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ABSTRACT 

The paper gives an analysis of the basic definitions and manifestations 

of entropy processes in thermodynamics, mechanics and electrical 

engineering. As is well known, the concept of entropy for the first time 

was introduced as a function of state in thermodynamics. The 

definition of the concept for classical mechanics was introduced in the 

late 1990s. As concerns the exposition of various manifestations of 

entropy in electrical engineering and making comparisons with already 

known entropy definitions in other scientific fields is given in the 

present paper and was considered in some earlier publications of this author. This paper gives 

a brief overview of entropy in the former two scientific fields, while as concerns electrical 

engineering, it dwells on its justification and manifestations. It has been shown that the 

energy basis of entropy in electrical engineering is the reactive power of a circuit or device, 

and the entropy there has a negative sign, and is manifested as negentropy (information). 

During the operations of the magnitude of reactive power, we made comparisons of its 

different definitions for non-sinusoidal currents, ad as concerns further operations, we took 

the most adequate of its definitions, and we were able to prove that. Since entropy is always 

striving to reach an extremum – minimum or maximum – the paper and foremost proves that 

the basic quantity of electrical entropy, that is, the reactive power, is always striving to reach 

the minimal value defined by the voltages and currents found by Kirchhoff’s equations. As a 

result, we defined the electrical entropy as the time-dependent density of reactive power. In 
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comparison with the thermodynamic entropy, for the electrical entropy (negentropy) the role 

of the quantity of energy is played by the reactive power, the role of temperature, by the 

duration of the period of electrical current. Due to the action of negentropy, the necessary 

operating mode is established in an electrical device and its orderly character is being 

ensured. The specific examples of the transitions of devices into less probable states are given 

in the author’s other publications. 

 

KEYWORDS: Entropy, Negentropy, Carnot Cycle, Mechanical Action, Reactive Power.  

 

1. INTRODUCTION 

The concept of entropy was introduced by R. Clausius in 1856 as a function of state, which 

characterizes the process of transfer of the thermal energy. The further development and 

detailing of this concept led to the discovery of the second law of thermodynamics spread to 

the many branches of science. Naturally, the vast literature is devoted to entropy, as well as 

the law based on it. The part of the present article which gives a brief overview of that branch 

of science, uses as a source the following works (Kubo, 1968, Waldram, 1985, Isayev, 2000, 

Brillouin, 1963, Prigogine, Stengers, 1984, 1994). 

 

A. Hazen devoted his publication (Hazen, 1998) to entropy manifestations in classical 

mechanics. He has the priority in defining the entropy in that area as entropy-information and 

giving a mathematically strict proof both at the macro- and micro- levels. He had shown that 

the entropy-information is the quantity called the mechanical action defined as an integral of 

a force function, the Hamiltonian. This quantity has a probabilistic character due to the 

possibility of setting arbitrary initial conditions. He gave also its expression in the form of a 

logarithmic function similarly to Boltzmann’s thermodynamic probability. Basing on these 

discoveries, Hazen considered entropy phenomena in many areas far removed from 

mechanics as, for instance, shown in (Hazen, 2000).  

 

As concerns electrical engineering, if there were considered problems of entropy, it was done 

in two aspects only. The first and foremost one was the thermodynamics aspect manifested in 

registering the unavoidable loss of power, confirming an increase of entropy as the latter is 

commonly understood. Another aspect of these works was the use of electrical circuits, 

mostly resistant ones, to illustrate the minimums of the production of entropy according to I. 

Prigozhin, or the maximums of its production, according to L. Onsager (Martyushev, 

Seleznev, 2006). In some works the magnitude of entropy – thermodynamically understood – 
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served as a method for analyzing purely electrical engineering modes. (Landauer, 1975, 

Bruers, and al, 2007).  

 

All these studies were based on unavoidable resistor elements in electrical circuits and 

thermal losses in them. However, the reactive elements, that is, inductances and capacitors as 

well as valves (controlled and uncontrolled keys) are integral parts of circuits. These circuit 

components are least of all characterized by thermal losses (which ideally equal zero), but 

precisely the presence of these components in circuits forms the latter’s modes and makes it 

possible to use them beneficially. In an opposite case they would became simply the heating 

ovens which transform electric energy to thermal one. One could say that if an increase in 

entropy is related to the trend to achieve the most probable state, obtaining the special modes 

is a sign of their lesser probability and a reduction of certain entropy on the account of 

negative entropy – negentropy. In a number of works (Berkovich, Ioinovici, 1998, Axelrod, 

and al, 2005) it is assumed that the energy basis of the formation of negentropy is the reactive 

and valve elements which generate circulation in reactive power circuits. It was shown, in 

particular, in (Berkovich, 2022) that in order to ensure a periodical mode of transforming 

electrical energy in other forms besides heat, or to transform the latter’s parameters, there 

must exist the return of a part of power back to the network, or a storage similarly to 

equilibrium processes in thermodynamics. In other words, the validity of the second law of 

thermodynamics must be ensured. The publications (Berkovich, Moshe, 2021, Berkovich, 

2024) show the influence of an increase of circulation of reactive power on the 

synchronization of the modes in the Van der Pol oscillator, while in (Berkovich, 2024), its 

influence on the synchronization of chaotic modes in boost converters. Besides registering 

the influence of the reactive power on the formation of negentropy, the paper gives an 

estimation of its magnitude as the time density.  

 

Negentropy is information, that, as is known is defined as uncertainty eliminated. In natural 

phenomena there exists an approach to fix the eliminated uncertainty by that the influencing 

entity reaches an extremum. In the case of electrical circuits such entities are the reactive 

power or its time density. 

 

This paper has the following structure. The second section gives a brief overview of the basic 

elements of the thermodynamic entropy theory, the third, in the same vein, describes 

mechanic entropy according to Hazen. The fourth section is devoted to the extremal character 

of the magnitudes of the active and reactive powers as the main feature of their roles in the 
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manifestations of entropy in electrical engineering. The fifth section is devoted to 

justification of the substantiation of entropy as negentropy manifested in electrical 

engineering. The paper ends with conclusions and bibliography. 

 

2. Entropy in thermodynamics 

The processes of energy in thermodynamics are characterized by changes in corresponding 

coordinates of state. The production of mechanical work by a system is accompanied by 

changes in the coordinate of state that characterizes the system’s volume, while the chemical 

transformations, by changes in mass. The coordinate of the system’s state influenced by 

mechanical action is the pressure.  

 

In 1856 the German scientist R. Clausius introduced the quantity entropy (“change within” in 

Greek), which became the coordinate of state related to the transfer of heat. Eventually, this 

quantity expanded beyond thermodynamics and gained a fundamental value in a new 

scientific paradigm, information, and not only in its semantic form, but mostly in the 

descriptions of complex phenomena of living and inanimate nature and social life. The 

understanding of the physical meaning of entropy in thermodynam`ics meets with some 

difficulties due partially to the fact that it could not be measured with any device; however, 

the immense experience of its application confirms the correctness of its use. Below we 

consider this concept in more detail. 

 

Thermodynamics deals mostly with equilibrium (periodical) processes of cyclic character. An 

example of such a cycle is shown in Fig. 1.  

 

p

V

A    

D

B

C 

e f

Lc

 

Fig. 1: Thermodynamic cycle in the V-p plane. 



Berkovich.                                      World Journal of Engineering Research and Technology 

  

 

 

www.wjert.org                         ISO 9001: 2015 Certified Journal       

 

131 

The process takes its course on the “volume V – pressure p” plane. If the operating point is 

situated on the curve ADB, then the system produces work, the volume of gas on this 

segment increases, and the work is equivalent to the quantity of heat Q1 expended on this 

segment. On the reverse segment BCA, the work is negative, the volume of gas decreases, 

and the system returns the heat Q2. Had there existed the segment ADB only, the work would 

have been equaled the area of eADBf. At the same time work on the segment BCA equals the 

area of fBCAe. It means that the resulting positive work equals the difference of these areas, 

that is, the shaded part within the cycle. Basing on the amount of the expended and returned 

heat energy conversion efficiency would be equal. 

 

1 2

1

Q Q

Q



                 (1) 

 

Now consider the Carnot cycle, which is of special scientific and historical interest (Fig. 2). 

The segment AB is formed by the source of heat with the constant temperature T1, and the 

segment CD, by a receiver of heat with the constant temperature T2. So, both processes are 

therefore isothermal ones. 

 

On the segments BC and DA the temperature varies in the range from T1 to T2 and from T2 to 

T1 correspondingly without an exchange of heat, that is, in an adiabatic process. 

 

 

Fig. 2: Carnot cycle, a) – in the V-p plane, b) – in the S-T plane. 

 

It follows from the diagram p-V in Fig. 2а that on the segments AB and BC the working 

substance expands, while on the segments CD and DA compresses itself so that after the 

cycle ends, the volume and pressure assume the initial values. 
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Since, as was said earlier, the magnitude S of the entropy of the system is the function of state 

reflecting the transfer of thermal energy, this fact is expressed in the diagram on the plane TS 

(temperature-entropy) (Fig. 2b). Indeed, on the segment AB there a heat ingress at a constant 

temperature for producing work occurs, and the entropy increases from the value SA to the 

value SB. On another horizontal segment CD, there occurs a delivery of heat at a constant 

temperature, and the entropy reduces from the value SC to the value SD. No exchange of heat 

occurs on the two other segments, so the entropy does not change. 

 

The efficiency of the Carnot cycle is obviously defined by the formula 

    

(2) 

 

and since ( )B A C DS S S S   , then 

1 2

1

T T

T



               (3) 

 

that is, the efficiency depends only on the difference of temperatures. And the efficiency of 

that cycle is the greatest among the efficiencies of other cycles. 

 

The concept of entropy lies in the basis of the second law of thermodynamics. There are 

many formulations of that law, and they reflect the two its different aspects. The first aspect 

relates to the equilibrium (reversible) processes, while the second, to the non-equilibrium 

ones. When applied to the equilibrium processes, the law proves the existence of entropy, and 

when to the non-equilibrium ones, its growth in all the spontaneous processes. 

 

In the first case it is stated that for each thermodynamic system there exists a physical 

quantity (entropy) whose value depends on a state of the system. That is, it is a function of 

state and t changes only under the action of energy transferred in the form of heat. 

 

In the second case it is stated that the entropy of an isolated system under non-equilibrium 

processes always increases. This statement reflects the fact of the energy’s “degradation.” As 

concerns the process in the Carnot cycle, on the segments where the entropy changes, in 

particular the segment of the work of expansion the change of entropy in the general case 

would be equal. 
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Q
S

T
     (4) 

 

or in the increments 

Q
dS

T


              (5) 

 

Where the differences in notations in small letters emphasize that the increment in entropy is 

a full differential, while the increment in the quantity of heat is not a full differential. It 

follows from the fact that the integral over the closed curve of the Carnot cycle is 

0
Q

T


              (6) 

 

In non-equilibrium processes the transformation of work into heat is accompanied by 

transition of the system particles from an ordered movement into a disordered chaotic 

movement. The simultaneous increase of entropy makes it possible to assume that there is a 

connection with the degree of disorder in the system, or, with its thermodynamic probability. 

The thermodynamic probability is related to the mathematical probability and is equal to the 

number of micro-states which m of Boltzmann’ formula 

lnS k W      (7) 

 

where
231.38 10 / ok J K   is the Boltzmann constant which equals the quotient of the gas 

constant and the Avogadro number. 

 

As was noted above, the concept of entropy and the second law of thermodynamics based on 

it greatly influenced our understanding of the world surrounding us. First and foremost, it was 

the understanding of the irreversibility of time, the arrow of time, the probabilistic approach 

to the phenomena in complex systems, the adoption of the concepts of antientropy and 

negentropy. The negative entropy is considered as counteraction to the growth of entropy, 

disorder and to decreasing the growth of energy losses. 

 

Now, having at our disposal a brief reminder of the initial concept of entropy, which 

appeared as a state function in thermodynamics, we will consider how to define that quantity, 

and the role it plays in mechanics and electrical engineering. As concerns mechanics, it has 

been done in the works of A. Hazen, while the view of this problems in electrical engineering 

is presented in this paper. 
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3. Definition of entropy in mechanics 

One of the basic concepts of the classical mechanics is action. Action is written in various 

equivalent forms based on Hamilton’s principle of least action. If in the integral expression  

2

1

( , , )

t

i i

t

S q q t dt L                 (8) 

 

a certain force function L  is applied, then the actual dynamic trajectory of the system 

described by the force function L  can be determined by finding an extremum (usually a 

minimum) of the function S. It means that the independent of time variation  of the function 

S should be equal zero:

 2

1

( , , ) 0

t

i i

t

S q q t dt  L                 (9) 

 

and satisfy the boundary conditions 

1( ) 0iq t   and 2( ) 0iq t  for 1,2,3,..., .i N  

 

The dimension of action is determined by the dimensions of the quantities of the distance 

coordinate iq and the momentum iq , that is, 
2

[ ] [ ]i i

m m
S q q m kg m kg s J s

s s
          . The 

latter value of the unit of action follows directly from (8). 

 

As a force function in the integral in (8) the function of Lagrange, the Lagrangian, was taken, 

which is the difference of the kinetic qW and potential qW energies of the entire system: 

q qW W L               (10) 

 

If in the integral formula the force function of Hamilton, and not the Lagrangian, were taken, 

then we would obtain the Hamiltonian form of action. Hamilton’s force function is the sum of 

the energies of the given system: 

p qW W H ,                      (11) 

 

where pW is the kinetic energy which is a function of the momentums p, and qW  the potential 

energy, a function of the coordinates q. 
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The Hamiltonian makes it possible for a conservative system to find a system of N equations 

of the first order describing the dynamic system 

,i

i

p
q


 



H
 i

i

q
p





H
                     (12) 

 

As is known, by using the Legendre transformation, one can pass from the Lagrange force 

function to the Hamiltonian 

1

N

i i

i

q p


 H L                      (13) 

 

The action is a scalar quantity, which provides information on motion that depends on both 

deterministic values and also on random ones. In that sense the action – information – is the 

eliminated indefiniteness in the totality of probabilistic values or a stored choice from the 

random quantities set by the initial conditions. Therefore, the action in classical mechanics is 

a variable identical to entropy as a measure of information (Hazen, 1998). 

 

His work also emphasizes the fact that the Hamilton equations reflect the determinism of 

natural processes, and that would be possible under the condition of reversibility of time, 

what cannot be accepted in modern science. In order to solve these equations, initial values 

should be set, and the accuracy of their arbitrary setting is always finite, so they introduce 

randomness. This fact makes it impossible to find the regularities in the reaction of a complex 

system to the random initial conditions by directly analyzing the latter. However, the initial 

conditions for a system of ordinary differential equations, (12) in particular, determine the 

magnitude of the constants of integration. These constants must themselves contain the 

reaction of the concrete system described by these differential equations. They contain the 

regularities of the response of the systems to random initial values. 

 

According to (Hazen, 1998), it is possible to establish regularities common to very different 

random initial values by replacing an analysis of initial values with an analysis if the 

constants of integration. By the order of magnitude the number of integration constants do 

not differ from the number of values that should be set as initial values. The transition to 

analyzing the integration constants makes it possible, avoiding the finding of solution of the 

differential equation without knowing their initial conditions, to find a single-valued function 

of random initial values for Hamilton equations. In order to define this function, there is no 
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need to solve a system of Hamilton equations, and to know its concrete initial values. Such 

opportunity is provided by the Hamilton-Jacobi equations, 

 1 2

1 2

, , ,..., , , ,..., 0G G G G
l

l

S S S S
Ht q q q

t q q q

    
  

    
              (14) 

 

The action SG from this equation is determined with the accuracy up to an additive constant 

as a function of time t, the coordinates iq  and integration constants. This fact shows that in 

classical mechanics the action is in reality a function of random values. Since it satisfies the 

variation principle, it is an extremum of a function of random values, therefore it could 

simultaneously be a, measure of information about the system, that is, action – entropy – 

information, whose extremum sets a mechanical trajectory. The memorizing necessary for 

information-action synthesis is being brought about as a consequence of the extremal 

condition. 

 

It is important to emphasize that the measure of the amount of information is defined as a 

hierarchical variable, and every next hierarchical step of that growth increases the total 

entropy. But the magnitude of an hierarchical step decreases exponentially. 

 

If in mechanics the action is the measure of information, there must exist its formulation in 

the form (4), as well as (7), that is there must be a possibility to write down the action in the 

form 

lnkS K                (15) 

 

Where the factor kK  must have the dimension of the action and be an adiabatic invariant of 

the system. If  are the probabilities in the form of real numbers, then (15) is the form of 

definition of entropy according to Gibbs, which is negative, since the probabilities are less 

than one, while the number of states is greater than one. (Hazen, 1998) proved that writing 

down the action in the form (15) leads to the Schrodinger equation with respect to a new 

unknown function of probability ψ. As a result, we see that the Schrodinger equation is a 

normalizing condition for the action to be entropy-information, defined by the Hamilton-

Jacobi equations. 
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4. Optimization of the consumption of the active and reactive power in electrical 

devices 

4.1. Introduction. This section of the present paper on entropy in electrical engineering is 

devoted to extremal processes, since these processes always accompany the phenomenon of 

entropy, and largely determine it. Indeed, the natural criterion of increasing thermodynamic 

entropy, entropy-information in mechanics, and negentropy in electrical engineering is their 

reaching some extremum. In thermodynamics and mechanics, these processes are well-

worked on, so in this section we will deal with the optimization aspect of power consumption 

in electrical circuits and devices, namely, in valve inverters. For the direct current circuits, 

this phenomenon was known even in the early period of the formation of the theory of 

electrical engineering, and is used in various optimization models, as, in particular, is a model 

used to illustrate the principle of the minimum of entropy production (I. Prigozhin’s 

principle), or of the maximum of entropy production (L. Onsager’s principle). For the 

alternate current, the processes of transfer of power, especially in the circuits with non-

sinusoidal voltages and currents are far more complicated, and additionally, they are related 

to the problem of most adequate definition of the concept of reactive power. Therefore, the 

present paper puts the main focus on dealing with the optimization of reactive power, but due 

to methodological considerations, and for getting acquainted with the basics and proving 

technique, we first consider the optimization of consumption of the active power in the direct 

current circuits. 

 

4.2. Optimization of the consumption of active power in DC circuits. In order to prove the 

minimization, we apply the Lagrange method (Dennis, 1959), used in the search of optimums 

of functions of many variables. Let a DC circuit be given that consists of m branches and n 

nodes whose branches contain sources of emf, Ei and the resistors Ri, (i=1…m). Let A be a 

truncated incidence matrix of the circuit, E, R, I are respectively the emf matrix, the matrices 

of resistors and currents in branches,   is the matrix of n-1 independent potentials of the 

nodes of the circuit. 

 

Let us compose a target function of power for the DC circuit:  

1
( )

2

T T

DCF I I RI E I                                 (16) 
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The circuit under consideration has m independent variables 1 2[ , ,..., ,.., ]i mi i i i i , for which 

there exist n-1 independent limiting conditions 

( ) 0jf i  ,              (17) 

 

Where j=1,2,…,n-1.Obviously, in our case the limiting conditions are n-1 equations of 

Kirchhoff’s first lawу for n-1 independent nodes. According to Lagrange’s rule each limiting 

function jf must be multiplied by j , the factor, which is the potential of each node j, and all 

these potentials are factors forming the matrix 1 2[ , ,..., ,.., ]j n     . The obtained result 

( )T f i must be added to the target function (16). The result gives the Lagrange function 

( , ) ( ) ( )Ti F i f i                  (18) 

 

By differentiating (18) and comparing the result to the limitations (17), we get the Lagrange 

problem: to find such values of i and , that ( ) 0jf i   and 

( ) ( ) 0TF i df i                        (19) 

 

Here ( )F i  is the gradient of the target function, and ( )df i , the differential of the 

transform ( )f i . The rule of the Lagrange multipliers states: 

1. If i provides for a local minimum of the function ( )F i , then there exists such a vector , 

that ( , )i   is a solution of the Lagrange problem. 

2. If ( , )i  is a solution of the Lagrange problem, and ( )F i  is concave, and the admissible 

set is convex in the vicinity of the point i , then i provides a relative minimum of the 

function ( )F i . 

 

Let us prove the following theorem for the present DC circuit. 

Theorem1. The target function ( )DCF I reaches minimum if the matrices of the currents I and 

potentials   are found on the basis of Kirchhoff’s laws. 

 

Proof. Let us make use of the method of Lagrange multipliers. As the limiting conditions, we 

will take n-1 equations of the first Kirchhoff’s law  

0AI  ,             (20) 
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while the matrix  of n-1 independent potentials of the circuit nodes will form the matrix of 

Lagrangian multipliers. As a result, we get the Lagrange function 

1
( ) ( )

2

T T T

DC I I RI E I f i                       (21) 

 

Successive differentiations of the Lagrange function according to (19) with respect to each 

current of the branch Ii have the form 1i i i j jI R E      , which are conforming to 

Kirchhoff’s second law for each branch, that is, 1 0i i i j jI R E       . Thus, I and  are 

solutions of Lagrange’s problem, therefore he function ( )DCF I reaches a minimum. The 

theorem is proved. 

 

If there is a DC circuit consisting of m branches and n nodes, whose branches contain current 

sources Isi and resistors with the conductivities Gi , (i=1…m),then for such a circuit the target 

function will assume the form: 

1
( , )

2

T T

DC R s R R s sF V V V GV I V  
  

                 (22) 

 

Where , , ,s R sI G V V  are the corresponding matrices of current sources, conductivities of 

resistors, voltages on the resistors and current sources. For this circuit the following theorem 

is valid. 

 

Theorem 2. The target function ( , )DC R sF V V reaches a maximum if the matrices of voltages 

,R sV V are determined on the basis of Kirchhoff’s laws. 

 

Proof. The proof is similar to that of Theorem 1. However in this case the limiting conditions 

are 1k m n    equations if Kirchhoff’s second law and the Lagrange multipliers are m 

currents in the branches.  

 

Theorems 1 and 2 form two dual descriptions of elcectric circuits. If in these circuits the 

current sources are obtained by equivalent replacements of the voltage sources, and vice 

versa, then the absolute values of the target functions (16) and (22) are equal, or 

( ) ( , ) 0DC DC R sF I F V V  . 
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To illustrate the minimization of the target function of the power ( )DCF I , consider a circuit of 

three resistance branches (Fig. 3a) for a known current through one of the resistors (R3). 

 

C=100mF R4WE=25sin(wt)V

L=0.05H

ILm=1.592A

ICm=0.198A

IRm=1.579A

b)

R2=8W R3=4W

E1=25V

E3=5V

E2=6V

R1=5W

I1=2.56A

I2=0.772A

I3=1.79A

a)
 

Fig. 3: Two diagrams to illustrate optimization of a) active and b) reactive power. 

 

The illustration will be shown on a three-dimensional plot, where on the axis x will be 

presented the multitude of the possible currents through the resistor R1, on the axis y will be 

presented the multitude of the possible currents through the resistor R2, and on the axis z, the 

corresponding values of the target function ( )DCF I . The values of x will range in the interval 

3 0.15x k    for 1,2,...,100k  , and 4 0.05y m   , where 1,2,...,110m  . The result is 

shown in Fig. 4a, from which we see that the target function of the power ( )DCF I (the axis z) 

assumes the minimal value for such currents in the branches of the circuit which are defined 

by Kirchhoff’s laws (the currents are quoted in Fig. 3a). Fig. 4b illustrates the maximization 

of the target power function ( , )DC R sF V V in the same circuit under the same conditions. 

 

 

Fig. 4: Three-dimensional graphs of power consumption optimization in a resistive DC 

circuit Fig. 3a; a) – minimization of power in the circuit E, R, I; b) – maximization of 

power in the circuit , , ,s R sI G V V . Indications for a) : X=2.58, Y=0.8, Z=39.64. Indications 

for b): X=13.05, Y=6.2, Z=25.24. 
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4.2. Optimization of the power consumption in circuits of alternate current. Analyzing 

the optimization of power consumption in alternate circuits is burdened with additional 

difficulties due to the presence of reactive elements and the changes of voltages and currents 

with time. However, an analysis of the processes on the level of instantaneous values makes 

it similar to the consideration of similar processes in the DC-circuits. Let us consider the 

result of power optimization using the example of an AC circuit Fig. 3b. A solution of these 

circuits gives the following values of currents and powers - Table 1. 

 

Table 1. 

 Current and power in an inductor Current and power on the capacitor Current and power on the resistor 

1 1sin( );miL IL tw    m 2sin( );iC IC tw    3sin( );miR IR tw    

2 

2

1

1

sin( )

cos( );

mqL IL L t

t

w w 

w 

   

 
 

2

2

2

(1/ )sin( )

cos( );

mqC IC C t

t

w w 

w 

    

 
 

2 2

33sin ( )mpR IR R tw   

1 1sin sin( );p E t IL tw w      

3 11.592; 1.317;mIL     
m 20.198, 0.128;IC    

m 6,317, 1.442;vcVC     

31.579, 1.442.

314(1/ )

mIR

s



w

  


 

 

This makes it possible to compose a target function for a moment of time as follows: 

2 2

2 2

1 1
sin( / 2 1.317) cos( / 2 1.317) (1/ )sin( / 2 0.128)

2 2

1
cos( / 2 0.128) 1.579 sin ( / 2 1.442) sin( / 2 1.317).

2

Z X L Y C

R E X

w   w 

  

        

        
          

(23) 

 

Here X and Y are chosen by the program from the sequences, respectively, 1 0.02x k    

for 1,2,...,140k  , and 0.5 0.02y m   , where 1,2,...,140m  . The result of the analysis is 

shown in Fig. 5a. The target function of the power ( )ACF I Z (the axis z), calculated for the 

amplitude values of the magnitudes of currents assumes the minimal values at such values of 

currents of the currents in the branches of the circuit, which are defined by Kirchhoff’s laws 

(they are also given in Fig. 3b). Up to the present, we determined the instant values of various 

magnitudes, including the magnitudes of powers. We now will show that the minimization of 

power is also spread to the value to the reactive power in the definition which is accepted for 

the reactive power common for sinusoidal circuits. 

 

To prove that, we will compose two target functions – Zq  for the reactive power and 

separately Zp  for the active power, each applied for the integral values of powers. For the 

reactive power: 
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2 2

1 1

1 1
(1/( ) sin( )

2 2
Zq X L Y C E Xw w                   (24) 

 

For the active power: 

2

3 1 1

1
cos( )

2
Zp s R E s                 (25) 

 

The quantities X, Y and s will run over the values 1 0.02 ,x k    for 

1,2,...,140k  , 0.5 0.02y m   , where 1,2,...,140m  , and 1 0.02s n    for 1,2,...,175n  . 

 

The results of the analysis of the target function (24) are given in Fig. 5b, from which it 

follows that the formula 1 1sin( )E X  assumes the minimal value equaling 36.02VA (for 

amplitude values of the magnitudes X=ILm=1.56A, Y=ICm=-0.2A), and defined by the 

reactive powers of the two reactive components of the circuit, the inductivity L and 

capacitance C. 

 

Indeed, according to the classical formula (for the effective values of the quantities)  

1

1
sin( ) 19.26

2
mQ E IL VA   . So, it is proved that the reactive power assumes the minimal 

value for the electric quantities defined by Kirchhoff’s laws. The target function (25) for the 

active power is a function of one variable,  

 

 

Fig. 5: Three-dimensional graphs of power consumption optimization in the RLC AC 

circuit Fig. 3b; a) – minimization of power in the circuit for instantaneous values; b) – 

minimization in the circuit for reactive power values. Indications for a): X=1.56; Y=-

0.2; Z=-4.96. Indications for b) : X=1.56; Y=-0.2; Z=-18.01.
 

 

Therefore, in order to find its extremum, it suffices to plot the function ( )Zp f s . Such a 

plot is given in Fig. 6, from which one can see that the target function, the active power, 
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reaches its minimum at s=1.58, that is for the current through the resistor IRm=1.57A, which 

was defined earlier by Kirchhoff’s laws, And the active power defined as 

1

1
cos( ) 4.99

2
mP E IL W   . The differences between the calculated values and the results 

of the modelling are minimal ones. 

 

 

Fig, 6: Graph of minimization of the objective function of active power in the circuit 

Fig. 3b. 

 

4.3. Optimization of the power consumption in Buck converters. Here we will consider a 

classical buck converter shown in Fig. 7a, where the curves of the basic value are given in 

Fig. 7b. Note that the average value of the output voltage o inV DV , and the average value of 

the input current in oI DI (D is the duty cycle). 

 

The changes in the input power are shown in Fig. 7c. We can see that the power from the 

source is consumed only when the switch is open, and it consists of two parts. The lower one 

is the output power Po on this segment, while the upper, PL+ is the power accumulated in the 

inductivity which will be given back to the load on the next segment, PL-. Fig. 7d shows the 

pulsations of power on the inductivity due to which the accumulation of power and its return 

to the load occur. 

 

After the next activating of the switch, the inductivity current changes from a certain minimal 

value
minLI to the maximal one,

maxLI and the increment of current will be ( ) /L in o sI V V DT L   . 

This increment ensures the accumulation of energy 2 2

max min
(1/ 2) (( ) ( ) )L LW L I I  in the 

inductivity. Taking into account that
max min

(1/ 2)( )L L LI I I  , max min
( )L L LI I I   , where LI -
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is the average value of the inductivity current, L oI I . Finally after some simplifications, we 

get 

1L in LP V D DI              (26) 

 

 

 

In the next computer experiments for a buck converter we assume the following parameters: 

Vin=20V, 100L Hm , 5C Fm , 1R  W , f=50kHz, D=0.6.Now we can write down a target 

function with respect to the active power consumed by the converter: 

21

2
L in LZp I R V I D                (27) 

 

In order to obtain the target function with respect to the reactive power consumed by the 

converter, which is set by the pulsations of inductivity current, we write an analytical 

expression of this pulsation. To do so, we write an analytical expression of that pulsation. We 

will use a sawtooth function of the form ( ) / ( / )s sramp t t T floor t T  and commutation 

functions d for the closed switch and 1d for the open one. In addition, we introduce the 

followingnotation: 1 1 1 1/ , /L s RL in LR L DT I V D R  , 
2 1 2 2 1/ , / ,L s RL in L RL LR L DT I V D R I IR   . 

Here 1LR , 2LR are some conventional resistors. Let us form two sawtooth functions which 

describe the increasing and decreasing parts of a pulsation of the current: 1 ( )t ramp t d   and 

12 ( )st ramp t DT d   . Then the increasing part of the current’s pulsation will be written in 

the form 1 1( 1/ 2) ( / )L RL RLi I t D I     , and the decreasing part, 

2 2(1/ 2) ( / 1)L RL RLi I t D I    , and the whole pulsation curve will be written down as 
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1 2 1L L Lp
i i d i d  . The voltage on the inductivity is evidently equal 1( )L in o ov V V d V d   . The 

curve of the current pulsation obtained, which was built by the Matlab program, that used the 

above given expressions is shown in Fig. 8a. 

 

Basing on the above analysis, we can compose a target function for the reactive power of the 

pulsations of the inductivity current. It will be look as follows:  

2 2

1 2

1 1

2 2
RL L RL L in RLZq I R I R v I                 (28) 

 

The expressions (27) and (28) make it possible to write down a general target function for 

two kinds of power, the active and reactive ones: 

2 2

1 2

1 1
( )

2 2
L in L RL L L in RLZ I R V I D I R R v I                       (29) 

 

Assuming that the magnitudes of the currents LI and RLI  run through the respective values 

8 0.06 ,x k   where 1,2,...,400k   and 1 0.02y m   , where 1,2,...,400m  , we get a plot 

of the changes in the target function (29)14, and the minimal values of the currents LI and 

RLI , which form respectively, the minimal values of the active and reactive powers in Fig. 8b. 

 

 

Fig. 8: The shape of the inductor current pulsation - a), three-dimensional graph of 

optimization for the active and reactive power consumption in the Buck converter - b). 

Indications for b) - X=12.08; Y=0.92; Z=-81.58. 

 

Now consider separately two target functions, (27) and (28). They are functions of one 

variable, LI  in the first case, and RLI in the second. Their plots are given in Fig. 9a and 

Fig.9b. From the data in Fig.8 based on the modeling results, we see that the 

current 12.08LI A , 0.92RLI A as compared, respectively, with the calculated 12A and 
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0.96A. The plot in Fig. 9a confirms the value LI , (k=67, x=12.02A) and the minimal value of 

the active power 144P W . In its turn, the plot in Fig. 9b gives the value 0.96RLI A , 

(m=98, y=0.96A) and the minimal of the reactive power 19.2Q VAr . Returning to Fig. 8, 

where the value of the half of the total power is 81.58Z  1, from the plots in Fig. 9 we find 

that 
1

72
2

P W and 
1

9.6
2

Q VAr  summarily give 81.6Z  . 

 

As is known, the reactive power is determined by the area of the phase portrait of the voltage 

and current that for the former divided by 2 . Such phase portrait is shown in Fig. 9c. It is 

obvious that its area is found by multiplying inV by RLI . Precisely the same product is formed 

by the quantities which form the minimized value of power in the formula of the target 

function (27). From this, two important conclusions can be made (see also below Section 

5.2). 

 

1. In a buck converter, the circulated reactive power assumes the minimal value. 

2. The magnitude of the minimized reactive power is equal to the area of the rectangle 

formed by the magnitude of the input voltage and the doubled amplitude of the pulsation 

current divided by 2 . This means that that the most adequate description of the reactive 

power is given by F. Emde (Emde, 1921,1930, Mayevsky, 1978, Krogeris, and al., 1993, 

Berkovich, 2022): 

sink k k k

k k

Q kV I kQ                 (30) 

 

Where ,k kV I are the effective voltage values on the inductivity and the pulsation current on it, 

k  is the angle of phase shift between them, k is the number of the harmonic of these 

magnitudes. 
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Fig. 9: Graphs of active power minimization– a), reactive power minimization – b), 

phase portrait of voltage and current on the inductance-c). 

4.4. Optimization of power consumption in a Boost converter. Using the same approach 

as in the case of buck converters, we will consider the processes in a conventional Boost 

converter (Figs. 10a-d). Note that the average value of the output voltage is /(1 )o inV V D  , 

the average value of the input current, /(1 )in oI I D  , where Io is the current of the load R. 

 

The character of the changing of the input power is given in Fig. 10c. We see that the power 

from the source is transmitted directly into the load only when the switch is opened. When it 

is closed, it consists of two parts where the lower one comprises the output power Po on that 

part, while the upper PL+ reflects the power stored in the inductivity, which will be returned 

to the output capacitor when the switch is opened. When the switch is closed, it is transferred 

to the load on the interval PC_. Fig. 10d shows the pulsations of power on the inductivity, due 

to which the accumulation of power and its return to the capacitor and load occur. 

 

The following parameters will be assumed for the next computer experiments with a boost 

converter: Vin=20V, 100L Hm , 25C Fm , 5R  W , f=50kHz, D=0.75. Let us write down 

the target function with respect to the active power consumed by the converter: 

21
( /(1 ))

2
o in oZp I R V D I                (31) 

 

To obtain a target function with respect to the reactive power consumed by the converter and 

set by a pulsation of the inductivity current, to describe the pulsation, we will use the same 

expressions as in Section 3. The necessary additional notations will have the following form: 

1 1 2 1/ , / , /L s RL in L L sR L DT I V R R L DT   . Here 1LR , 2LR  some conventional resistances. The 

toothsaw function obtained, which describes pulsations on the inductivity, is given in Fig. 

11a. 
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Now the target function for the reactive power of the pulsation of inductivity current will 

look as follows: 

2 2

1 2

1 1

2 2
RL L RL L L RLZq I R I R v I                 (32) 

 

The expressions (31) and (32) make it possible to write a common target function for the two 

kinds of power, the active and reactive ones: 

2 2

1 2

1 1
( /(1 )) ( )

2 2
o in o RL L L L RLZ I R V D I I R R v I                     (33) 

 

Assuming that the magnitudes of the currents oI and RLI run over the respective values 

4 0.055 ,x k   for 1,2,...,400k   and 1 0.04y m   , where 1,2,...,400m  , we get a plot 

of the target function (33) and the minimal values of the currents oI and RLI , that form 

respectively the minimal values of the active and reactive powers: Fig. 11b. 

 

Now let us consider the functions (31) and (32) separately. They are functions of one 

variable, oI , in the first case and RLI , in the second case. The plots of the two target 

functions, (31) and (32) are given in Fig. 12a and Fig. 12b. Considering the data in Fig. 11, 

presenting the results of modeling, it is seen that the current 15.99oI A , 3RLI A  in 

contrast to the respective calculated values 16A and 3A. The plot in Fig. 12a confirms the 

value oI , (x=16.05A) and the minimal value of the active power 1280P W . 
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a) b)

iLp

k,(t)

X

Y    

Z

 

Fig. 11: The shape of the inductor current pulsation – a), three-dimensional graph of 

optimization for the active and reactive power consumption in the Boost converter - b). 

Indications for b) - X=15.99; Y=3; Z=-760. 

In its turn, the plot in Fig. 12b gives the value 3RLI A , (Y=3A) and the minimal value of the 

reactive power 240Q VAr . 

 

 

Fig. 12: Graphs of active power minimization– a), reactive power minimization – b), 

phase portrait of voltage and current on the inductance-c). 

 

Returning to Fig. 11b, where the value of the half of the total power equals 760Z  , from the 

plots in Fig. 12 we find that 
1

640
2

P W and 
1

120
2

Q VAr  give summarily 760Z VA . The 

phase portrait of the current and voltage on the inductivity is shown in Fig. 12с. 

 

It is evident that its area is determined by the product of oV by RLI , and the reactive power is 

found by dividing this area by 2 . Precisely the same product is formed by the quantities that 

give the minimized value of power in the formula of the target function (32). All the 

conclusions made in Section 3 conserning the finding of powers remain valid also for a boost 

converter. 
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5. Entropy in electrical engineering 

5.1. Introduction. If an electrical circuit has only a purely resistive load, it means that the 

electrical energy is being transformed in the heat energy with all the possible consequences of 

the formation and increase of entropy. And there is absent a possibility of controlling or 

transforming of the parameters, as well as of transforming the electrical energy to other 

energy forms. For transforming the parameters of voltage and current transformers are used, 

whose circuits are collections of inductivities. The same could be said on electrical motors of 

alternate and direct currents. To transform the kinds of electric current, its frequency and 

other parameters, the electrical circuits include various valve transformers – rectifiers, 

inverters, frequency converters and DC-converters. 

The presence of inductivities and capacitors in the circuits is an evidencet that the reactive 

power circulates in these circuits. The same effect of the consumption of reactive power is 

observed in valve transformers and converters. Besides, due to the presence of controlled 

semiconductor components in these devices additional opportunities of parameter regulation 

come into being by their periodic activating and deactivating. 

 

Thus, the circulation of reactive power makes it possible to lead an electric circuit from the 

most probable state of transforming electric energy to the thermal one, decrease the growth of 

entropy, but also get far less probable working modes. This means also that an electric circuit 

obtained a considerably greater information content. 

 

All the said, makes it possible to assume that the reactive power introduces negentropy into 

an electrical circuit, due to which entropy is being reduced, and a growth of information in 

the functioning of the circuit is obtained. 

 

5.2. On the definition of reactive power. The concepts of powers in electrical circuits and 

especially of reactive power have been the subject of discussion during the whole course of 

the development of electrical engineering. The main mover of these searches was the wish to 

find a deep physical meaning in the quantities of reactive (or non-active) power except the 

fact of its exchange between the source and the load. Below we give a brief survey of these 

stages according to researchers (Krogeris, 1993). 
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In the case of a purely sinusoidal current, these concepts were formed by the end of the 19th 

century as was proposed by C.P Steinmetz: the active power P, reactive power Q and 

apparent output S, with valid 

cosP V I  , sinQ V I  , S V I ( 2 2S P Q  ),               (34) 

 

Where , ,V I  are, respectively, the acting values of voltage, current, and the phase angle 

between them. However, soon it became clear that his methodological approach is unsuitable 

for non-sinusoidal voltages and currents, and for practical needs the approach proposed by 

C.I. Budeanu was accepted: 

2 2 2 2sin ,k k k

k

Q V I S P Q T    ,                   (35) 

 

Where hete T is the power of distortions, k, the number of a harmonic, φk the phase angle for 

the k- th harmonic. 

 

However, the discussions on the physical nature of orthogonal components of non-active 

character continued and led to new studies. S. Fryze proposed to keep orthogonal components 

avoiding harmonic components. The approach proposed by Fryze was developed in many 

subsequent works. In particular, in 1950 F. Buchholz expanded Fryze’s approach on 

multiphase circuits. Buchhoz’s approach was further developed by M. Depenbrock, and was 

named the FBD approach (Fryze, Buchholz, Depencrock). 

 

No special attention was paid to the concept of Entohmung (de-Ohmization) proposed by F. 

Emde in 1930 (Emde, 1930) which is set by the following relation between the input 

voltage sv  and the current si : 

1

2

s s
s s

di dv
M v i

dt dt

 
  

 
                    (36) 

 

For purely sinusoidal input voltage and current 

sinM VI Qw  w               (37) 

 

is valid, where Q is identical to (34), and w  is the angular frequency. For non-sinusoidal 

voltages sv  and current si , we get 

sink k k k

k k

M kV I kQw  w                      (38) 
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where ,k kV I  are the effective values of the k -th harmonic of voltage and current, k - is the 

phase angle between them, w  is still the angular frequency of the first harmonic. Thus, the 

reactive power is equal 

M
Q

w
  или 

2 Q
M

T


                      (39) 

 

At the same time, for finding the magnitude of the reactive power Q  defined in (36) the 

integral methodизвестен также интегральный метод (Emde, 1921, Mayevsky, 1978, 

Berkovich, 2022) 

0

1

2

T

Q idv


    или 
0

1

2

T

Q vdi


                       (40) 

can also be used. 

 

The minus sign before the integral is taken for that the positive value of Q corresponded to 

the consumption of reactive power, and for its generation, the negative one. On the basis of 

(40), integrating with respect to voltage on the whole of the contour of the volt-ampere 

characteristic ( )s si f v , we get that the reactive power is equal to the area within the curve 

divided by 2 . Using the definition (40) of the reactive power, we can avoid seeking for the 

harmonic composition of the voltage and current. Note that the magnitudes of the reactive 

power according to (38) or (40) are equal. 

 

In addition, the features of the quantity M, which confirm its greater usefulness for finding 

the reactive power in the cases of non-sinusoidal voltages and currents have been considered 

in (Berkovich, 2024), where its connection with energy functions, in particular , with the 

Lagrange function, the Lagrangian, is illustrated. Another strong proof of that fact is that the 

reactive power thus defined is strictly minimized in electrical circuits as is shown in Section 

4. 

 

5.3. On the definition of negentropy. In the introduction to this section it was shown that 

the reactive power lies in the basis of negentropy effect, we will now consider the definition 

of the quantity called negentropy. Indeed, the same magnitude of the power may be observed 

at various frequencies, thus making it impossible to compare its actions. Therefore, this 

quantity should be normalized with respect to the time, in other words, one should compare 
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its action by the magnitude of the reactive power time density. To do so, we already have the 

quantity M in (36), that is, the magnitude of the electrical negentropy SE нis evaluated either 

by  

2
E

M
S


                (41)

 

or  

E

Q
S

T
                       (42) 

 

This formula is similar to formula (4) for thermodynamic entropy in Section 2, and here the 

role of energy is played by the power, while the role of temperature, by the duration of a 

period. Like the mechanical entropy-information, the electrical negentropy is minimized. The 

action of the negentropy thus defined on the regularization of the processes in electrical 

circuits has been tested on the processes in the Van der Pol oscillator. (Berkovich, Moshe, 

2021) for the working of this oscillator on the tunnel diode (Berkovich, 2024), and on 

synchronization in various modifications of Boost converters (Berkovich, 2024).  

 

Formula (42) describes the magnitude of the electrical negentropy for a macro state of a 

system. In order to fully compare electrical negentropy with thermodynamic and mechanical 

ones, one must find its probabilistic form, that is, its description on the basis of microstates of 

a system. Here it may be noted that Hamilton’s principle, the force functions of Hamilton and 

Lagrange developed for mechanics are also being efficiently applied in electrical engineering, 

for instance in (Berkovich, 2020). Due to this, their use in mechanics for finding the entropy 

equation in a logarithmic form (15) makes it reasonable to search for such a formula for the 

electrical entropy. However, this search calls for additional research. 

 

Concluding this section, we give a comparison Table 2 of the basic quantities describing 

entropy forms in thermodynamic, mechanical and electrical engineering systems. 

 

Table 2: Comparison of the entropy phenomenon in thermodynamics, mechanics and 

Electrical Engineering. 

Electrical Engineering Mechanics Thermodynamics 

Energy base 

Electric and magnetic fields Gravitational field Energy of molecules chaotic motion  

Basic coordinates and quantities 

Current (flux linkage) Distance coordinate Volume 
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Voltage (charge) Pulse magnitude Pressure 

Time The reciprocal of time Temperature 

Power Energy Energy 

Power on resistor - Work 

Power on inductance - Internal energy 

Parameter M - Universal gas constant 

Coefficient K - Volumetric heat capacity 

Expressions of entropy 

,e

P
S

T
  

2

1

( , , )

t

i i

t

S q q t dt L
 ,

Q
dS

T


 ,

Q
S

T
  

Note. The resistor R, inductivity L, the constant M, and the coefficient K are the parameters 

of an electrical model of ideal gas (Berkovich and al., 1998).

 
 

 

 

 

CONCLUSIONS 

1. This paper gives a brief overview of basic characteristics of entropy in thermodynamics 

and mechanics, as well as basic definitions of entropy in electrical engineering.  

2. The concept of entropy was introduced in thermodynamics as a function of state 

characterizing the transfer of heat. This concept formed the basis for the second law of 

thermodynamics. The law consist of two parts; for equilibrium processes it states the 

existence of entropy, and for non-equilibrium ones, states the principle of the increase of 

entropy. 

3. Entropy is a physical quantity operating with uncertainties, therefore in the present 

probabilistic world it turned out to be in demand in various fields of science.  

4. It has been shown that in classical mechanics the role of entropy is played by the quantity 

called action. It is entropy for macro-states of a system, and it has been simultaneously 

proved that the entropy can be also represented in the form of its micro-states. 

5. We have given a definition of entropy in electrical engineering. We have preliminarily 

considered extremal phenomena in the consumption of of the active and reactive power in 

electrical circuits as the most important manifestation of entropy.  

6. At the same time the form of a mathematical expression which most adequately defines 

reactive power for non-sinusoidal modes 

7. It has been shown that the entropy in the electrical circuits with reactive elements or 

switches has the negative sign, thus being negentropy. 
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8. This paper gives a brief overview of research papers that illustrate operations with the 

magnitude of entropy in electrical circuits for improving the quality of their functioning. 
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