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ABSTRACT 

This study presents an improved channel estimation technique for 

MIMO-OFDM systems using a Hybrid Neural Network (HNN) 

architecture. The proposed model combines dense layers with ReLU 

activation functions to effectively learn and predict channel state 

information (CSI) from pilot-assisted input data. Simulations were 

conducted in MATLAB to benchmark the HNN against traditional 

estimators Least Squares (LS) and Minimum Mean Square Error 

(MMSE). Results demonstrated a significant reduction in Mean Square 

Error (MSE), from 0.012 (LS) and 0.0058 (MMSE) to just 0.0021 at an 

SNR of 20 dB. Similarly, the Bit Error Rate (BER) drops from 0.16  

at 0 dB to 1.2×10⁻⁵ at 40 dB with the HNN. In terms of throughput, the hybrid approach 

Throughput increases from 0.7 bps/Hz at 0 dB to 6.6 bps/Hz at 40 dB LS and MMSE. 

These improvements highlight the potential of neural network-based estimators to deliver 

more robust and efficient performance in modern wireless communication systems, especially 

under challenging channel conditions like fading and noise. 
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1 INTRODUCTION 

Over the years, wireless communication has rapidly evolved, with MIMO-OFDM systems 

emerging as a popular choice due to their ability to deliver high data rates and improved 

spectral efficiency. Nevertheless, the constantly changing nature of wireless channels makes 

accurate channel estimation essential to ensure reliable system performance (Goldsmith, 

2005). Traditional channel estimation techniques such as Least Squares (LS) and Minimum 

Mean Square Error (MMSE) have long served as the foundation for MIMO-OFDM systems. 

However, these methods often face challenges when dealing with non-linearities and rapidly 

changing channel conditions (Ye et al., 2018). To address these increasing demands, 

Multiple-Input Multiple-Output (MIMO) and Orthogonal Frequency Division Multiplexing 

(OFDM) have become cornerstone technologies. Their ability to enhance spectral efficiency, 

increase system capacity, and provide robust performance in multipath fading environments 

makes them critical for the evolution of next-generation wireless systems (Goldsmith, 2005; 

Tse & Viswanath, 2005). Traditional channel estimation techniques such as Least Squares 

(LS) and Minimum Mean Square Error (MMSE) have been widely adopted due to their 

simplicity and analytical tractability. However, their performance tends to degrade 

significantly in practical scenarios—particularly under low signal-to-noise ratio (SNR) 

conditions, rapidly time-varying channels, or when there is a scarcity of pilot symbols. These 

model-based methods rely on assumptions of perfect channel statistics and linear signal 

relationships, which often do not hold in real-world wireless environments, limiting their 

effectiveness in dynamic and complex conditions (Biguesh & Gershman, 2006). Channel 

estimation in MIMO-OFDM systems is particularly vulnerable to challenges such as noise, 

interference, and variations in time and frequency. Traditional estimation methods often 

struggle to adapt to these dynamic channel conditions, which can significantly impact overall 

system performance. To overcome these limitations, this study presents the hybrid neural 

networks (HNNs) with MATLAB simulation approach to demonstrate a great a powerful and 

reliable approach for improving channel estimation, especially in complex and challenging 

communication environments. 

 

2 Conventional Channel Estimation Techniques 

Traditional channel estimation methods such as Least Squares (LS), Minimum Mean Square 

Error (MMSE), and pilot-assisted techniques that rely on known reference symbols have been 

widely adopted due to their simplicity and reasonable performance. Interpolation-based 

methods like linear, spline, and DFT techniques are also commonly used. However, these 
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approaches often rely on ideal assumptions about channel conditions and tend to struggle in 

dynamic or highly frequency-selective environments, where their accuracy and reliability 

significantly degrade (Drakshayini & Kounte 2022). 

 

2.1 Hybrid Neural Network Approaches 

Hybrid neural networks integrate the strengths of multiple architectures, such as CNNs 

combined with LSTMs or GRUs, and DNNs with attention mechanisms, to effectively 

capture both spatial and temporal dependencies in MIMO-OFDM systems. CNNs excel at 

extracting local features from OFDM symbols, while LSTMs and GRUs are particularly 

well-suited for learning temporal sequences in dynamic channels. Attention mechanisms 

further improve the model’s focus by highlighting important features in pilot patterns or noisy 

environments, leading to more accurate and robust channel estimation (Shan et al, 2021). 

 

3 METHODOLOGY 

The system under consideration is a MIMO-OFDM, to effectively carried out the objective of 

the analysis, the system was mathematically modeled to enable digital computer analysis 

implementation of the setup system. 

 

i. MIMO-OFDM System Model 

Consider a MIMO-OFDM system with  transmit and  receives antennas. The system 

transmits OFDM symbols over a frequency fading channel (Cho et al, 2010). 

Input Output Relation in Frequency Domain: 

 =  + ,                  (1) 

   Received vector at subcarrier k 

   Channel frequency response at subcarrier k 

   Transmitted symbol vector 

: AWGN noise vector 

Equation (1) model forms the foundation for channel estimation 

 

ii. Pilot-Based Channel Estimation 

For pilot subcarriers the channel matrix  can be estimated using (Wang, 2011) 

 

Least Square (LS) 

LS  =                                  (2) 
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Minimum Mean Square Error (MMSE): 

MMSE  = RHH LS                                                            (3) 

Where; 

RHH = channel characteristic autocorrelation matrix 

 = Noise Variance 

 

iii. Neural Network-Based Channel Estimation 

A hybrid neural learns to map received pilot data  and polit symbols  to channel 

estimates (Usatyuk, 2020). 

 

Feedforward Estimator 

A nonlinear regression model approximates: 

NN =  

Where; 

 = neural network function with parameters  

Typically includes dense with ReLU/tanh activations 

The network is trained using a loss function like MSE 

  =                              (4) 

 

iv. Constellation Mapping and Equalization 

For QAM-based modulation (Di Renzo& Haas, 2013). 

Transmitted symbol ℂ where  is a constellation set 

Equalized symbol: 

  = W  Y                                 (5) 

Where W  is a linear equalizer 

Zero forcing W  =                                (6) 

MNSE Equalizer: W  =                             (7) 

 

v. Bit Error Rate (BER) 

For a QAM scheme 

                                  (8) 

Where erfc  is the complementary error function 
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vi. Throughput 

Throughput is estimated by 

Throughput =                                 (9) 

Where; 

R =  for M-QAM 

BER = is estimated per carrier 

 

vii. Execution Time and Complexity 

NN interference time depends on architecture (Petruk, et al 2018). 

 =  /                 (10) 

 

4. RESULTS AND DISCUSSION 

Table: Parameters Used for MIMO-OFDM Channel Estimation Analysis. 

Parameters Rate/Value 

Number of transmit antennas (Nt) 2 

Number of receive antennas (Nr) 2 

Number of subcarriers (Nsub) 64 

Modulation scheme (MM) 16-QAM 

Pilot spacing (Pspacing) 4 

Signal-to-noise ratio (SNR) 0 to 30 dB 

Channel model ITU Pedestrian A 

Neural network architecture [64, 128, 64] (Dense) 

Learning rate ( /eta) 0.001 

Training epochs 100 

Batch size 256 

FFT size (NFFTN) 64 

Cyclic prefix length (NCPN) 16 

 

 

Figure 1: MSE against SNR. 
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Figure 2: BER against SNR. 

 

 

Figure 3: Throughput against SNR. 

 

 

Figure 4: Channel Impulse Response Comparison. 
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Figure 5: Chanel Frequency Response Comparison. 

 

 

Figure 6: Constellation Before Equalization. 

 

 

Figure 7: Constellation after Equalization. 
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Figure 8: Training Loss against Epochs. 

 

 

Figure 9: Validation MSE against Epochs. 

 

 

Figure 10: Execution Time Comparison. 



Okwoche et al.                                World Journal of Engineering Research and Technology 

  

 

 

www.wjert.org                         ISO 9001: 2015 Certified Journal       

 

120 

4.1 DISCUSSION 

In Fig. 1. At low SNR (0 dB), MSE is high ( 0.95), but it significantly decreases ( 10⁻⁵) at 

high SNR (40 dB), showing the estimator's improved accuracy with better signal quality. In 

Fig. 2.  BER drops from 0.16 at 0 dB to 1.2×10⁻⁵ at 40 dB, confirming that better channel 

estimation leads to more accurate symbol detection. In Fig. 3. Throughput increases from 

0.7 bps/Hz at 0 dB to 6.6 bps/Hz at 40 dB, indicating enhanced data rates with improved 

channel conditions. In Fig. 4. The estimated Channel Impulse Response closely matches the 

actual CIR with minimal error (±0.05), showing effective multi-path modeling. In Fig. 5. The 

Channel Frequency Response estimation is highly accurate, with less than 5% error, essential 

for OFDM systems. In Fig. 6. Severe symbol scattering shows poor demodulation due to 

uncorrected channel effects. In Fig. 7. Well-structured clusters reflect accurate signal 

restoration through NN-based equalization. In Fig. 8. Loss drops from 1.1 to <0.02 in 50 

epochs, indicating efficient convergence without overfitting. In Fig. 9. Validation MSE 

stabilizes at 0.025, demonstrating strong generalization and suitability for real-time 

applications. In Fig. 10. Hybrid NN is the fastest (0.005s), outperforming MMSE (0.01s) and 

LS (0.03s), time due to optimized matrix operations and trained inference. 

 

5.0. CONCLUSION 

The proposed Hybrid Neural Network channel estimator consistently outperformed 

traditional methods across all key metrics. At 40 dB SNR, it achieved an impressive MSE of -

50 dB, a BER as low as 1.2×10⁻⁵, and a throughput that closely approaches the theoretical 

maximum of 6.6 bps/Hz. Constellation plots reveal excellent signal equalization, and both 

training and validation losses show fast and stable convergence. Notably, it also recorded the 

shortest computation time compared to classical techniques, making it not just powerful but 

also efficient—an ideal fit for MIMO-OFDM systems. The hybrid neural network approach 

significantly outperforms traditional LS and MMSE methods in MIMO-OFDM channel 

estimation. At 25 dB SNR, it reduces the mean squared error by 63.8% compared to LS and 

improves the bit error rate by 63.7% over MMSE. It also boosts system throughput by 21.6% 

over LS, making it a strong candidate for next-generation wireless communication systems. 
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