Oríginal Article

World Journal of Engineering Research and Technology

WJERT

www.wjert.org

SJIF Impact Factor: 7.029

OPTICAL COEFFICIENTS IN THE N(P)-TYPE DEGENERATE GaP(1x) Sb(x)-CRYSTALLINE ALLOY, DUE TO THE NEW STATIC DIELECTRIC CONSTANT-LAW AND THE GENERALIZED MOTT CRITERIUM IN THE METAL-INSULATOR TRANSITION (18)

Prof. Dr. Huynh Van Cong*

Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (LAMPS), EA 4217, Département de Physique, 52, Avenue Paul Alduy, F-66 860 Perpignan, France.

Article Received on 16/10/2024

Article Revised on 05/11/2024

Article Accepted on 25/11/2024

*Corresponding Author Prof. Dr. Huynh Van Cong Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (LAMPS), EA 4217, Département de Physique, 52, Avenue Paul Alduy, F-66 860 Perpignan, France.

ABTRACT

In the n(p)-type $\mathbf{GaP_{1-x}Sb_x}$ - crystalline alloy, with $0 \le x \le 1$, basing on our two recent works^[1,2], for a given x, and with an increasing $\mathbf{r}_{d(a)}$, the optical coefficients have been determined, as functions of the photon energy E, total impurity density N, the donor (acceptor) radius $\mathbf{r}_{d(a)}$, concentration x, and temperature T. Those results have been affected by (i) the important new $\varepsilon(\mathbf{r}_{d(a)}, \mathbf{x})$ -law, developed in Equations (8a, 8b), stating that, for a given x, due to the impurity-size effect, ε decreases (\searrow) with an increasing (\nearrow) $\mathbf{r}_{d(a)}$, and then by (ii) the generalized Mott critical d(a)-density defined in the metal-insulator transition (MIT), N_{CDn(NDp)}($\mathbf{r}_{d(a)}, \mathbf{x}$), as observed in Equations (8c, 9a). Furthermore, we also showed that N_{CDn(NDp}) is just the density of

carriers localized in exponential band tails, with a precision of the order of 2.92×10^{-7} , as that given in Table 4 of Ref.^[1], according to a definition of the effective density of electrons (holes) given in parabolic conduction (valence) bands by: $N^*(N, r_{d(a)}, x) \equiv N - N_{CDn(NDp)}(r_{d(a)}, x)$, as defined in Eq. (9d). In summary, due to the new $\epsilon(r_{d(a)}, x)$ -law and to the effective density of electrons (holes) given in parabolic conduction (valence) bands N*(N, $r_{d(a)}, x$), for a given x, and with an increasing $r_{d(a)}$, the numerical results of all the optical coefficients, obtained in appropriated physical conditions (E, N, T),

and calculated by using Equations (15, 16, 20, 21), are reported in Tables 1, 2, 3n, 3p, 4n, 4p, 5n, and 5p in Appendix 1.

KEYWORS: $GaP_{1-x}Sb_x$ - crystalline alloy; impurity-size effect; Mott critical impurity density in the MIT, optical coefficients.

INTRODUCTION

Here, basing on our two recent works^[1,2] and also other ones^[3-8], all the optical coefficients given in the n(p)-type $\mathbf{X}(\mathbf{x}) \equiv \mathbf{GaP_{1-x}Sb_x}$ - crystalline alloy, with $0 \le x \le 1$, are investigated, as functions of the photon energy E, total impurity density N, the donor (acceptor) radius $\mathbf{r}_{d(\mathbf{a})}$, concentration x, and temperature T.

Then, for a given x, and with an increasing $r_{d(a)}$, the numerical results of all the optical coefficients, obtained in appropriated physical conditions (E, N, T), and calculated by using Equations (15, 16, 20, 21), are reported in Tables 1, 2, 3n, 3p, 4n, 4p, 5n, and 5p in Appendix 1.

ENERGY BAND STUCTURE PARAMETERS

First of all, in the $n^+(p^+) - p(n) X(x)$ - crystalline alloy at T=0 K, we denote the donor (acceptor) d(a)-radius by $r_{d(a)}$, and also the intrinsic one by: $r_{do(ao)} = r_{P(Ga)} = 0.110$ nm (0.126 nm).

A. Effect of x- concentration

Here, the intrinsic energy-band-structure parameters^[1], are expressed as functions of x, are given in the following.

(i)-The unperturbed relative effective electron (hole) mass in conduction (valence) bands are given by:

$$m_{c(v)}(x)/m_{o} = 0.047 (0.3) \times x + 0.13(0.5) \times (1 - x)$$
 (1)

(ii)-The unperturbed relative static dielectric constant of the intrinsic of the single crystalline X- alloy is found to be defined by:

$$\varepsilon_{0}(x) = 15.69 \times x + 11.1 \times (1 - x).$$
⁽²⁾

(iii)-Finally, the unperturbed band gap at 0 K is found to be given by:

$$E_{ao}(x) = 0.81 \times x + 1.796 \times (1 - x). \tag{3}$$

Therefore, we can define the effective donor (acceptor)-ionization energy in absolute values as:

$$E_{do(ao)}(x) = \frac{13600 \times [m_{C(v)}(x)/m_0]}{[\epsilon_0(x)]^2} \text{ meV},$$
(4)

and then, the isothermal bulk modulus, by:

$$B_{do(ao)}(x) \equiv \frac{E_{do(ao)}(x)}{\left(\frac{4\pi}{3}\right) \times \left(r_{do(ao)}\right)^3}.$$
(5)

B. Effect of Impurity $r_{d(a)}$ -size, with a given x

Here, the changes in all the energy-band-structure parameters, expressed in terms of the effective relative dielectric constant $\epsilon(r_{d(a)}, x)$, developed as follows.

At $r_{d(a)} = r_{do(ao)}$, the needed boundary conditions are found to be, for the impurity-atom volume $V = (4\pi/3) \times (r_{d(a)})^3$, $V_{do(ao)} = (4\pi/3) \times (r_{do(ao)})^3$, for the pressure p, $p_o = 0$, and for the deformation potential energy (or the strain energy) σ , $\sigma_o = 0$. Further, the two important equations^[1,7], used to determine the σ -variation, $\Delta\sigma \equiv \sigma - \sigma_o = \sigma$, are defined by: $\frac{dp}{dv} = \frac{B}{v}$ and $p = \frac{d\sigma}{dv}$. giving: $\frac{d}{dv}(\frac{d\sigma}{dv}) = \frac{B}{v}$. Then, by an integration, one gets:

$$\left[\Delta \sigma(r_{d(a)}, x) \right]_{n(p)} = B_{do(ao)}(x) \qquad \times (V - V_{do(ao)}) \times \qquad \ln r_{do(ao)}(x) = 0$$

$$\left(\frac{v}{v_{do(ao)}}\right) = E_{do(ao)}(x) \times \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 \ge 0.$$
(6)

Furthermore, we also shown that, as $r_{d(a)} > r_{do(ao)} (r_{d(a)} < r_{do(ao)})$, the compression (dilatation) gives rise to the increase (the decrease) in the energy gap $E_{gn(gp)}(r_{d(a)}, x)$, and the effective donor (acceptor)-ionization energy $E_{d(a)}(r_{d(a)}, x)$ in absolute values, obtained in the effective Bohr model, which is represented respectively by: $\pm [\Delta\sigma(r_{d(a)}, x)]_{n(p)}$,

$$\begin{split} E_{gno(gpo)}(\mathbf{r}_{d(a)}, \mathbf{x}) - E_{go}(\mathbf{x}) &= E_{d(a)}(\mathbf{r}_{d(a)}, \mathbf{x}) - E_{do(ao)}(\mathbf{x}) = E_{do(ao)}(\mathbf{x}) \times \left[\left(\frac{\varepsilon_0(\mathbf{x})}{\varepsilon(\mathbf{r}_{d(a)})} \right)^2 - 1 \right] \\ &= + \left[\Delta \sigma(\mathbf{r}_{d(a)}, \mathbf{x}) \right]_{n(p)} \end{split}$$

 $\text{for } r_{d(a)} \geq r_{do(ao)} \text{, and for } r_{d(a)} \leq r_{do(ao)} \text{,}$

$$E_{gno(gpo)}(r_{d(a)}, x) - E_{go}(x) = E_{d(a)}(r_{d(a)}, x) - E_{do(ao)}(x) = E_{do(ao)}(x) \times \left[\left(\frac{\varepsilon_0(x)}{\varepsilon(r_{d(a)})} \right)^2 - 1 \right] = - \left[\Delta \sigma(r_{d(a)}, x) \right]_{n(p)}$$
(7)

<u>www.wjert.org</u>

ISO 9001: 2015 Certified Journal

328

Therefore, from Equations (6) and (7), one obtains the expressions for relative dielectric constant $\epsilon(r_{d(a)}, x)$ and energy band gap $E_{gn(gp)}(r_{d(a)}, x)$, as:

(i)-for
$$r_{d(a)} \ge r_{do(ao)}$$
, since $\epsilon(r_{d(a)}, x) = \frac{\epsilon_0(x)}{\sqrt{1 + \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \le \epsilon_0(x)$, being a new

 $\varepsilon(\mathbf{r}_{\mathbf{d}(\mathbf{a})}, \mathbf{x})$ -law,

$$\begin{split} E_{gno(gpo)}\big(r_{d(a)}, x\big) - E_{go}(x) &= E_{d(a)}\big(r_{d(a)}, x\big) - E_{do(ao)}(x) = E_{do(ao)}(x) \times \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \\ &\ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 \ge 0, \end{split}$$

$$(8a)$$

according to the increase in both $E_{gn(gp)}(r_{d(a)}, x)$ and $E_{d(a)}(r_{d(a)}, x)$, with increasing $r_{d(a)}$ and for a given x, and

(ii)-for
$$r_{d(a)} \leq r_{do(ao)}$$
, since $\epsilon(r_{d(a)}, x) = \frac{\epsilon_0(x)}{\sqrt{1 - \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \geq \epsilon_o(x)$, with a condition, given by: $\left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 < 1$, being a **new** $\epsilon(\mathbf{r}_{d(a)}, x)$ -law,
 $E_{gno(gpo)}(r_{d(a)}, x) - E_{go}(x) = E_{d(a)}(r_{d(a)}, x) - E_{do(ao)}(x) = -E_{do(ao)}(x) \times \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3$

$$\leq 0,$$
(8b)

corresponding to the decrease in both $E_{gn(gp)}(r_{d(a)}, x)$ and $E_{d(a)}(r_{d(a)}, x)$, with decreasing $r_{d(a)}$ and for a given x; therefore, the effective Bohr radius $a_{Bn(Bp)}(r_{d(a)}, x)$ is defined by:

$$a_{Bn(Bp)}(r_{d(a)},x) \equiv \frac{\epsilon(r_{d(a)},x) \times \hbar^2}{m_{c(v)}(x) \times q^2} = 0.53 \times 10^{-8} \text{ cm} \times \frac{\epsilon(r_{d(a)},x)}{m_{c(v)}(x)/m_0}.$$
(8c)

Furthermore, it is interesting to remark that the critical total donor (acceptor)-density in the metal-insulator transition (**MIT**) at T=0 K, $N_{CDn(NDp)}(r_{d(a)}, x)$, was given by the Mott's criterium, with an empirical parameter, $M_{n(p)}$, as:

$$N_{CDn(CDp)}(r_{d(a)}, x)^{1/3} \times a_{Bn(Bp)}(r_{d(a)}, x) = M_{n(p)}, M_{n(p)} = 0.25,$$
(9a)

depending thus on our new $\varepsilon(\mathbf{r}_{d(a)}, \mathbf{x})$ -law.

This excellent one can be explained from the definition of the reduced effective Wigner-Seitz (**WS**) radius $r_{sn(sp)}$, characteristic of interactions, by:

$$r_{sn(sp)}(N, r_{d(a)}, x) \equiv \left(\frac{3}{4\pi N}\right)^{1/3} \times \frac{1}{a_{Bn(Bp)}(r_{d(a)}, x)} = 1.1723 \times 10^8 \times \left(\frac{1}{N}\right)^{1/3} \times \frac{m_{C(V)}(x)/m_0}{\epsilon(r_{d(a)}, x)},$$
(9b)

being equal to, in particular, at $N=N_{CDn(CDp)}(r_{d(a)}, x)$: $r_{sn(sp)}(N_{CDn(CDp)}(r_{d(a)}, x), r_{d(a)}, x)=$ 2.4814, for any $(r_{d(a)}, x)$ -values. So, from Eq. (9b), one also has:

$$N_{CDn(CDp)}(r_{d(a)}, x)^{1/3} \times a_{Bn(Bp)}(r_{d(a)}, x) = \left(\frac{3}{4\pi}\right)^{\frac{1}{3}} \times \frac{1}{2.4814} = 0.25 = (WS)_{n(p)} = M_{n(p)}.$$
 (9c)

Thus, the above Equations (9a, 9b, 9c) confirm our new $\epsilon(r_{d(a)}, x)$ -law, given in Equations (8a, 8b).

Furthermore, by using $M_{n(p)} = 0.25$, according to the empirical Heisenberg parameter $\mathcal{H}_{n(p)} = 0.47137$, as those given in Equations (8, 15) of the Ref.^[1], we have also showed that $N_{CDn(CDp)}$ is just the density of electrons (holes) localized in the exponential conduction (valence)-band tail, with a precision of the order of 2.92×10^{-7} . Therefore, the density of electrons (holes) given in parabolic conduction (valence) bands can be defined, as that given in compensated materials, by:

$$N^*(N, r_{d(a)}, x) \equiv N - N_{CDn(NDp)}(r_{d(a)}, x).$$
(9d)

C. Effect of temperature T, with given x and $r_{d(a)}$

Here, the intrinsic band gap $E_{gni(gpi)}(r_{d(a)}, x, T)$ at any T is given by:

$$E_{gni(gpi)}(r_{d(a)}, x, T) \text{ in } eV = E_{gno(gpo)}(r_{d(a)}, x) - 10^{-4} \times T^{2} \times \left\{ \frac{5.405 \times x}{T + 204 \text{ K}} + \frac{7.205 \times (1-x)}{T + 94 \text{ K}} \right\},$$
(10)

suggesting that, for given x and $r_{d(a)}$, $E_{gni(gpi)}$ decreases with an increasing T.

Then, in the following, for the study of optical phenomena, one denote the conduction (valence)-band density of states by $N_{c(v)}(T, x)$ as:

$$N_{c(v)}(T,x) = 2 \times g_{c(v)}(x) \times \left(\frac{m_{r(x) \times k_{B}T}}{2\pi\hbar^{2}}\right)^{\frac{3}{2}} (cm^{-3}), \ g_{v}(x) \equiv 1 \times x + 1 \times (1-x) = 1,$$
(11)

where $m_r(x)/m_o$ is the reduced effective mass $m_r(x)/m_o$, defined by : $m_r(x) \equiv [m_c(x) \times m_v(x)]/[m_c(x) + m_v(x)].$

D. Heavy Doping Effect, with given T, x and $r_{d(a)}$

Here, as given in our previous works^[1,2], the Fermi energy $E_{Fn}(-E_{Fp})$, and the band gap narrowing are reported in the following.

First, the reduced Fermi energy $\eta_{n(p)}$ or the Fermi energy $E_{Fn}(-E_{Fp})$, obtained for any T and any effective d(a)-density, $N^*(N, r_{d(a)}, x) = N^*$, defined in Eq. (9d), for a simplicity of presentation, being investigated in our previous paper^[8], with a precision of the order of 2.11×10^{-4} , is found to be given by:

$$\eta_{n(p)}(u) \equiv \frac{E_{Fn}(u)}{k_B T} \left(\frac{-E_{Fp}(u)}{k_B T} \right) = \frac{G(u) + A u^B F(u)}{1 + A u^B}, A = 0.0005372 \text{ and } B = 4.82842262,$$
(12)

where u is the reduced electron density, $u(N, r_{d(a)}, x, T) \equiv \frac{N^*}{N_{C(v)}(T,x)}$, $F(u) = au^{\frac{2}{3}} \left(1 + bu^{-\frac{4}{3}} + cu^{-\frac{8}{3}}\right)^{-\frac{2}{3}}$, $a = \left[(3\sqrt{\pi}/4) \times u\right]^{2/3}$, $b = \frac{1}{8} \left(\frac{\pi}{a}\right)^2$, $c = \frac{62.3739855}{1920} \left(\frac{\pi}{a}\right)^4$, and $G(u) \simeq Ln(u) + 2^{-\frac{3}{2}} \times u \times e^{-du}$; $d = 2^{3/2} \left[\frac{1}{\sqrt{27}} - \frac{3}{16}\right] > 0$. Therefore, from Eq. (12), the Fermi energies are expressed as functions of variables : N, $r_{d(a)}$, x, and T.

Here, one notes that: (i) as $u \gg 1$, according to the HD [d(a)-X(x)- alloy] ER-case, or to the degenerate case, Eq. (12) is reduced to the function F(u), and in particular at T=0 and as $N^* = 0$, according to the metal-insulator transition (**MIT**), one has: + $E_{Fn}(-E_{Fp}) = \frac{\hbar^2}{2 \times m_r(x)} \times (3\pi^2 N^*)^{2/3} = 0$, and (ii) $\frac{E_{Fn}(u\ll 1)}{k_BT} (\frac{-E_{Fp}(u\ll 1)}{k_BT}) \ll -1$, to the LD [a(d)-X(x)- alloy] BR-case, or to the non-degenerate case, Eq. (12) is reduced to the function G(u), noting that the notations: **HD**(**LD**) and **ER**(**BR**) denote the heavily doped (lightly doped)-cases and emitter (base)-regions, respectively.

Now, in Eq. (9b), in which one replaces $m_{c(v)}(x)$ by $m_r(x)$, the effective Wigner-Seitz radius becomes as:

$$r_{sn(sp)}(N, r_{d(a)}, x) = 1.1723 \times 10^8 \times \left(\frac{g_{c(v)}(x)}{N^*}\right)^{1/3} \times \frac{m_r(x)}{\varepsilon(r_{d(a)}, x)},$$
(13a)

the correlation energy of an effective electron gas, $E_{cn(cp)}(N, r_{d(a)}, x)$, is given as:

$$E_{cn(cp)}(N, r_{d(a)}, x) = \frac{-0.87553}{0.0908 + r_{sn(sp)}} + \frac{\frac{0.87553}{0.0908 + r_{sn(sp)}} + \left(\frac{2[1 - \ln(2)]}{\pi^2}\right) \times \ln(r_{sn(sp)}) - 0.093288}{1 + 0.03847728 \times r_{sn(sp)}^{1.67378876}}.$$
 (13b)

Then, taking into account various spin-polarized chemical potential-energy contributions such as: exchange energy of an effective electron (hole) gas, majority-carrier correlation energy of an effective electron (hole) gas, minority hole (electron) correlation energy, majority electron (hole)-ionized d(a) interaction screened Coulomb potential energy, and finally minority hole (electron)-ionized d(a) interaction screened Coulomb potential energy, the band gap narrowings are given in the following.

In the n-type HD X(x)- alloy, the BGN is found to be given by:

$$\begin{split} \Delta E_{gno}(N, r_d, x) &\simeq a_1 \times \frac{\varepsilon_0(x)}{\varepsilon(r_d, x)} \times N_r^{1/3} + a_2 \times \frac{\varepsilon_0(x)}{\varepsilon(r_d, x)} \times N_r^{\frac{2}{3}} \times (2.503 \times [-E_{cn}(r_{sn}) \times r_{sn}]) + \\ a_3 \times \left[\frac{\varepsilon_0(x)}{\varepsilon(r_d, x)}\right]^{5/4} \times \sqrt{\frac{m_v}{m_r}} \times N_r^{1/4} + a_4 \times \sqrt{\frac{\varepsilon_0(x)}{\varepsilon(r_d, x)}} \times N_r^{1/2} \times 2 + a_5 \times \left[\frac{\varepsilon_0(x)}{\varepsilon(r_d, x)}\right]^{\frac{2}{3}} \times N_r^{\frac{1}{6}} \\ N_r \equiv \left(\frac{N^*}{N_{CDn}(r_d, x)}\right), \\ \Delta E_{gn}(N, r_d, x) = \Delta E_{gno}(N, r_d, x) \times \{0.75 \times x + 2.2 \times (1 - x)\}, \end{split}$$
(14n)

 $\begin{array}{ll} \mbox{where} & a_1 = 3.8 \times 10^{-3} (eV) \ , & a_2 = 6.5 \times 10^{-4} (eV) \ , & a_3 = 2.8 \times 10^{-3} (eV) \\ a_4 = 5.597 \times 10^{-3} (eV) \mbox{ and } a_5 = 8.1 \times 10^{-4} (eV), \mbox{ and in the p-type HD X(x)- alloy, as:} \\ \Delta E_{gpo}(N,r_a,x) \simeq a_1 \times \frac{\epsilon_0(x)}{\epsilon(r_a,x)} \times N_r^{1/3} + a_2 \times \frac{\epsilon_0(x)}{\epsilon(r_a,x)} \times N_r^{\frac{1}{3}} \times \left(2.503 \times [-E_{cp}(r_{sp}) \times r_{sp}]\right) + \\ a_3 \times \left[\frac{\epsilon_0(x)}{\epsilon(r_a,x)}\right]^{5/4} \times \sqrt{\frac{m_c}{m_r}} \times N_r^{1/4} + 2a_4 \times \sqrt{\frac{\epsilon_0(x)}{\epsilon(r_a,x)}} \times N_r^{1/2} + a_5 \times \left[\frac{\epsilon_0(x)}{\epsilon(r_a,x)}\right]^{\frac{3}{2}} \times N_r^{\frac{1}{6}} \\ N_r \equiv \left(\frac{N^*}{N_{CDD}(r_a,x)}\right), \end{array}$

$$\Delta E_{gp}(N, r_a, x) = \Delta E_{gpo}(N, r_a, x) \times \{15 \times x + 18 \times (1 - x)\},$$
(14p)

where $a_1 = 3.15 \times 10^{-3} (eV)$, $a_2 = 5.41 \times 10^{-4} (eV)$, $a_3 = 2.32 \times 10^{-3} (eV)$, $a_4 = 4.12 \times 10^{-3} (eV)$ and $a_5 = 9.8 \times 10^{-5} (eV)$.

One also remarks that, as $N^* = 0$, according to the MIT, $\Delta E_{gn(gp)}(N, r_{d(a)}, x) = 0$.

OPTICAL BAND GAP

Here, the optical band gap is found to be defined by:

$$E_{gn1(gp1)}(N, r_{d(a)}, x, T) \equiv E_{gni(gpi)}(r_{d(a)}, x, T) - \Delta E_{gn(gp)}(N, r_{d(a)}, x) + (-)E_{Fn(Fp)}(N, r_{d(a)}, x, T),$$
(15)

where $E_{gin(gip)}$, $[+E_{Fn}, -E_{Fp}] \ge 0$, and $\Delta E_{gn(gp)}$ are respectively determined in Equations [10, 12, 14n(p)], respectively. So, as noted above, at the MIT, Eq. (15) thus becomes: $E_{gn1(gp1)}(r_{d(a)}, x) = E_{gno(gpo)}(r_{d(a)}, x)$, according to: $N = N_{CDn(NDp)}(r_{d(a)}, x)$.

OPTICAL COEFFICIENTS

The optical properties of any medium can be described by the complex refraction index N and the complex dielectric function ε , $\mathbb{N} \equiv n - i\kappa$ and $\varepsilon \equiv \varepsilon_1 - i\varepsilon_2$, where $i^2 = -1$ and $\varepsilon \equiv \mathbb{N}^2$. Therefore, the real and imaginary parts of ε denoted by ε_1 and ε_2 can thus be expressed in terms of the refraction index n and the extinction coefficient κ as: $\varepsilon_1 \equiv n^2 - \kappa^2$ and $\varepsilon_2 \equiv 2n\kappa$. One notes that the optical absorption coefficient α is related to ε_2 , n, κ , and the optical conductivity σ_0 , by^[2]

$$\begin{aligned} \alpha(E, N, r_{d(a)}, x, T) &\equiv \frac{\hbar q^2 \times |v(E)|^2}{n(E) \times \epsilon_{free \ space} \times cE} \times J(E^*) = \frac{E \times \epsilon_2(E)}{\hbar cn(E)} \equiv \frac{2E \times \kappa(E)}{\hbar c} \equiv \frac{4\pi \sigma_0(E)}{cn(E) \times \epsilon_{free \ space}}, \\ \epsilon_1 &\equiv n^2 - \kappa^2 \ \text{and} \ \epsilon_2 \equiv 2n\kappa, \end{aligned}$$
(16)

where, since $\mathbf{E} \equiv \hbar \omega$ is the photon energy, the effective photon energy: $\mathbf{E}^* = \mathbf{E} - \mathbf{E}_{gn1(gp1)}(\mathbf{N}, \mathbf{r}_{d(a)}, \mathbf{x}, \mathbf{T})$ is thus defined as the reduced photon energy.

Here, -q, \hbar , |v(E)|, ω , $\varepsilon_{\text{free space}}$, c and J(E^{*}) respectively represent: the electron charge, Dirac's constant, matrix elements of the velocity operator between valence (conduction)-andconduction (valence) bands in n(p)-type semiconductors, photon frequency, permittivity of free space, velocity of light, and joint density of states. It should be noted that, if the three functions such as: $|v(E)|^2$, J(E^{*}) and n(E) are known, then the other optical dispersion functions as those given in Eq. (16) can thus be determined. Moreover, the normal-incidence reflectance, R(E), can be expressed in terms of $\kappa(E)$ and n(E) as:

$$R(E, N, r_{d(a)}, x, T) = \frac{[n(E)-1]^2 + \kappa(E)^2}{[n(E)+1]^2 + \kappa(E)^2}.$$
(17)

From Equations (16, 17), if the two optical functions, ε_1 and ε_2 , (or n and κ), are both known, the other ones defined above can thus be determined, noting also that: $E_{gn1(gp1)}(N, r_{d(a)}, x, T) = E_{gn1(gp1)}$, for a presentation simplicity.

Then, one has:

-at low values of
$$E \gtrsim E_{gn1(gp1)}$$
,
 $J_{n(p)}(E, N, r_{d(a)}, x, T) = \frac{1}{2\pi^2} \times \left(\frac{2m_r}{\hbar^2}\right)^{3/2} \times \frac{(E - E_{gn1(gp1)})^{a - (1/2)}}{E_{gn1(gp1)}^{a - 1}} = \frac{1}{2\pi^2} \times \left(\frac{2m_r}{\hbar^2}\right)^{3/2} \times (E - E_{gn1(gp1)})^{1/2}$, for a=1, (18)

and at large values of $E > E_{gn1(gp1)}$,

$$J_{n(p)}(E, N, r_{d(a)}, x, T) = \frac{1}{2\pi^2} \times \left(\frac{2m_r}{\hbar^2}\right)^{3/2} \times \frac{(E - E_{gn1(gp1)})^{a - (1/2)}}{E_{gn1(gp1)}^{a - 1}} = \frac{1}{2\pi^2} \times \left(\frac{2m_r}{\hbar^2}\right)^{3/2} \times \frac{(E - E_{gn1(gp1)})^2}{E_{gn1(gp1)}^{3/2}}, \text{ for } a = 5/2.$$
(19)

Further, one notes that, as $E \to \infty$, Forouhi and Bloomer (FB)^[4] claimed that $\kappa(E \to \infty) \to a$ constant, while the $\kappa(E)$ -expressions, proposed by Van Cong^[2] quickly go to 0 as E^{-3} , and consequently, their numerical results of the optical functions such as: $\sigma_0(E)$ and $\alpha(E)$, given in Eq. (16), both go to 0 as E^{-2} .

Now, an improved Forouhi-Bloomer parameterization model (FB-PM), used to determine the expressions of the optical coefficients in the degenerate $n^+(p^+) - p(n) X(x)$ - crystalline alloy, is now proposed as follows. Then, if denoting the functions G(E) and F(E) and by: $G(E) \equiv \sum_{i=1}^{4} \frac{A_i}{E^2 - B_i E + C_i} \text{ and } F(E) \equiv \sum_{i=1}^{4} \frac{A_i}{E^2 \times (1 + 10^{-4} \times \frac{E}{6}) - B_i E + C_i}, \text{ we propose:}$ $\kappa(E, N, r_{d(a)}, x, T) = G(E) \times E_{gni(gpi)}^{3/2} \times (E^* \equiv E - E_{gn1(gp1)})^{1/2}, \text{ for } E_{gni(gpi)} \leq E \leq 2.3 \text{ eV},$ $= F(E) \times (E^* \equiv E - E_{gn1(gp1)})^2, \text{ for } E \geq 2.3 \text{ eV},$ (20)

being equal to 0 for $E^* = 0$ (or for $E = E_{gn1(gp1)}$), and also going to 0 as E^{-1} as $E \to \infty$, and further,

$$n(E, N, r_{d(a)}, x, T) = n_{\infty}(r_{d(a)}, x) + \sum_{i=1}^{4} \frac{x_i(E_{gn1(gp1)}) \times E + Y_i(E_{gn1(gp1)})}{E^2 - B_i E + C_i}.$$
(21)

going to a constant as $E \to \infty$, since $n(E \to \infty, r_{d(a)}, x) \to n_{\infty}(r_{d(a)}, x) = \sqrt{\epsilon(r_{d(a)}, x)} \times \frac{\omega_T}{\omega_L}$, $\omega_T = 5.1 \times 10^{13} \text{ s}^{-1} [5] \text{ and } \omega_L = 8.9755 \times 10^{13} \text{ s}^{-1}$.

Here, the other parameters are determined by:

$$X_i(E_{gn1(gp1)}) = \frac{A_i}{Q_i} \times \left[-\frac{B_i^2}{2} + E_{gn1(gp1)}B_i - E_{gn1(gp1)}^2 + C_i \right]$$
,
 $Y_i(E_{gn1(gp1)}) = \frac{A_i}{Q_i} \times \left[\frac{B_i \times (E_{gn1(gp1)}^2 + C_i)}{2} - 2E_{gn1(gp1)}C_i \right]$, $Q_i = \frac{\sqrt{4C_i - B_i^2}}{2}$, where, for i=(1, 2, 3, and 4), $A_i = 1.154 \times A_{i(FB)} = 4.7314 \times 10^{-4}$, 0.2314, 0.1118 and 0.0116 ,
 $B_i \equiv B_{i(FB)} = 5.871$, 6.154, 9.679 and 13.232, and $C_i \equiv C_{i(FB)} = 8.619$, 9.784, 23.803, and 44.119.

Then, as noted above, if the two optical functions, n and κ , are both known, the other ones defined in Equations (16, 17) can also be determined.

NUMERICAL RESULTS

Now, some numerical results of those optical functions are investigated in the n(p)-type $\mathbf{X}(\mathbf{x}) \equiv \mathbf{GaP}_{1-\mathbf{x}}\mathbf{Sb}_{\mathbf{x}}$ - crystalline alloy, as follows.

A. Metal-insulator transition (MIT)-case

As discussed above, the physical conditions used for the MIT are found to be given by: T=0K, $N^* = 0$ or $N = N_{CDn(CDp)}$, giving rise to: $E_{gn1(gp1)}(N^* = 0, r_{d(a)}, x, T = 0) = E_{gn1(gp1)}(r_{d(a)}, x) = E_{gno(gpo)}(r_{d(a)}, x)$.

Then, in this MIT-case, if $E = E_{gn1(gp1)}(r_{d(a)}, x) = E_{gn0(gp0)}(r_{d(a)}, x)$, which can be defined as the critical photon energy: $E \equiv E_{CPE}(r_{d(a)}, x)$, one obtains: $\kappa_{MIT}(r_{d(a)}, x) = 0$ from Eq. (20), and from Eq. (16): $\epsilon_{2(MIT)}(r_{d(a)}, x) = 0$, $\sigma_{0(MIT)}(r_{d(a)}, x) = 0$ and $\alpha_{MIT}(r_{d(a)}, x) = 0$, and the other functions such as : $n_{MIT}(r_{d(a)}, x)$ from Eq. (21), and $\epsilon_{1(MIT)}(r_{d(a)}, x)$ and $R_{MIT}(r_{d(a)}, x)$ from Eq. (16) decrease with increasing $r_{d(a)}$ and E_{CPE} , as those investigated in Table 1 in Appendix 1.

B. Optical coefficients, obtained as $E \rightarrow \infty$

the choice (21),any Τ, the real In Eq. at of refraction index: $n(E \to \infty, \mathbf{r}_{d(a)}, x, T) = n_{\infty}(\mathbf{r}_{d(a)}, x) = \sqrt{\epsilon(\mathbf{r}_{d(a)}, x)} \times \frac{\omega_T}{\omega_L}, \quad \omega_T = 5.1 \times 10^{13} \, s^{-1}$ ^[5] and $\omega_L = 8.9755 \times 10^{13} \, s^{-1}$, was obtained from the Lyddane-Sachs-Teller relation^[5], from which T(L) represent the transverse (longitudinal) optical phonon modes. Then, from Equations (16, 17, 20), from such the asymptotic behavior ($E \rightarrow \infty$), we obtain: $\kappa_{\infty}(\mathbf{r}_{\mathbf{d}(\mathbf{a})}, x) \to 0 \text{ and } \varepsilon_{2,\infty}(\mathbf{r}_{\mathbf{d}(\mathbf{a})}, x) \to 0, \text{ as } E^{-1}, \text{ so that } \varepsilon_{1,\infty}(\mathbf{r}_{\mathbf{d}(\mathbf{a})}, x), \sigma_{0,\infty}(\mathbf{r}_{\mathbf{d}(\mathbf{a})}, x),$ $\alpha_{\infty}(\mathbf{r}_{d(a)}, \mathbf{x})$ and $R_{\infty}(\mathbf{r}_{d(a)}, \mathbf{x})$ go to their appropriate limiting constants, as those investigated in Table 2 in Appendix 1, in which T=0K and N = $N_{CDn(CDp)}$.

C. Variations of some optical coefficients, obtained in P(B)-X(x)-system, as functions of E

In the P(B)-X(x)-system, at T=0K and N = N_{CDn(CDp})($r_{P(B)}$, x), our numerical results of n, κ , ε_1 and ε_2 are obtained from Equations (21, 20, 16), respectively, and expressed as functions of $E [\geq E_{CPE}(r_{d(a)}, x)]$ and for given x, as those reported in Tables 3n and 3p in Appendix 1.

D. Variations of various optical coefficients, as functions of N

In the X(x)-system, at E=3.2 eV and T=20 K, for given $r_{d(a)}$ and x, and from Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of $\eta_{n(p)}$ (>> 1, degenerate case), $E_{gn1(gp1)}$, n, κ , ε_1 and ε_2 , obtained as functions of N, being represented by the arrows: \nearrow and \searrow , as those tabulated in Tables 4n and 4p in Appendix 1.

E. Variations of various optical coefficients as functions of T

In the X(x)-system, at E=3.2 eV and N = 10^{20} cm⁻³, for given $r_{d(a)}$ and x, and from Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of $\eta_{n(p)}$ (>> 1, degenerate case), $E_{gn1(gp1)}$, n, κ , ε_1 and ε_2 , obtained as functions of T, being represented by the arrows: \nearrow and \searrow , as those tabulated in Tables 5n and 5p in Appendix 1.

CONCLUDING REMARKS

In the n(p)-type $\mathbf{X}(\mathbf{x}) \equiv \mathbf{GaP_{1-x}Sb_{x^{-}}}$ crystalline alloy, by basing on our two recent works^[1,2], for a given x, and with an increasing $\mathbf{r}_{d(a)}$, the optical coefficients have been determined, as functions of the photon energy E, total impurity density N, the donor (acceptor) radius $\mathbf{r}_{d(a)}$, concentration x, and temperature T.

Those results have been affected by (i) the important new $\varepsilon(\mathbf{r}_{d(a)}, \mathbf{x})$ -law, developed in Equations (8a, 8b), stating that, for a given x, due to the impurity-size effect, ε decreases (\searrow) with an increasing (\nearrow) $\mathbf{r}_{d(a)}$, and then by (ii) the generalized Mott critical d(a)-density defined in the metal-insulator transition (MIT), $N_{\text{CDn}(\text{NDp})}(\mathbf{r}_{d(a)}, \mathbf{x})$, as observed in Equations (8c, 9a).

Further, we also showed that $N_{CDn(NDp)}$ is just the density of carriers localized in exponential band tails, with a precision of the order of **2**. **92** × **10**⁻⁷, as that given in Table 4 of Ref.^[1], according to a definition of the effective density of electrons (holes) given in parabolic conduction (valence) bands by: $N^*(N, r_{d(a)}, x) \equiv N - N_{CDn(NDp)}(r_{d(a)}, x)$, as defined in Eq. (9d).

In summary, due to the new $\varepsilon(r_{d(a)}, x)$ -law and to the effective density of electrons (holes) given in parabolic conduction (valence) bands N^{*}(N, r_{d(a)}, x), for a given x, and with an increasing r_{d(a)}, the numerical results of all the optical coefficients, obtained in appropriated physical conditions (E, N, T), and calculated by using Equations (15, 16, 20, 21), are reported in Tables 1, 2, 3n, 3p, 4n, 4p, 5n, and 5p in Appendix 1.

REFERENCES

- Van Cong, H. New critical impurity density in MIT, obtained in various n(p)-type degenerate InP_{1-x}As_x(Sb_x), GaAs_{1-x}Te_x(Sb_x, P_x), CdS_{1-x}Te_x(Se_x) – crystalline alloys, being just that of carriers localized in exponential band tails. WJERT, 2024; 10(4): 05-23.
- Van Cong, H. Optical coefficients in the n(p)-type degenerate GaAs_{1-x}Te_x- crystalline alloy, due to the new static dielectric constant-law and the generalized Mott criterium in the metal-insulator transition (1). WJERT, 2024; 10(10): 122-147.
- Van Cong, H. Effects of donor size and heavy doping on optical, electrical and thermoelectric properties of various degenerate donor-silicon systems at low temperatures. American Journal of Modern Physics, 2018; 7: 136-165.
- Forouhi A. R. & Bloomer I. Optical properties of crystalline semiconductors and dielectrics. Phys. Rev., 1988; 38: 1865-1874.
- Aspnes, D.E. & Studna, A. A. Dielectric functions and optical parameters of Si, Se, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV, Phys. Rev. B, 1983; 27: 985-1009.
- 6. Van Cong, H. et al. Optical bandgap in various impurity-Si systems from the metalinsulator transition study. Physica B, 2014; 436: 130-139.
- Van Cong, H. et al. Size effect on different impurity levels in semiconductors. Solid State Communications, 1984; 49: 697-699.
- 8. Van Cong, H. & Debiais, G. A simple accurate expression of the reduced Fermi energy for any reduced carrier density. J. Appl. Phys., 1993; 73: 1545-1546.

APPENDIX 1

Table 1. In the MIT-case, T=0K, N=N_{CDn(p)}($r_{d(a)}$, x), and the critical photon energy $E_{CPE} = E = E_{gno(gpo)}(r_{d(a)}, x)$, if $E = E_{gn1(gp1)}(r_{d(a)}, x) = E_{CPE}(r_{d(a)}, x)$, the numerical results of optical functions such as : $n_{MIT}(r_{d(a)}, x)$, obtained from Eq. (21), and those of other ones: $\epsilon_{1(MIT)}(r_{d(a)}, x)$ and $R_{MIT}(r_{d(a)}, x)$, from Eq. (16), decrease (\searrow) with increasing (\nearrow) $r_{d(a)}$ and E_{CPE} .

Donor		Р	As	Sb	Sn	
r _d (nm) [4]	7	0.110	0.118	0.136	0.140	
At x=0 ,						
E _{CPE} in meV	7	1796	1796.7	1804	1807	
n _{MIT}	2	3.078	3.055	2.872	2.820	
$\varepsilon_{1(MIT)}$	2	9.47	9.33	8.25	7.95	
R _{MIT}	7	0.260	0.257	0.234	0.227	
At x=0.5 ,						
E _{CPE} in meV	~	1303	1303.3	1306.8	1308	
n _{MIT}	7	3.572	3.547	3.350	3.293	
$\varepsilon_{1(MIT)}$	7	12.76	12.58	11.21	10.84	
R _{MIT}	7	0.316	0.314	0.292	0.285	
At x=1 ,						
E _{CPE} in meV	7	810	810.1	811.5	812	
n _{MIT}	2	4.050	4.023	3.810	3.750	
$\varepsilon_{1(MIT)}$	7	16.40	16.19	14.52	14.06	
R _{MIT}	7	0.365	0.362	0.341	0.335	
Acceptor		В	Ga	In	Cd	
r _a (nm)	7	0.088	0.126	0.144	0.148	
At x=0 ,						
E_{CPE} in meV	7	1756.8	1796	1807	1812	
n _{MIT}	7	3.789	3.078	2.988	2.948	
$\varepsilon_{1(MIT)}$	2	14.36	9.47	8.93	8.69	
R _{MIT}	7	0.339	0.260	0.248	0.243	
At x=0.5 ,						
	eV 🖊	1281.5	1303	1309	1312	
n _{MIT}	2	4.340	3.572	3.477	3.434	
$\varepsilon_{1(MIT)}$	7	18.83	12.76	12.09	11.79	
R _{MIT}	7	0.391	0.316	0.306	0.301	
At x=1 ,						

E _{CPE} in meV	7	798.2	810	813	815
n _{MIT}	7	4.874	4.050	3.949	3.904
$\varepsilon_{1(MIT)}$	7	23.75	16.40	15.60	15.24
R _{MIT}	2	0.435	0.365	0.355	0.351

Table 2. Here, at T=0K and N=N_{CDn(p)}($r_{d(a)}, x$), and as $E \to \infty$, the numerical results of $n_{\infty}(r_{d(a)}, x)$, $\varepsilon_{1,\infty}(r_{d(a)}, x)$, $\sigma_{0,\infty}(r_{d(a)}, x)$, $\alpha_{\infty}(r_{d(a)}, x)$ and $R_{\infty}(r_{d(a)}, x)$ go to their appropriate limiting constants.

Donor		Р	As	Sb	Sn	
		1	110	50	110	
At x=0 ,		1 902	1.870	1.692	1 642	
n_{∞} $\varepsilon_{1,\infty}$	2	1.893 3.584	1.870 3.498	2.863	1.642 2.695	
$\sigma_{0,\infty}$ in $\frac{10^5}{\Omega \times c_0}$		8.638	8.535	7.721	7.491	
∝ _∞ in (10 ⁹						
R _∞	7	0.095	0.092	0.066	0.059	
At x=0.5 ,						
n_{∞} >		2.080	2.055	1.860	1.803	
ε _{1,∞}	7	4.325	4.222	3.455	3.252	
$\sigma_{0,\infty}$ in $\frac{10^5}{\Omega \times c}$	-	9.489	9.376	8.482	8.229	
∝ _∞ in (10 ⁹						
R _∞		0.123	0.119	0.090	0.082	
At x=1 ,						
n_{∞} >		2.251	2.224	2.012	1.952	
$\mathcal{E}_{1,\infty}$		5.066	4.945	4.047	3.810	
$\sigma_{0,\infty}$ in $\frac{10^5}{\Omega \times c}$	<u></u> \	10.270	10.147	9.180	8.906	
∝ _∞ in (10 ⁹) = 2.1602				
R _∞		0.148	0.144	0.113	0.104	
Acceptor		В	Ga	In	Cd	
At x=0 ,						
n_{∞} >		2.580	1.893	1.810	1.773	
1,00	7	6.655	3.584	3.275	3.144	
$\sigma_{0,\infty}$ in $\frac{10}{\Omega \times \Omega}$	$\frac{5}{cm}$	11.77	8.64	8.26	8.09	
∝ _∞ in (10 ⁹) = 2.1602				
R _∞	5	0.195	0.095	0.083	0.078	
At x=0.5 ,						
n_{∞} >		2.834	2.080	1.988	1.948	

$\mathcal{E}_{1,\infty}$	7	8.031	4.325	3.952	3.794
σ _{0,∞} in	$\frac{10^5}{\Omega \times cm}$ \searrow	12.93	9.489	9.071	8.888
∝ _∞ in ($(10^9 \times cm^{-1}) =$	= 2.1602			
R_{∞}	7	0.229	0.123	0.109	0.103
At x=1 ,					
n_{∞}	7	3.067	2.251	2.152	2.108
$\mathcal{E}_{1,\infty}$	7	9.407	5.066	4.629	4.444
σ _{0,∞} in	$\frac{10^5}{\Omega \times cm}$ \searrow	13.99	10.27	9.818	9.619
∝ _∞ in ($(10^9 \times cm^{-1}) =$	= 2.1602			
R _∞	7	0.258	0.148	0.133	0.127

Table 3n. In the P-X(x)-system, and at T=0K and N = N_{CDn}(\mathbf{r}_{p} , x), according to the MIT, our numerical results of n, κ , ε_{1} and ε_{2} are obtained from Equations (21, 20, 16), respectively, and expressed as functions of $E [\geq E_{CPE}(\mathbf{r}_{p}, x)]$ and x, noting that (i) $\kappa = 0$ and $\varepsilon_{2} = 0$ at $E = E_{CPE}(\mathbf{r}_{p}, x)$, and $\kappa \to 0$ and $\varepsilon_{2} \to 0$ as $E \to \infty$.

E in eV	n	κ	ε_1	ε_2
At x=0,				
$E_{CPE} = 1.796$	3.0783	0	9.4760	0
2	3.221	0.186	10.341	1.198
2.5	3.749	0.188	14.019	1.407
3	3.935	1.191	14.067	9.371
3.5	3.403	1.512	9.298	10.292
4	3.535	1.470	10.334	10.395
4.5	3.848	2.379	9.148	18.312
5	2.376	3.431	-6.128	16.310
5.5	1.304	2.481	-4.458	6.471
6	1.385	1.884	-1.631	5.219
10 ²²	1.8931	0	3.5838	0
At x=0.5,				
E _{CPE} =1.3030	3.5720	0	12.7594	0
2	4.189	0.212	17.507	1.780
2.5	4.988	0.542	24.589	5.412
3	4.841	2.365	17.840	22.903
3.5	3.716	2.513	7.495	18.682
4	3.880	2.202	10.206	17.085
4.5	4.285	3.326	7.300	28.504
5	2.283	4.569	-15.662	20.862
5.5	0.946	3.186	-9.256	6.026

Cong.

6	1.115	2.352	-4.287	5.246	
 10 ²²	2.0796	0	4.3248	0	
At x=1,					
E _{CPE} =0.81	4.0503	0	16.4053	0	
2	5.326	0.136	28.346	1.449	
2.5	6.440	1.081	40.302	13.926	
3	5.767	3.940	17.742	45.443	
3.5	3.891	3.768	0.941	29.320	
4	4.118	3.080	7.467	25.366	
4.5	4.646	4.431	1.950	41.168	
5	2.046	5.868	-30.252	24.020	
5.5	0.427	3.978	-1 5.645	3.401	
6	0.711	2.871	-7.739	4.085	
10 ²²	2.2507	0	5.0658	0	
E in eV	n	κ	ε ₁	ε_2	

Table 3p. In the B-X(x)-system, and at T=0K and N = N_{CDp}(\mathbf{r}_B, \mathbf{x}), according to the MIT, our numerical results of n, κ , ε_1 and ε_2 are obtained from Equations (21, 20, 16), respectively, and expressed as functions of $E [\geq E_{CPE}(\mathbf{r}_B, \mathbf{x})]$ and x, noting that (i) $\kappa = 0$ and $\varepsilon_2 = 0$ at $E = E_{CPE}(\mathbf{r}_B, \mathbf{x})$, and $\kappa \to 0$ and $\varepsilon_2 \to 0$ as $E \to \infty$.

E in eV	n	κ	ε	ε2
At x=0,				
E _{CPE} =1.7568	3.7893	0	14.3590	0
2	3.963	0.196	15.668	1.557
2.5	4.511	0.209	20.304	1.886
3	4.677	1.269	20.267	11.876
3.5	4.105	1.582	14.344	12.989
4	4.237	1.523	15.636	12.908
4.5	4.557	2.449	14.969	22.317
5	3.045	3.516	-3.087	21.416
5.5	1.952	2.535	-2.610	9.896
6	2.040	1.919	0.477	7.830
10 ²²	2.5797	0	6.6548	0
At x=0.5,				
E _{CPE} =1.2815	4.3397	0	18.8329	0
2	4.982	0.210	24.777	2.096
2.5	5.794	0.562	33.251	6.514

Cong.			World Journ	nal of Engine	eering Research and Technology
3	5.627	2.426	25.784	27.304	
3.5	4.473	2.563	13.443	22.930	
4	4.640	2.237	16.516	20.755	
4.5	5.049	3.371	14.128	34.038	
5	3.022	4.622	-12.231	27.938	
5.5	1.673	3.219	-7.562	10.769	
6	1.847	2.373	-2.222	8.767	
10 ²²	2.8339	0	8.0308	0	
 At x=1,					
E _{CPE} =0.7982	4.8740	0	23.7557	0	
2	6.167	0.134	38.019	1.650	
2.5	7.289	1.096	51.934	15.984	
3	6.602	3.982	27.731	52.581	
3.5	4.706	3.801	7.696	35.772	
4	4.934	3.103	14.720	30.623	
4.5	5.466	4.459	9.991	48.745	
5	2.851	5.901	-26.697	33.657	
5.5	1.225	3.998	-14.485	9.800	
6	1.512	2.884	-6.032	8.725	
10 ²²	3.0670	0	9.4067	0	
E in eV	n	κ	ε	ε2	

Table 4n. In the X(x)-system, at E=3.2 eV and T=20 K, for given r_d and x, and from Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of $\eta_n \gg 1$, degenerate case), E_{gn1} , n, κ , ε_1 and ε_2 , obtained as functions of N, being represented by the arrows: \nearrow and \searrow , noting that both η_n and E_{gn1} increase with increasing N.

N (10 ¹⁸ cm ⁻¹	³) ↗ 15	26	60	100
		x=0		
For $\mathbf{r}_{\mathbf{d}} = \mathbf{r}_{\mathbf{p}}$,				
$\eta_n\gg 1$	▶ 123.7	179	313	441
Egn1 in eV	▶ 1.692	1.700	1.746	1.811
n	> 3.875	3.868	3.822	3.758
κ	> 1.685	1.669	1.567	1.430
ε	> 12.1749	12.1746	12.155	12.079
ε_2	> 13.0618	12.9087	11.982	10.751

For $\mathbf{r_d} = \mathbf{r_{Sb}}$,			
$\eta_n\gg 1$	▶ 122.8	178.4	313	440.7
E _{gn1} in eV	↗ 1.740	1.762	1.839	1.930
n	> 3.627	3.606	3.530	3.438
κ	↘ 1.579	1.533	1.374	1.196
ε_1	▶ 10.661	10.652	10.573	10.391
ε_2	▶ 11.456	11.059	9.700	8.225
For $\mathbf{r_d} = \mathbf{r_{Sn}}$.,			
$\eta_n\gg 1$	▶ 122.5	178.1	312.8	440.5
Egn1 in eV	▶ 1.752	1.777	1.861	1.958
n	> 3.565	3.541	3.457	3.359
κ	> 1.554	1.501	1.330	1.144
ε	> 10.295	10.283	10.185	9.976
ε_2	↘ 11.080	10.634	9.196	7.685
		x=0.5		
For $\mathbf{r}_{1} = \mathbf{r}$				
For $\mathbf{r}_{\mathbf{d}} = \mathbf{r}_{\mathbf{p}}$,	▶ 177	256	447	629
$\eta_n \gg 1$				
E _{gn1} in eV	▶ 1.154	1.148	1.197	1.273
n	4.565	4.562	4.520	4.452
κ	> 3.130	3.120	2.975	2.752
ε ₁	▶ 11.045	11.080	11.580	12.249
ε2	> 28.577	28.474	26.897	24.505
For $\mathbf{r_d} = \mathbf{r_{sb}}$				
$\eta_n \gg 1$	" , 7 177	255.8	447	628.6
E _{gn1} in eV	▶ 1.216	1.242	1.339	1.458
-				
n	► 4.282	4.259	4.172	4.063
κ	► 2.917	2.842	2.567	2.250
ε ₁	▶ 9.828	10.064	10.817	11.447
ε2	> 24.981	24.212	21.419	18.290
For $\mathbf{r_d} = \mathbf{r_{Sn}}$				
$\eta_n \gg 1$, ▶ 176.9	255.7	447	628.5
E _{gn1} in eV	▶ 1.233	1.264	1.372	1.500
n	► 4.212	4.184	4.086	3.968
κ	2.868	2.779	2.476	2.141
ε_1	▶ 9.514	9.787	10.568	11.161

ε2	> 24.161	23.258	20.238	16.992
x=1				
For $\mathbf{r_d} = \mathbf{r_p}$,				
$\eta_n\gg 1$	↗ 316.5	456.8	797.7	1121.4
E _{gn1} in eV	↗ 0.601	0.671	0.808	0.985
n	> 5.152	5.129	5.020	4.873
κ	↘ 4.855	4.740	4.242	3.636
ε ₁	▶ 2.978	3.835	7.205	10.526
ε2	▶ 50.029	48.619	42.585	35.444
$E_{or} \mathbf{r} = \mathbf{r}$				
For $\mathbf{r}_{\mathbf{d}} = \mathbf{r}_{\mathbf{Sb}}$		156 9	707 7	1121 4
	↗ 316.5	456.8	797.7	1121.4
E _{gn1} in eV		0.827	1.046	1.294
n	▶ 4.820	4.765	4.583	4.366
κ	↘ 4.418	4.173	3.438	2.693
ε_1	▶ 3.721	5.291	9.179	11.808
ε_2	↘ 42.589	39.772	31.513	23.513
For $\mathbf{r_d} = \mathbf{r_{Sn}}$,			
	↗ 316.5	456.7	797.7	1121.4
E _{gn1} in eV		0.863	1.102	1.366
n	4.738	4.676	4.475	4.241
κ	4.319	4.047	3.264	2.494
ε1	↗ 3.797	5.484	9.375	11.765
ε_2	↘ 40.933	37.844	29.213	21.155
N (10 ¹⁸ cm ⁻	³) ↗ 15	26	60	100

Table 4p. In the X(x)-system, at E=3.2 eV and T=20 K, for given r_d and x, and from Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of $\eta_p \gg 1$, degenerate case), E_{gp1} , n, κ , ε_1 and ε_2 , obtained as functions of N, being represented by the arrows: \nearrow and \searrow , noting that both η_p and E_{gp1} increase with increasing N.

World Journal of Engineering Research and Technology

Egp1 in eV	7	1.700	1.702	1.761	1.843
n	7	3.867	3.865	3.807	3.726
κ	2	1.668	1.663	1.534	1.365
ε	2	12.1745	12.1743	12.142	12.023
ε2	2	12.899	12.855	11.680	10.173
For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{I}\mathbf{n}}$,	,				
$\eta_p\gg 1$	7	37	116	269	404
E _{gp1} in eV	7	1.726	1.723	1.791	1.882
n	7	3.759	3.762	3.694	3.604
κ	7	1.610	1.618 🍾		1.287
ε1		11.5335	11.5344		11.330
ε ₂		12.107	12.172		9.278
For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{Cd}}$					
η _p ≫1		17	106	262	399
E _{gp1} in eV		1.748	1.731	1.803	1.898
n	~	3.700	3.717		3.551
κ	7	1.562	1.599 🍾		1.256
ε ₁	7	11.2503	11.2576		11.031
ε2	7	11.558	11.890 🕚	10.542	8.918
x=0.5					
For P - P					
For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{G}\mathbf{a}}$		1547	727 4	122.2	617
$\eta_p \gg 1$		154.7	237.4	433.3	617
E _{gp1} in eV	7	1.134	1.137	1.196	1.285
n	7	4.575	4.572	4.521	4.441
κ	7	3.165	3.154	2.977	2.717
ε_1	7	10.916	10.9575	11.574	12.341
ε_2	2	28.960	28.838	26.916	24.138
For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{I}\mathbf{n}}$,	,				
$\eta_p\gg 1$	7	147.3	231.5	428.9	613.4
E _{gp1} in eV	7	1.161	1.172	1.248	1.353
n	7	4.460	4.450	4.383	4.289
κ	2	3.082	3.049	2.824	2.529
κ ε ₁	7	10.3914	10.5098	11.236	11.998
	Ś	27.492	27.135	24.753	21.692
ε2			27.135	27.733	21.072

א א א א	147.1 1.172 4.409 3.047 10.1573	228.2 1.187 4.397 3.005	426.5 1.270 4.323	611.3 1.382
א א א א	1.172 4.409 3.047	1.187 4.397	1.270	1.382
א א ר	4.409 3.047	4.397		
5 7	3.047		4.323	
7		3.005		4.222
	10.1573		2.760	2.451
2		10.3045	11.068	11.820
	26.875	26.427	23.866	20.700
		x=1		
7	306.2	448.2	791.2	1115.9
7	0.582	0.607	0.741	0.919
7	5.198	5.178	5.074	4.928
2	5.080	4.982	4.484	3.856
7	1.206	1.991	5.639	9.423
7	52.817	51.601	45.499	38.005
	302.9	445.5	789.2	1114.2
7	0.628	0.668	0.833	1.039
7	5.063	5.032	4.900	4.729
2	4.905	4.753	4.154	3.462
7	1.581	2.728	6.760	10.376
7	49.673	47.843	40.711	32.740
	301.1	444.0	788.1	1113.3
		0.693	0.872	1.090
7				4.642
				3.301
7				10.647
		46.293	38.772	30.647
³) ∕	15	26	60	100
		 ≥ 26.875 > 306.2 > 0.582 > 5.198 > 5.080 > 1.206 > 52.817 > 302.9 > 0.628 > 5.063 > 4.905 > 1.581 > 49.673 > 49.673 , 301.1 > 0.647 > 5.005 > 4.832 > 1.703 > 48.366 	 ▶ 26.875 26.427 x=1 , , > 306.2 448.2 > 0.582 0.607 ▶ 5.198 5.178 > 5.080 4.982 > 1.206 1.991 > 52.817 > 51.601 , ,<td>▶ 26.875 26.427 23.866 x=1 > 306.2 448.2 791.2 > 0.582 0.607 0.741 ▶ 5.198 5.178 5.074 > 5.080 4.982 4.484 > 1.206 1.991 5.639 > 52.817 51.601 45.499 > 302.9 445.5 789.2 > 0.628 0.668 0.833 > 5.063 5.032 4.900 > 4.905 4.753 4.154 > 1.581 2.728 6.760 > 49.673 47.843 40.711 , . . . > 301.1 444.0 788.1 > 0.647 0.693 0.872 > 5.005 4.969 4.825 > 4.832 4.658 4.018 > 1.703 2.986 7.136 > 48.366 46.293 38.772</td>	▶ 26.875 26.427 23.866 x=1 > 306.2 448.2 791.2 > 0.582 0.607 0.741 ▶ 5.198 5.178 5.074 > 5.080 4.982 4.484 > 1.206 1.991 5.639 > 52.817 51.601 45.499 > 302.9 445.5 789.2 > 0.628 0.668 0.833 > 5.063 5.032 4.900 > 4.905 4.753 4.154 > 1.581 2.728 6.760 > 49.673 47.843 40.711 , . . . > 301.1 444.0 788.1 > 0.647 0.693 0.872 > 5.005 4.969 4.825 > 4.832 4.658 4.018 > 1.703 2.986 7.136 > 48.366 46.293 38.772

Table 5n. In the X(x)-system, at E=3.2 eV and N = 10^{20} cm⁻³, for given r_d and x, and from Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of $\eta_n \gg 1$, degenerate case), E_{gn1} , n, κ , ε_1 and ε_2 , obtained as functions of T, being represented by the arrows: \nearrow and \searrow , noting that both η_n and E_{gn1} decrease with increasing T.

T in K	~	20	50	100	300
			x=0		
For $\mathbf{r}_{\mathbf{d}} = \mathbf{r}_{\mathbf{p}}$					
	, 、	441	176	88	29
E _{gn1} in eV		1.811	1.801	1.776	1.648
n	7		3.768	3.793	3.917
κ	~	1.430	1.451	1.502	1.785
ε1		12.079	12.094	12.126	12.160
ε ₁ ε ₂		10.751	10.935	11.398	13.986
- 4					
For $\mathbf{r}_{\mathbf{d}} = \mathbf{r}_{\mathbf{S}\mathbf{k}}$) ,				
$\eta_n\gg 1$	2	440.7	176.3	88.1	29.3
Egn1 in eV	7	1.930	1.920	1.895	1.767
n	7	3.438	3.448	3.473	3.601
κ	7	1.196	1.215	1.262	1.522
ε_1	7	10.391	10.415	10.470	10.649
ε_2	7	8.225	8.380	8.769	10.964
For $\mathbf{r}_{\mathbf{d}} = \mathbf{r}_{\mathbf{S}\mathbf{r}}$					
$\eta_n\gg 1$	7	440.5	176.2	88.09	29.34
Egn1 in eV	7	1.958	1.948	1.923	1.795
n	7	3.359	3.369	3.394	3.523
κ	7	1.144	1.162	1.209	1.463
ε_1	7	9.976	10.002	10.062	10.269
ε2	7	7.685	7.833	8.206	10.310
x=0.5					
For $\mathbf{r_d} = \mathbf{r_p}$,				
$\eta_n\gg 1$	2	628.7	251.5	127.7	41.9
E _{gn1} in eV	7	1.273	1.266	1.247	1.144
n	7	4.452	4.459	4.475	4.566
κ	7	2.752	2.772	2.826	3.134
ε_1	7	12.249	12.192	12.040	11.031

Cong.

World Journal of Engineering Research and Technology

7	24.505	24.724	25.295	28.620
	678 6	251 /	125.7	41.88
				1.328
				4.182
				4.182 2.597
				10.744
				21.721
,				
ı,				
2	628.5	251.4	125.7	41.88
7	1.500	1.493	1.475	1.371
7	3.968	3.975	3.992	4.087
7	2.141	2.159	2.206	2.479
2	11.161	11.137	11.068	10.561
7	16.992	17.165	17.618	20.269
	1121 /	1186	224 3	74.7
				0.889
				4.953
				3.958
				8.869 39.210
,				
5	1121.4	448.5	224.3	74.7
7		1.290	1.277	1.198
7	4.366	4.370	4.381	4.451
7				2.970
				10.988
		23.642	24.014	26.444
,				
7	1121.4	448.5	224.3	74.7
1	1.366	1 2 (1	1 2 40	1 270
2	1.500	1.361	1.349	1.270
		▶ 628.6 ▶ 1.458 ▶ 4.063 ▶ 2.250 ▶ 11.447 ▶ 18.290 ▶ 628.5 ▶ 1.500 ▶ 3.968 ▶ 2.141 ▶ 11.161 ▶ 11.161 ▶ 16.992 ▶ 1.526 ▶ 3.636 ▶ 10.526 ▶ 35.444 ▶ 1.294 ▶ 1.294 ▶ 2.693 ▶ 1.808 ₽ 2.3.513	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

T in K	▶ 20	50	100	300
ε_2	▶ 21.155	21.275	21.623	23.901
ε_1	> 11.765	11.739	11.663	11.101
κ	↗ 2.494	2.506	2.540	2.761

Table 5p. In the X(x)-system, at E=3.2 eV and N = 10^{20} cm⁻³, for given r_a and x, and from Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of η_p (\gg 1, degenerate case), E_{gp1} , n, κ , ε_1 and ε_2 , obtained as functions of T, being represented by the arrows: \nearrow and \searrow , noting that both η_p and E_{gp1} decrease with increasing T.

T in V	7	20	50	100	200
T in K	7	20	50	100	300
			x=0		
For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{G}\mathbf{a}}$					
	, ,	413	165	82	27
-					
Egp1 in eV	7		1.833	1.808	1.680
n	7		3.736	3.761	3.886
κ	7	1.365	1.382	1.436	1.712
ε	7	12.023	12.042	12.083	12.174
ε_2	7	10.173	10.351	10.799	13.310
For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{I}\mathbf{n}}$,				
$\eta_p\gg 1$	7	404	161	81	27
Egp1 in eV	7	1.882	1.872	1.847	1.719
n	7	3.604	3.614	3.638	3.765
κ	7	1.287	1.307	1.356	1.625
ε	7	11.330	11.352	11.400	11.535
ε_2	7	9.278	9.446	9.867	12.237
For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{Cd}}$	ļ,				
$\eta_p\gg 1$	7	399	159	80	26
Egp1 in eV	7	1.898	1.888	1.864	1.736
n	7	3.551	3.561	3.586	3.712
κ	7	1.256	1.275	1.323	1.590
ε1	7	11.031	11.053	11.105	11.256
ε2	7	8.918	9.081	9.492	11.803
			x=0.5		

 > 617 > 1.285 > 4.441 > 2.717 > 12.341 > 24.138 	4.448 2.738 12.287	123 1.260 4.464 2.791 12.141 24.920	41 1.156 4.556 3.097 11.164 28.217
 <i>∧</i> 4.441 <i>∧</i> 2.717 <i>∧</i> 12.341 <i>∧</i> 24.138 <i>n</i>, <i>∧</i> 613 	4.448 2.738 12.287 24.354	4.464 2.791 12.141	4.556 3.097 11.164
 2.717 12.341 24.138 n, 613 	2.738 12.287 24.354	2.791 12.141	3.097 11.164
 ▶ 12.341 ▶ 24.138 m, ▶ 613 	12.287 24.354	12.141	11.164
 ▶ 24.138 m, ▶ 613 	24.354		
m, ▶ 613		24.920	28.217
6 13	245		
6 13	245		
	245		
1 252		122.7	40.87
¥ 1.555	1.346	1.327	1.224
▶ 4.289	4.295	4.312	4.405
▶ 2.529	2.549	2.600	2.895
> 11.998	11.954	11.834	11.018
▶ 21.692	21.894	22.423	25.508
	244.5	122.3	40.73
> 1.382			
	1.374	1.356	1.252
▶ 4.222			1.252 4.339
▲ 4.222▲ 2.451		1.356	
	4.229 2.470	1.356 4.246	4.339
▶ 2.451	4.229 2.470 11.780	1.356 4.246 2.521	4.339 2.812
2.45111.820	4.229 2.470 11.780 20.896	1.356 4.246 2.521 11.671	4.339 2.812 10.919
2.45111.820	4.229 2.470 11.780	1.356 4.246 2.521 11.671	4.339 2.812 10.919
 ✓ 2.451 ✓ 11.820 ✓ 20.700 	4.229 2.470 11.780 20.896	1.356 4.246 2.521 11.671	4.339 2.812 10.919
 7 2.451 ▶ 11.820 7 20.700 	4.229 2.470 11.780 20.896 x=1	1.356 4.246 2.521 11.671 21.409	4.339 2.812 10.919 24.405
 ✓ 2.451 ✓ 11.820 ✓ 20.700 ✓ 30.700 ✓ 30.700 	4.229 2.470 11.780 20.896 x=1 446	1.356 4.246 2.521 11.671 21.409 223	4.339 2.812 10.919 24.405 74
 ✓ 2.451 ✓ 11.820 ✓ 20.700 ✓ 30.700 ✓ 30.700 ✓ 0.919 ✓ 0.919 	4.229 2.470 11.780 20.896 x=1 446 0.915	1.356 4.246 2.521 11.671 21.409 223 0.902	4.339 2.812 10.919 24.405 74 0.823
 ✓ 2.451 ✓ 11.820 ✓ 20.700 ✓ 30.700 ✓ 4.928 	4.229 2.470 11.780 20.896 x=1 446 0.915 4.932	1.356 4.246 2.521 11.671 21.409 223 0.902 4.942	4.339 2.812 10.919 24.405 74 0.823 5.007
 <i>▶</i> 2.451 <i>▶</i> 11.820 <i>▶</i> 20.700 <i>▶</i> 20.700 <i>▶</i> 1115.9 <i>▶</i> 0.919 <i>▶</i> 4.928 <i>▶</i> 3.856 	4.229 2.470 11.780 20.896 x=1 446 0.915 4.932 3.870	1.356 4.246 2.521 11.671 21.409 223 0.902 4.942 3.913	4.339 2.812 10.919 24.405 74 0.823 5.007 4.186
 ✓ 2.451 ✓ 11.820 ✓ 20.700 ✓ 3.856 ✓ 9.423 	4.229 2.470 11.780 20.896 x=1 446 0.915 4.932 3.870 9.344	1.356 4.246 2.521 11.671 21.409 223 0.902 4.942 3.913 9.116	4.339 2.812 10.919 24.405 74 0.823 5.007 4.186 7.544
 <i>▶</i> 2.451 <i>▶</i> 11.820 <i>▶</i> 20.700 <i>▶</i> 20.700 <i>▶</i> 1115.9 <i>▶</i> 0.919 <i>▶</i> 4.928 <i>▶</i> 3.856 	4.229 2.470 11.780 20.896 x=1 446 0.915 4.932 3.870	1.356 4.246 2.521 11.671 21.409 223 0.902 4.942 3.913	4.339 2.812 10.919 24.405 74 0.823 5.007 4.186
 ✓ 2.451 ✓ 11.820 ✓ 20.700 ✓ 20.700 ✓ 30.919 ✓ 4.928 ✓ 3.856 ✓ 9.423 ✓ 38.005 	4.229 2.470 11.780 20.896 x=1 446 0.915 4.932 3.870 9.344	1.356 4.246 2.521 11.671 21.409 223 0.902 4.942 3.913 9.116	4.339 2.812 10.919 24.405 74 0.823 5.007 4.186 7.544
 ✓ 2.451 ✓ 11.820 ✓ 20.700 ✓ 20.700 ✓ 30.700 ✓ 0.919 ✓ 4.928 ✓ 3.856 ✓ 9.423 ✓ 38.005 m, 	4.229 2.470 11.780 20.896 x=1 446 0.915 4.932 3.870 9.344 38.178	1.356 4.246 2.521 11.671 21.409 223 0.902 4.942 3.913 9.116 38.678	4.339 2.812 10.919 24.405 74 0.823 5.007 4.186 7.544 41.925
 ✓ 2.451 ✓ 11.820 ✓ 20.700 ✓ 20.700 ✓ 30.919 ✓ 4.928 ✓ 3.856 ✓ 9.423 ✓ 38.005 ✓ 1114.2 	4.229 2.470 11.780 20.896 x=1 446 0.915 4.932 3.870 9.344 38.178 445.7	1.356 4.246 2.521 11.671 21.409 223 0.902 4.942 3.913 9.116 38.678 222.8	4.339 2.812 10.919 24.405 74 0.823 5.007 4.186 7.544 41.925 74.3
 ✓ 2.451 ✓ 11.820 ✓ 20.700 ✓ 20.700 ✓ 0.919 ✓ 0.919 ✓ 4.928 ✓ 3.856 ✓ 9.423 ✓ 38.005 ✓ 1114.2 ✓ 1.039 	4.229 2.470 11.780 20.896 x=1 446 0.915 4.932 3.870 9.344 38.178 445.7 1.035	1.356 4.246 2.521 11.671 21.409 223 0.902 4.942 3.913 9.116 38.678 222.8 1.022	4.339 2.812 10.919 24.405 74 0.823 5.007 4.186 7.544 41.925 74.3 0.943
 ✓ 2.451 ✓ 11.820 ✓ 20.700 ✓ 30.700 ✓ 1115.9 ✓ 0.919 ✓ 4.928 ✓ 3.856 ✓ 9.423 ✓ 38.005 m, ✓ 1114.2 ✓ 1.039 ✓ 4.729 	4.229 2.470 11.780 20.896 x=1 446 0.915 4.932 3.870 9.344 38.178 445.7 1.035 4.732	1.356 4.246 2.521 11.671 21.409 223 0.902 4.942 3.913 9.116 38.678 222.8 1.022 4.743	4.339 2.812 10.919 24.405 74 0.823 5.007 4.186 7.544 41.925 74.3 0.943 4.809
 ✓ 2.451 ✓ 11.820 ✓ 20.700 ✓ 20.700 ✓ 0.919 ✓ 0.919 ✓ 4.928 ✓ 3.856 ✓ 9.423 ✓ 38.005 ✓ 1114.2 ✓ 1.039 	4.229 2.470 11.780 20.896 x=1 446 0.915 4.932 3.870 9.344 38.178 445.7 1.035	1.356 4.246 2.521 11.671 21.409 223 0.902 4.942 3.913 9.116 38.678 222.8 1.022	4.339 2.812 10.919 24.405 74 0.823 5.007 4.186 7.544 41.925 74.3 0.943
	2.52911.998	 ▶ 2.529 ▶ 11.998 ▶ 11.954 ▶ 21.692 ≥ 21.894 	 ▶ 2.529 ▶ 11.998 ▶ 11.954 ▶ 11.834 ▶ 21.692 ▶ 21.894 ▶ 22.423 ▶ 2.549

ε_2	▶ 32.740	32.899	33.354	36.319
For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{C}\mathbf{d}}$	l,			
$\eta_{p}\gg 1$	\ 1113.3	445.3	222.6	74.2
Egp1 in eV	> 1.090	1.085	1.073	0.994
n	▶ 4.642	4.645	4.656	4.723
κ	↗ 3.301	3.315	3.354	3.608
ε_1	▶ 10.647	10.591	10.429	9.293
ε2	↗ 30.647	30.799	31.235	34.083
T in K	20	50	100	300
1 111 10	/ 20	50	100	500