The LCT is defined as.
flt) Ky(u, t)dt, b+0
L [fl(u) =@(u) = _l

— cd
Vdel 2% f(duw), b=0
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— e %[%r: - f%‘}m +§u 1]
& J2m

where the LCT kernel K,(u,t) is given by the operator K,(u,t) =

and parameters a, b, c,d are real numbers satisfying ad — be = 1. On condition that the
parameters satisfy b = 0, the LCT is essentially a scaling and chirp multiplication operations.
Without loss of generality, we therefore focus mainly on the LCT in the case of & = 0. In that
case, the inverse LCT is

F(8) = l; J o (u) e 25 5745

— oo

The Mellin transform is developed by Mellin (1854-1933) for the study of the gamma
function, hypergeometric function, Dirichlet series, the Riemann zeta function and for the

solution of partial differential equation.'® It is defined as.
M[f;s] = F(s) = J;7 f(x)x" tdx
The aim of this paper is to study the differentiation properties of LCMT and their application.

1. Linear Canonical-Mellin Transform (LCMT)
2.1 Definition: The conventional Linear Canonical-Mellin transform is defined as follows:

L M{f(t,x)}=F*M(us) = _Ir_i _I": f(t,x) K(t, x,u,s)dtdx
:[Er:—[g}ru+§u=]

2z

where K(t,x,u,5) = 1 b+0,5>0.

‘\Il 2jmhb

Inverse of LCMT is given by

1 '_ A "{a r.4+ —u } —z
(t,x) = _vﬁql"wb o T FAM(u,s)e =% 7B duds
2.2 The Testing Function Space E(R™)
An infinitely differentiable complex valued smooth function ¢ on R™ belongs to E(R™), if
for each compactset K c 5, I — §,,
where S, = {t:t ER",|t| < a,a = 0}and S, = {x:x ER",|x| < b,b = 0}, K,I ER",
Veiq = Supeex|DIDIo(t, x)| < o0, l,g=012———

xEl

Thus E(R™) will denote the space of all ¢ € E(R™) with support contained in 5_ and 5,.

Moreover, we say that f is a linear canonical-Mellin transformable if it is a member of E*,

the dual space of E.
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2.3 Distributional Generalized Linear Canonical-Mellin Transform
The distributional Linear Canonical-Mellin transform of f(t,x) € E*(R™) is defined by
LM{f(t,x)}=FiM(us) = (f(t.x), K(t,x,us))

(2.1.1)
_fa by . _
where 4 = (C d) with ad — bc = 1 and
—
K(t,x,us)= || 1 ez[r _{ }m+ "l] 1 b=0,5>0.

Y 2jmh

The right-hand side of (2.1.1) is meaningful because K (t,x,u,s) € E and f(t,x) € E*.

2. Differentiation Properties of LCMT
Property 1: L, M {%f[t,x]} =L M{f,(t,x)}=—j (c;‘u —|—ja£) FAM(u,s)

Proof: We have, by definition
LM Eﬁ(t, x)}

_r_ _r f(t, x]ezlr %rﬁ%un-}xs_ldtdx

‘l,ql 2jmh

N ifa=_ 2, 48,2
= | 1 IDW xﬂ'_l [_r::ﬁ-[f,xje;[ﬁ —Et..a-l-h._; } dti| dx

‘bql 2jmh

= ll.T _r:x {[ (t, x]ez{ e r"” “ }]:C

‘l,ql 2jmh

— _mﬂ{z t— E}f(t,x]eﬂirz_?”i“z}dr}.:ix

=—j- | . It (%) eﬂirz_stﬁiuz}xf"ldtdx-l-

l“_;urb

Py =, x]ez{ R NEL YN

l"_;l'rb

Provided f(t, xjeJE[ifLimJ’F“z} vanishes as t — —co and t — oo
= —j  LyM{ef (£, 2)} +j - LaM{f (£, x)}

=—j= (du +jbi,) FAM(w,s) +j - F4M(u,s)

=—j (Ed"l-k_ja,———)FAM(u 5)

=—j [(Ed_ij u+ja ]FAM[u,s]

b

=—j (r:‘u + jer) FAM(u,s).
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Property 2: L,M {%f[t, x]} =(—1)" (cu + ja%)n FAM(u,s)

Proof: By Mathematical Induction, the proof is obvious and hence omitted.
Property 3: LM {j—x f(t,x]} = L, MI{f.(tx)} = —(s — 1)F4M(u, s — 1)
Proof: By definition,

L M{f (t,x)}

L= [ (x) o365 ) o drd

‘iqlﬂ_:l‘?b
= 5 = e ) (et e )7 — [T — Dxe (e )t
=—(s— ]|ﬂ [= I F(t0) €267 559 1 601 4edy

2jmh v —
Provided [x*71f(t,x)] vanishes as x — 0 and x — co

=—(s— 1)F*M(u,s—1).

Property 4: L M {;;nf[t,xj} = (—1)"(s = 1)(s — 2) .. (s — ) FAM (w5 — 7).
_ (_ :]n

Proof: By Mathematical Induction, the proof is obvious and hence omitted.

F’AM[u s —n).

ri{=—mn)

Property 5: LM (- f(t,2)} = LuM{f,. (20}
=j(-1)*(s—1) {cu +j'r1£) FAM(u,s —1)

Proof: By definition
L Miﬂx(r,xj}

_Jr_ _Jr ftx[t x]ez{ Eru+suz}x3_1dtdx

‘bqlﬂ_;l"fb
*qlﬂ”b f_ J{_f ——m+ u }{ s— 1fr(t x:]]l} Jf (5 1:])‘;& x:]xs_‘dx}fit
=—(s— J| — = IR %) 3G 5 45) p o2

2jmh

Provided [x*"1f£(t, x)] vanishesas x — 0 and x — co

=~ -0 [ e {6 ““}f(rxj] -

2jmh

—e 2 b
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|"_;|ffb

= (-1)? (5—13{ @ [ [= (= ir(e ) 3655 ) D 1 gegy

“" | EN ..r_c,.:..r f(t x:]ezl'r f-—*"'hi } ':s—l}—ldtdx}

|"_;l1rb

= (—1)%(s — 1) {jg(du +jb ) FAM(u,s — 1) — j2 FAM(u, s — 1]}

=j(-1)3*(s — 1) {':‘“’b'ﬂu +ja:£} FAM(u,s — 1)

=j(-1)*(s—1) {cu +j'a£)FAM[u,s —-1)

Property 6

L M{—amm fe ]}"”(—ﬂ”*m = (cu+j i]an‘M( —m)
4 AtMa ™M Xy =1 Tiz—rm) cu ‘jaﬂu s —m

Proof: The proof is obvious and hence omitted.

3. Application
In this section, we define 2D-Mexican hat wavelet and we find its LCMT as an immediate

application of differentiation properties.

4.1 2D- Mexican Hat Wavelet

2D-Mexican hat wavelet is defined by
. ,, -(t2+x2]

e(t,x) =[1—-(t"+x)]e =

—[t2+x7) —(r2+x2}

i s —tix%e = (4.1.1)

=——e
aridx?

We have expressed 2D-Mexican hat wavelet in derivative form in order to find its LCMT.

I g BT r(2) @12

Result 1: L M{ —(ac® 4527 ]-(u s) —%

ol . 3 \"
Result 2: L M{t"x"f(t,x)}(w,5) = j (—jdu + bﬁ) FAM(u,s + n). (4.1.3)

4.2 Application
Example: (LCMT of 2D-Mexican hat wavelet)

LAM{QJ(f,_‘Ij}(H, Sj
_ }%—1" r (_ B 1) { )__S(E) {[—ahb“ﬂ:aa- v+ E""—_J'ﬂb] _ s}
,,rz+;b 4 (a+B2)2 (a®+B)

Proof. Using Eqg. (4.1.1), we obtain
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a4 —[e2+x7) —(t2+x7T)

L,M{p(tx)Hus) = LAM{WE z }{u,s] — LM {tzxze z }{u,s]

—[tZ+2x2]

_ r_s (—jcu-l—a,%)zLAM{ET}{u’S_z)

—(t2+x2]

a2 e
+(—jdu+bZ) LM{e” = ((ws+2)

Putting4 =B =§ in (4.1.2), we get

LAM {‘P{tr x:} }{u‘r 5"]
T —(5—2)
2 4 g ¥ — -
= = (__jﬁ'u + ﬂi] 1 1 Ejzhu g jzab—zhb? (i) 2 F(u)
ri=—2) dul Z4jatjb 2 p
z —(s+2]
2 .d u —_
. a 1 1 ji=—u® = (1 z 2+32
+(— du+b—) = glzb glab-zb® |~ r(—
] ful 24 e+jb 2 2
4= Lloeabdl-1 5 o o . .
__TIs 1_,(3—2) (l) z 1 EJW [ﬂ —b*—jlab ut — a —_;r.zb:|
E— la+j a o
Tie—2) . e Jatjb (2 +p2)2 (eZ4+B)
-= Nac+bdl-2 o _—— 2
2+2 1% 2 1 1 T2 —a“+b"+ jZab b*+jab
4T = g zla®+d uz _
latj a a
2 2/ Je+js (a®+p%)® la?+p2)
Mac+bdl-1 o —=

== (i) ()7 ()%

T _,2_ - T _ . 2,52, - z, -
a"—b"—jlab a” —jab —a” +b " +j2ab b +jab
(R e S 2

(a?+p%)2 (a®+n2) (a2+n2)2 (a®+n2)
1 f—['—]-ur'ﬂﬂm_l : 1\3 (s-2 P_p®—j2ab ®—jab
T nT K z f3— e " —b"—jila a2 —ja
= ——=¢ "+t 1"(——1) (—) (—){—s—[ ——u® —— z]}
Jatib 2 2 4 (a®+n%) (a*+p2)

lac+bdl-1 o =

__ 1 i s R 1Yz fs-2 {[—ﬂz+bz+}'2ﬁb 2 rz“—jrzb]_ }
_v.'rz-l-_;'be 1"(2 1) (2) (4) (a2+n2)2 u +(r1"‘-l-b""} s

2D Mexican Hat Wavelet Real part of LCMT of 2D Mexican Hat Wavelet for
(a,b,c,d)=(-1/2,-1/2, 1,-1)
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Imaginary part of LCMT of 2D Mexican Hat Wavelet (a,b,c,d)= (-1/2, -1/2, 1,-1)

4. CONCLUSION
We have proved various differentiation properties of LCMT and found LCMT of 2D-
Mexican hat wavelet. These differentiation properties can further be used to solve generalized

linear and non-linear differential equations.

REFERENCES

1. Wei, D., Ran, Q., Li, Y., Ma, J., & Tan, L. (2009). A convolution and product theorem for
the linear canonical transform. IEEE Signal Processing Letters, 16(10): 853-856.

2. Wei, D, Ran, Q., & Li, Y. (2012). A convolution and correlation theorem for the linear
canonical transform and its application. Circuits, Systems, and Signal Processing, 31:
301-312.

3. Goel, N., & Singh, K. (2013). A modified convolution and product theorem for the linear
canonical transform derived by representation transformation in  quantum
mechanics. International Journal of Applied Mathematics and Computer Science, 23(3):
685-695.

4. Zhang, Z. C. (2019). Linear canonical transform's differentiation properties and their
application in solving generalized differential equations. Optik, 188: 287-293.

5. Bahri, M., & Ashino, R. (2020). Solving generalized wave and heat equations using linear
canonical transform and sampling formulae. In Abstract and Applied Analysis (Vol. 2020;
1: 1273194). Hindawi.

6. Eltayeb, H., & Kilicman, A. (2007). A note on Mellin transform and partial differential
equations. International Journal of Pure and Applied Mathematics, 34(4): 457.

WWW.Wjert.org 1SO 9001: 2015 Certified Journal 712




