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optical coefficients are expressed as functions of

E*=E—E

gniligp

ABSTRACT

In the n™ (p*) — GaAs(1— x)Te(x) — crystalline alloy, 0 < x = 1, x
being the concentration, the optical coefficients, and the electrical-and-
thermoelectric laws, relations, and various coefficients, enhanced by :
(i) our static dielectric constant law, (r..;.%), raca) being the donor
(acceptor) d(a)-radius, given in Equations (1a, 1b), (ii) our accurate
Fermi energy at T = 0 K, Ez, () (Epnorrpe)), determined in Eq. (11)
and accurate with a precision of the order of 2.11 x 10™* ¥ affecting
all the expressions of optical, electrical, and thermoelectric
coefficients, are now investigated, by basing on our physical model,
and Fermi-Dirac distribution function, as those given in our recent
works.™ 23 In the following, for given physical conditions, all the

the effective photon energy :

1), E and E_,1 (1), being the photon energy and the optical band gap. Then,

some important remarks can be repoted as follows. From our essential optical conductivity

model, o, (E"), determined in Eq. (18), all the optical, electrical, thermoelectric coefficients

are determined, as those given in Equations (19a-19d, 20a-20d). In particular, from the

optical phenomenon and electro-optical phenomenon (OP - [E-OP])-transition, obtained for

E = E.,1(2p1) T Ern(rp), and given in Eq. (15), one observes that the optical conductivity ot

has a same form with that of the electrical conductivity, ogr, as those given in Eq. (20a),

suggesting thus many important concluding remarks on all the optical, electrical,
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thermoelectric coefficients at such the (OP and E-OP)-transition, as those given in Equations
(20a, 21-31).

KEYWORDS: Optical-and-electrical conductivity, Seebeck coefficient (S), Figure of merit
(ZT), First Van-Cong coefficient (VC1), Second Van-Cong coefficient (VC2), Thomson
coefficient (Ts), Peltier coefficient (Pt).

INTRODUCTION

In the n*(p*)— GaAs(l—x)Te(x) — crystalline alloy, 0 =x=1, x being the

concentration, the optical coefficients, the electrical-and-thermoelectric laws, the relations,

and various coefficients, being enhanced by:

(i) our static dielectric constant law, =(ry..%), rar.) being the donor (acceptor) d(a)-radius,
given in Equations (1a, 1b),

(ii) our accurate Fermi energy, Eg, gy, given in Eq. (11) and accurate with a precision of the
order of 2.11x 107% 1 affecting all the expressions of optical, electrical, and
thermoelectric coefficients ,

(iii)our optical phenomenon and electro-optical phenomenon (OP and E-OP)-transition, given
in Eq. (15), and finally

(iv)our optical-and-electrical conductivity models, given in Eq. (18, 20a), are now
investigated by basing on our physical model, and Fermi-Dirac distribution function, as

those given in our recent works.* %!

It should be noted here that for x=0, these obtained numerical results may be reduced to those
given in the n(p)-type degenerate GaAs-crystal.**®! Then, some important remarks can be

repoted as follows.

(1) As observed in Equations (3, 5, 6), the critical impurity density Nep,¢cnpy, defined by the
generalized Mott criterium in the metal-insulator transition (MIT), is just the density of
electrons (holes), localized in the exponential conduction (valence)-band tail (EBT).
N &batcop). being obtained with a precision of the order of 2.89 x 1077, as given in our
recent works.!®! Therefore, the effective electron (hole)-density can be defined as:
N*=N — Nepaepp) 2 N — N&5scog), N being the total impurity density, as that observed

in the compensated crystals.
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(2) The ratio of the inverse effective screening length k., ., to Fermi wave number kg,

at 0 K, R.py (N¥), defined in Eq. (7), is valid at any N*.

(3) From Equations (20a, 21-30), for any given X, rg;,; and N (or T), with increasing T (or

decreasing N), one obtains: (i) for £,¢,; = ﬂqﬂ“a—h =~ 1.8138, while the numerical results of the

. - o v
Seebeck coefficient Sgrorp Present a same minimum (Serrom) . (> —1.563 x 107#1),

those of the figure of merit ZTgrpy Show a same maximum (ZTgrigry) max. = 1, (i) for

Eatpy = 1, the numerical results of Sgrpgry, ZTgrror, the Mott figure of merit ZTerorniorn

the first Van-Cong coefficient VC1gpqry, and the Thomson coefficient Tsgrpqr;, present the

same results: —1.322x 107*Z , 0.715, 3290, 1.105X 107*2, and 1.657 X 107%,

respectively, and finally (iii) for £, = Nﬂ“ﬁ—h >~ 1.8138, ZTerormor = 1 aS those given in

our recent work.™ It seems that these same results could represent a new law in the

thermoelectric properties, obtained in the degenerate case (£,¢,) = 0).

(4) Further, our electrical-and-thermoelectric relation is given in Eg. (31) by:

k a5 N ia] (Mg e T z
=B X VC2erpor (N, race.x T) = — —EHOT ¢ _ETIOTL i ) (“’_} ke . [3xb
a - BEn(p) rETET(Mraca = T) VK a

, according,

in this work, to:

DET[OT] (W.rae = T)

= 2K
ETIOT] (Nrd e xT)

ZTE-T[.;.T-M.,ttX[l— ZTET[DT-Murt] (V), being

VCZET[QT] [:N:rdl:a}rx! T) = - [1+ '.ZTE_-]-[Q'T|:;{.:|1:|-_-|1

reduced to: 2eronr, VC1gpor; and VC2gpoq, determined respectively in Equations (24,

HET[0T]

27, 28). This can be a new result.

(5) Finally, for given [N,rg,%, T], all the numerical results of [o4(E), ¥5(E)}, £, (E), and
, (E}], given in the OP, and those of [oz(E), xz(E), =, (E), and ©z (E)], given in the E-
OP, being determined respectively from Equations (18, 19b-19d], for any E, could thus be
used to explain all their corresponding past-or-future experimental results. Therefore, this can
also be explained for ogrpgr (N, ra¢s,% T), obtained in Eq. (20a) for the (OP - [E-OP])-

transition, and their derived electrical-and-thermoelectric results given in Equations (21-31).

In the following, many important sections are presented in order to investigate all the optical
coefficients and electrical-and-thermoelectric ones, given in the
n*(p*) — CdTe(1— x)S(x) [CdTe(1 — x)Se(x)] —crystalline alloys at any temperature T(= 0 K).
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OUR STATIC DIELECTRIC CONSTANT LAW AND GENERALIZED MOTT
CRITERIUM IN THE METAL-INSULATOR TRANSITION

First of all, in the n™(p¥) — GaAs(1— x)Te(x) — crystalline alloy, at T=0 K* 23 we
denote : the donor (acceptor) d(a)-radius by rgc,, the corresponding intrinsic one by:
T4a(a0) —Tasica), the effective averaged numbers of equivalent conduction (valence)-bands by:
2.0y » the unperturbed reduced effective electron (hole) mass in conduction (valence) bands
by mg.,(x)/m,, m, being the free electron mass, the relative carrier mass by:

i () om0

: — << m,,(x), for given x , the unperturbed relative static dielectric
m (2} +my () -

m, (x) =
constant by: £,(x), and the intrinsic band gap by: E_,(x), as those given in the Following

Table 1.

Table 1: In the Gads(1— x)Te(x) — crystalline alloy, the different values of energy-band-

structure parameters, for a given x, are given in the following.

In the GaAs,_,Te.-crystalline alloy, in Which rg,ra0y=Tas¢a)=0.118 nm (0.126 nm), we
havel®): g, (x) = 1(1) X x+ 1(1) X (1 —%) = 1, m,g(x)/m, = 0209 (0.4) X x+ 0.066 (0.291) X (1 —x),
£,(x) =123 Xxx+ 1313 X (1 —x),E_,(x) = 1.796 X x + 1.52 X (1 —x).

Here, the effective carrier mass m,,)(x) is equal to m_., (x). Therefore, we can define the

effective donor (acceptor)-ionization energy in absolute values as:
13600 % [my, () (x)/my ]
[z (x)]*

_ Edo(zo) x)
Bao(ao) ) = 7wy ¢ '
dofao) [%}X'._L"dn (2ol :IE

meV , and then, the isothermal bulk modulus, by:

EdDI:EI.D:I [X:] =

Our Static Dielectric Constant Law [m:‘],:p} (%) = m, (x)]

Here, the changes in all the energy-band-structure parameters, expressed in terms of the

effective relative dielectric constant £(r 44, %), developed as follows.

At Tyra) = Taarae) the needed boundary conditions are found to be, for the impurity-atom

3 3
volume V= (4m/3) X [rd(a}) » Vio(ae) = (41/3) X [rdn.:m;.) , for the pressure p, p, =0,

and for the deformation potential energy (or the strain energy) a, @, = 0. Further, the two
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important equations, used to determine the a -variation, A @ =a —a, = a, are defined by:

de_ B ML S . 4 day B - : :

Frram and p=—, giving rise to : dv(dv)_ - Then, by an integration, one gets:

[&a(rd':ﬂ:”xj]nrp} = BdDI:E.D:I [x:] ><(\/_ Vdgl:ag} ) X In
Yoo\ Tdra) 3 _ Tdrs) 3

Vdn.;a.:;.)_ Edo(ae) (%) X [{‘dnu:nn:u) 1} % ln(‘duiauj) = 0.

Furthermore, we also showed that, as rysy > Tag(ae) (Ta(a) < Tderae)), the compression
(dilatation) gives rise to the increase (the decrease) in the energy gap E_, ., [rd,:ﬂj,x), and
the effective donor (acceptor)-ionization energy E, [rd,:a},x} in absolute values, obtained in
the effective Bohr model, which is represented respectively by : + [&cx[rd,:ﬂ},x]]

n(p)’

-

_ _ o(x) \"
Egnn{gpn} [:rd.:a::.;xj - Egn (Kj - Ed{a} [:rdl:a}’xj - Edn{ac\} (Xj - Edn{an} (K] X l(u—) -

2(rapay)

1] =+ ['“—"*fx(rd.:a}rx]]

n(p)

for rd(a} = rl:]l:ll:El.D:I’ and for rd(a} = rdn(aujv

-

_ _ o(x) \"
Egnn{gpn} [:rd.:a::.;xj - Egn (Kj - Ed{a} [:rdl:a}’xj - Edn{ac\} (Xj - Edn{an} (K] X l(u—) -

2(rapay)

1] = = [8a(ra®]

Therefore, one obtains the expressions for relative dielectric constant (rg;.),%) and energy

band gap E.;, (o) (Taca).x), as:

2qlx}

‘ Tdrey 4 F C Tdpay 4 E
(_ﬂ} -1 xlnli;a'}
Tdoraoy Tdoreo)y

(i)-for raca) = Tapras), SINCE £(Trge),X)= — < g,(x), being a new
l1+
,\.;

£(rgcq)-X)-law,

) 3
Egna(gpo) (Tata)X) — Ego (%) = Eaa) (Ya(e)»X) — Edota) (®) = Edo(ae) () X [[rd—") - 1] X

Tdorao)

Farm %5
In (f.:l:.—aln) =0, (12)

according to the increase in both E_, (., (raca)x) and Egep (raca),x), with increasing Fa(a)

and for a given x, and
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(ii)-for rara) = Tagrae), SINCE £(Tgpa). %)= 2o(%) > £,(x), with a condition,

| f Tar = f Tar =
!1_[( dra) ) —1:|>Cln|: d(a) }
M| Fdoreo) Tdo(eo)

3 3
given by: [(rd—‘“) — 1] X ln(ﬂ) < 1, being a new &(rg., x)-law,

T'dofeo) T'do(ao)

.3
EEnn(EPD} [rd':ﬂ.}’x) - EED [Xj = Ed':EIJ' [rd':ﬂ’x) - Edo(ao} (Xj = _Edn':ao} (xj X [(ﬂ) -

Tdofao)
Tde) 3
1 xm () <0, (1)

corresponding to the decrease in both E_,;(zpo) (raca.x) and Eaca) (Tacey,x), with decreasing

raco and for a given x.

It should be noted that, in the following, all the electrical-and-thermoelectric properties

strongly depend on this new €(rg.,. x)-law.

Furthermore, the effective Bohr radius ag,gp) (Tara).%) is defined by:

e(rg gy ) xh* 2(rg g x)

- = 0.53 X 107% cm X

m;l':p:' (x)xmg =g (2)

3En(ep) (Taga)X) = My (9
niplh

Generalized Mott Criterium in the MIT [my (x) = m_, ()]

Now, it is interesting to remark that the critical total donor (acceptor)-density in the MIT at
T=0 K, Nepninop) (Tara» %), was given by the Mott’s criterium, with an empirical parameter,
as 1230

Mo ey

1 N
NCDnI:CDp}(rdI:a}ij 13X Agn(Bp) [:rdliajl’x:] = Mnl:p:l’ Mn(p} = 0.25, (3)
depending thus on our new &(ry:4.%)-law.

This excellent one can be explained from the definition of the reduced effective Wigner-Seitz

(WS) radius ry, ), in the Mott’s criterium, being characteristic of interactions, by :

(3 1/3 1 _ 2 13 1/3 m;l,:P:,l:x]XmU
Fentem ot (No Tagay %) = (m) aPe——— 11723 X 107 X (;) e (4)
being equal to, in particular, at N= Nepnicop) (Tara %)

Fentep) vt (Nepacenp) (FagayX)s Tagay %)= 24813963, for any (rac,.%)-values. Then, from Eq.

(4), one also has :
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1 3 \s 1
NCDnI:CD[:I:I (rdl:a}’xj 3 X EBH':B[J:' (rd':ﬂa"x) = (;) X 74813963 =0.25= (wsj“-'lﬂ = M“-':P:" (5)

explaining thus the existence of the Mott’s criterium.

Furthermore, by using M = 0.25, according to the empirical Heisenberg parameter

alp)

H, .y =0.47137, as those given in our previous work [3], we have also showed that

n(p)
Nepnicop) 1S just the density of electrons (holes) localized in the exponential conduction
(valence)-band tail . Nepaicpp) » With a precision of the order of

2.89 X 1077 ,respectively B

It shoud be noted that the values of M., and H,.,, could be chosen so that those of

N cpaepp) aNd NE5 T cpyy are found to be in good agreement with their experimental results.

Therefore, the density of electrons (holes) given in parabolic conduction (valence) bands can
be defined, as that given in compensated materials:

N*(N,rgg,%) =N — Nepg cwnp) (Taga) )= N7, for a presentation simplicity. (6)

In summary, as observed in Tables 7 and 8 of our previous paper [3], one remarks that, for a
given x and an increasing raw , £(rac.x) decreases, while E_,,cpo (Tacax)
Nepninop) (Tacay®) and NERTicpg (Taca),x) increase, affecting strongly all the optical
properties and the electrical-and-thermoelectric ones, as those observed in following

Sections.

PHYSICAL MODEL
In the n* (p¥) — GaAs(1 —x)Te(x) — crystalline alloy, the reduced effective Wigner-Seitz
(WS) radius r.,.,y, characteristic of interactions, being given in Eq. (4), in which N is

replaced by N*, is now defined by:

, being

- oy 1/3
£y — ~Fu(Fp) = (e 1
¥ X rsn':sp}(N )= <1, Ten(ep) [:N,rd,:a:,,X) = (WN') X

GEn(Ep) 8Bn (Bp) Tdray)

It N* :. ]
T )5 is the Fermi wave,
Eclwl

proportional to N*"%2. Here, ¥ = (4/9m)"*, key(p,)(N*) = (

.1, being the effective averaged numbers of equivalent conduction (valence)-bands.

Then, the ratio of the inverse effective screening length k_,..,; to Fermi wave number

Kenikp is defined by:
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kmi!pﬁ _ kEﬁinﬁ' _

Rsn(sp} (Ngj = - Rsnﬁ.-‘-’S':spE-‘-’S} + [RBHTF':SPTF} - Rsn‘.-‘-’S(spl-‘-’S}]e_rm':spj = 1’ (7)

kpntrp)  Xanlsp)

being valid at any N*.
Here, these ratios, R rrzprey @0d Ropwsipws), Can be determined as follows.

First, for N = Nepgwpp)(Tacap®) ,  according to the Thomas-Fermi (TF)-

approximation, the ratio R, tg¢zprey (N) is reduced to

k kg [4yr

— TF(spTF) Fn(Fp) B0 (B[

Ronrereprey (NF) = =2 = = «1 (8)

TF{=pTF -1 f
=nTF(=pTF) kenFp RenTRspTFy N T '

being proportional to N*~%/¢.

Secondly, for N << Nep,, (wpp) (Tacay), @ccording to the Wigner-Seitz (WS)-approximation,

the ratio R s (=mws; IS respectively reduced to

(9a)

P2 el
d[.!m:!meEE'.N J_)
dran (ap !

_ Kantspiws
Ren(epyws(N7) = m::n = 05X (zi'r —¥

Where E.¢ (N*) is the majority-carrier correlation energy (CE), being determined by:

BT [1-1n(=)] A
0.2 555. z : z) }xlnkrsm.sp,‘l}_glugazas
&y —0L.87553 0.OS0E+TaniEpy T J (sp)
ECE [N :] - 9 1.ETETEETE
D.D'}DB+|."3m-5P~| 1+D'DEB4??‘8){P!M!;}‘1

Furthermore, in the highly degenerate case, the physical conditions are found to be given by:

.
[

"Belv)

|2 =
l{_". Nigs 1 I_-e;_". 4‘&
Fon(Fp) < 0l = < F—TFm Rgnfsp} = 11 ﬂnfp}(Ngj = .
8En(Ep) EfnaiFpo) Aprm I'{gm:gpj - - E'~""|i|j53}

x q?k_ M2 (9b)

=n(=p)’

. . E [ .::q' EowlE I:N'
Which gives: A, (N*) = % Epno(rpey(N*) = - bntp*0)

2 xm;l,:pj(x}xn'iﬂ
BAND GAP NARROWING (BGN) BY NAND BY T

First, the BGN by N is found to be given by

AE, gy (N Faey X) & ag + =25 NZ 4 a, x =225 NE x (2,503 x

E'-."d.;ayl’] EI-."d.[Bj-'x:l

5 N L 1
_ , , 20 o [(Pwm s EEMCINN GRS
[ Ece [:rs"'~3p:')] X rS"'~Sp:') tagx [E':rdnjajﬂ-’]] 8 | P (9 XNy F 23, X L':Fd-;a:-;r]] XN+
= 4
gglx) = é — N"
2a5 X [ :'] XN, Ny 5.55%%107 cm ™% (103)

—
elrgray
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Here, a,; =3.8x1073(eV) , a,=65X10"*(eV) , ay=2.85x1073(eV)
a, =5.597 x 1073 (eV), and a; = 8.1 X 10™*(eV).

Therefore, at T=0 K and N* =0, for any ry., one gets: AE = 0, according to the

Enigp)

metal-insulator transition (MIT).

Secondly, one has:

_ T 2.201 2.:::‘_

FERMI ENERGY AND FERMI-DIRAC DISTRIBUTION FUNCTION

Fermi Energy

Here, for a presentation simplicity, we change all the sign of various parameters, given in the
p* — GaAs(1—x)Te(x) — crystalline alloy, in order to obtain the same one, as given in

the n* — GaAs(1—x)Te(x) — crystalline alloy, according to the reduced Fermi energy

Epn (Fpy (N1 (21T
kgT

Efnrp) + Enppy(NoTgra),xT) = = 0(= 0), obtained respectively in the

degenerate (non-degenerate) case.

For any (N,rs..% T), the reduced Fermi energy &, (N.ra¢.),% T) or the Fermi energy
Epnirp) (N.T4(a),% T), obtained in our previous paper[gl, obtained with a precision of the

order of 2.11 x 107*, is found to be given by:

EFm‘Fp‘\':'-‘:' _ G':U:'+A.UBFI:I_1} Viu) _ _
fagey (W) = T = = = s A= 0.0005372and B = 482842262, (11)

Where u is the reduced electron  density, u(N,ry.xT)=——r" |,
- Nl:'l:‘i-“'_‘l'-T-‘x}
z Iz 4 E 2
F ) (] kgTYyz _ 2 _3 _Ey T
Noo (T%) = 28,09 X (2T (em™®)  ,  Fw=aw(1+bu=+cus) ”,
e ] ¥ _E
a= [3\;’1Tf4]“3 = %G)‘ c=2 3113,,9855 ( ) and G(u) > Ln(u)+ 272X u x e 9%,

So, in the non-degenerate case (u << 1), one has: Ep,rppy (W) = kg T X G(u) = ky T X Ln(u)

asu — 0, the limiting non-degenerate condition, and in the very degenerate case (u > 1),

I
z _2 ENTE RTKKpp g (N
one gets: Egpeppy (03> 1) = kT X F(u) = kT X aus (1 +bu =+ cu s) ~ B Ry (V)

2 b-(mr-l,: B () mmg
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asu — oo, the limiting degenerate condition. In other words, &) = EF:EF is accurate,

and it also verifies the correct limiting conditions.

In particular, as T—0K , since u*—=0 , Egq (11) is reduced to:
B2k

Epno(rpoy(N*) = ﬂﬁ— , being proportional to (N*)*/3, and also equal to 0 at N* = 0,

;)-Cm pﬁlx}x
according to the MIT and noting that EFHD.:FFD}[mr(x])}EFHD.;FFD}(mE.:v}(XJ) since

m, (x) < m,,, (x) for given x.

In the following, it should be noted that all the optical and electrical-and-thermoelectric

properties strongly depend on such the accurate expression of £,¢,; (N,r4¢4),x,T).!

Fermi-Dirac Distribution Function (FDDF)
The Fermi-Dirac distribution function (FDDF) is given by: f(E)=(1+e")7* |
Y= (E - EFn(Fp}jnf(kBTj'

So, the average of EF, calculated using the FDDF-method, as developed in our previous

works [1, 6] is found to be given by:

of i el

af
2 = 2 — —
{E jl1"EIEI1" =G ( Fanp}:] X EFanp} - ..r_ EF X { BE) dE! aE kgT X (1+e¥)2’

Further, one notes that, at 0 K, — === 8(E — Egpo(rpo) ) 8(E — Epporrpe)) beiNg the Dirac

delta (5)-function. Therefore, G, [Ernc..;ppc.}) =1

Then, at low T, by a variable change y = (E — Eg, gy )/ (kg T), One has:

G [:EFH,FF}}_ 1+EFH,FF}><_|"EI1+E} X (kg TY + Epnerp) ) dy=1+2%,, cEx

(kgT)® X E_ X Ig

Fnl Fp)

Where Cf =p(p—1)..(p —B +1)/B!  and the integral I is given by:
Eb-c:e

IE - -Jr—q.c '1+E }-. = .r_

values of = 2n, with n=1, 2, ..., one obtains:

_ oy el
Lo =2J; G Y-

vF

“":Ie 24e=v/ :I

=dy, vanishing for old values of B. Then, for even
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Now, using an identity(1 + e¥)™2 = ¥=,(—1)*"s x e"*Y | a variable change: sy = —t,
the Gamma function: j: t™e™"dt=I(2n+ 1) = (2n)!, and also the definition of the
Riemann’s zeta function: Z(2n) = 2**~1n™"|B,,|/(2n)!, B,, being the Bernoulli numbers,
one finally gets: I, = (2* —2) x ™ X |By,|. So, from above Eq. of (EP}zppz, We get in

the degenerate case the following ratio:

plp—1)..(p—2nt1)

{2Zn)!

__{EP)
GP[EFHEFP}) =g R =14 20,
Fn(Fpm

X (2%7 = 2) X [By | Xy = 6,4 (v),  (12)

T _ nkgT
Enip)':”-JT} EpniFm (N°T)

T— 0K, Gyuy(y = 0) = 1.

noting that G,—,(v = % = Eﬂ%ﬁ] =1, and as

Where y =

Then, some usual results of G,.,(v) are given in the following Table 2, being needed to

determine all the following optical and electrical-and-thermoelectric properties.

Table 2: Expressions for G, (v = Euij, due to the Fermi-Dirac distribution function, are
(B

used to determine the electrical-and-thermoelectric coefficients.

Gas2(¥) G, (y) Ggy2(¥) G3(¥) Gy/2(¥) G.(y) Gay2(¥)

(H%Jri} (1+4%2) (1+Z-20) (1 +y?) (1420420 (14292472 (1+ﬁ'z+ﬂ)

640 324 384 g 128

OPTICAL-AND-ELECTRICAL PROPERTIES
Optical Phenomenon — Electro-Optical Phenomenon (OP - [E-OP])-Transition

[m;':p:l (x) = m, (x) [m,,; (x)]]

First off on, for a presentation simplicity, we change all the sign of various parameters, given
in the p* — GaAs(1—x)Te(x) — crystalline alloy, in order to obtain the same one, as

given in the n* — GaAs(1— x)Te(x) — crystalline alloy, according to the reduced Fermi

Epn(F ol ! Nrgr Ej..X..T:I
kgT

energy Eenep) Enpp)(NoTgra), 5 T) = = 0(= 0), obtained respectively in the

degenerate (non-degenerate) case, giving: Egnoirpe) = Erntrp) (NoTara). % T = 0).

Then, in the n*(p*)— GaAs(1—x)Te(x) — crystalline alloy, and for the temperature
T(K), One has:
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(i) in the electrical phenomenon (EP), the reduced band gap is defined by:

Egn!(gp!} = Ec':v:l - Evc\'::n:l = Egni.l:gpi.} - ﬂEgn(gp}:N’(N*j - &Egn':gp}:T(Tj’ (13)

Where E_;zni IS the intrinsic bang gap, AE_,i.,)(N") and AE (T) are respectively the

gnlep)
reduced band gaps, due to the N*-and-T effects, as those determined in Equations (10a, 10b),

and

(ii) in the optical phenomenon (OP), the photon energy is defined by: E = fw, and the optical

band gap by Egnl':gpl} = Egn!fgpﬂ + EFn(Fp}'

Therefore, for E = E_,; (z,1), the effective photon energy E* is found to be given by:

E"=E—Eg(gpn =E— (Egnﬂigpﬂ T EFnEFp}) = 0. (14)

From above Equations, the (OP — E-OP)-transition means that:
E* = [E— Egni(gpu], given in the OP, in which E = [E_.(zp1) + Epnrep ], 1S reduced in the
E-OP, in which E = [E_,i(zp1) T Epnirpy] and m,(x) are now replaced by

E= [Egnﬂ':gpﬂ + EFn(Fp}] and m:(v} [:xjv to: E"=E- Egn!(gpﬂ = EFn(Fp}: and reCiproca”y,

noting that Eg, gy (m,(x)) > Eeniep) (mc.:v} (xj) since m, (x) < m_,(x), for givenx. (15)

Eqg. (15) thus shows that, in both OP and E-OP, the Fermi energy-level penetrations into
conduction  (valence)-bands, observed in the n*(p*)— type degenerate

GaAs(1l —x)Te(x) — crystalline alloy, Egz,r,) are well defined, noting that at this
discontinuous (OP — E-OP)-transition: Eg,(gp) (m,(x)) > EFn':Fp}(m:I:v} (x]), according to

the discontinuous case.

Optical Coefficients

The optical properties for any medium, defined in the OP and E-OP, respectively, can be
described by the complex refraction: Ngpg = ngpg; — iKgpgy » Nogy aNd  Kgpg; being the
refraction index and the extinction coefficient, the complex dielectric function:
€olg] = €10[1E] — 1€20[28] » Where i* = —1, and Eore) = Norg; - Further, if denoting the
normal-incidence reflectance and the optical absorption by R and ecgrg;, and the joint

density of states by:
3/2

) =1 :mr-lipf":x:') [ E~Een: (gpa) ] _—
]DDSHLF}HEE] (E] T2t X ( RE X E_[Egn:igpﬂ‘l'EFn:jij_EFnu:jFpnj] * NFEFHDI:FPD} '

-
=
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hglx|vwiE)®

n(E}<cEX2frag space

and F g, (E) = , one gets?:

%ore) (E) =IDOS, (510161 (E) X Forg) (E) = =

hcnﬂ[E] [E] ke
_ "-1-1'[CFB[E] (E]
CNo[E] (E] X Efree Epace
— ) _ Exeoopg(E) _ ZExwqrp (E) 4m o g, (E)
“olE] [:E:] - ]DDS”'~F‘}“[E] (Ej X F“[E] (Ej hengg,(E) he engE] E)"2free space

[ﬂu[E- _1]=+ KQ[E] : . (16)

2101121 (E) = Nojg” — org1”» £207261(E) = 2o (g1 Nopey, AN Ropey (E) = [nop; +1] +xop®

It should be noted that, such the above joint density of states yeilds: (i) as E = E_1(zp1) (T),

2 mn':pf":x}

3f2
.. 1 - E—
JDOS, (o (E) =0, and (ii) as E — o0, JDOS, 01 (E) = P ( e ) X/ Efno(Fpo) -

Further, €geq -pace 1S the permittivity of the free space, -q is the charge of the electron,
| Vore] (E)| is the matrix elements of the velocity operator between valence (conduction)-and-

conduction (valence) bands, and the refraction index ngg; is found to be defined by

. B_E+C,;
Nopg) (B Tate) = e (Fa)) + Zisa 220 270 — M (race)) asE — 0. (17)

Now, the optical [electrical] conductivity 4g; can be defined and expressed in terms of the

i

2xmy p) () *rmg

kinetic energy of the electron (hole), E, = , k being the wave number, as:

gk k g, \2 L ) )
oo (K) = — X F—— X [k X agyegg ] X (nmm) , Which is thus proportional to E, “.
Then, we obtain: {E*)eppr = G1(v = %} X Efn(rp) ’ and

Go(9) = (1+%) =6,(Nrge,x T) , with ¥ Eiﬂ + Eate) = Ea(Nora.xT) for a

presentation simplicity. Therefore, from above equations (16, 17), if denoting the function
H[N, Taia) T) by

H(N,rg¢,%T) =

kpn(Fp (N7 |I =
[Rmu:sp:u::w'} X [an'in}(st X 8gn(ep) [rd':ﬂ’x)] % *q'ﬂﬂ'ip} (N*) =

Gy (N, rg(e), %, T)

Efno (Fpao) ( N-}]
M (gl (N7)
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kgnr . . . = .
Where R ..., (N*) = ﬁ which is proportional to EZ,,p,.y fOr given (N, ra00,% T)-

physical conditions, our optical [electrical] conductivity model can thus be assumed to be:

(N, T4 % T,E) = 0g(N, 149, % TE) =
2 3
! a )
—— X H(N, g0, %. T) X X H(N 1y 5 T) X
E-Eopa(epa) = 1 E~Eppo(epg) ¢ 1
[ gnz (gpa) ] ( ], and gnz(gpa } ( )’ (18)
E_[Egnzlﬁgpﬂ+EFn'ﬁFp)_Ean':Fpu:'] ehmxem E'[Egnzigpﬂ+EijFp)'EFmJ|jFpu)] ohmxem

Where ﬁ = 7.7480735 % 107% ohm™?, It should be noted here that:

z
- _ _ _ q _
Q) OolE] [E = Egnl':gpl}[Egnﬂl:gpﬂ]) =0, and JD[E](E —mw)= % H(N,rd,:ﬂ,x,T) = Constant

for given (N, ra.4),% T) —physical conditions, and

(i) as T=0Kand N* =0 [or EFW,:PPD:,[N*]] = 0, according m:H[:N,rd,:E:,,x,T) =0, and

for a given E, [E—E_p; (] = [E— ]J=Constant, then from Equations (16-18),

Enitepi)

2500281 (E) = 0, and oty (E) = 0, according to the metal-insulator transition (MIT).

This result (18) should be new, in comparison with that, obtained from an improved Forouhi-

Bloomer parameterization, as given in our previous work.

Using Equations (16-18), one obtains all the analytically results, due to the optical
phenomenon (OP) as: [o,(E), kg(E), £,0(E), and o5 (E}], and to the electro-optical
phenomenon ([E-OP]) as: [og(E), kg (E), £, (E), and o< (E}],

lv(E)® _ gn” i kgn(pp) (N7

E o
B Gmex/mm et (V)

X [Ken(ee) (N*) X agpiag) (rac x)] | X G2(N, ra00,x, T), (193)

-
&

2q°% [ E—Egp, (gpad
_ Zq gns (gpa]
1o (E) = — X H(N,rg; % T) X and
0 ”'~E}xzfraaspac9><E [ +dla) ) _E_[Egﬂ‘_':gpﬂ+EFI!1':FF-:'_EFEL|:I':FP|:I:']_
20° [ E—Egnz(eps) z
_ 2g gnz{gpz)
kg(E) = — X H(N,rg,% T) X (19b)
E ”'~E}xzfreaspacax}: [ *Hdla)e ) _E_[Egnzigpﬂ+EFn|jFp‘_'|_EFm:njFp|:lj]_ ’

Which gives: k[kz](E = E_p; (o) [E
in Ref.!?],

en2(epzy]) = 0, and k[kz] (E — ) — 0, as those given

4 z
1 and

E-E__, (e 2
£,0(E) = 2n: sps ]

= HIN,ry.,x% T K[
[: dle) ) E_[Egnﬂ_igpﬂ+EFm:Fp:|_EFm:I|:Fp|:|‘_'|]

Efres space *E
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-
.

E—-E [
X H(N, ryca,% T) X [ gnzlgpz) } , (19¢)
; E_[Egnzigpﬂ"'EFn[ij_Ean[Fpuj]

=1|:]z

£,g (E) =

Zfres space = B

Which gives: ;1021 (E = Egy (gpp [E »1)=0,ande,___(E— ) =0, as those given

gn2(gp E3[zE]

in Ref. [2], and
g (E) =

4-|:|:l

fien(E) % 2free space

-
£

E—Epn. (e _
% H[N,rd.fﬂ,x,T) x [ gnz (gpo) ] (em™) and
N E_[Egnﬂ_igpﬂ"'EFnl:Fp"_"_Eaninnfl]

"

#q° |: E-Egna(gpn :|‘ -1
g ([E) =————— X HIN,r3.x.T) X cm ), 19d
= (E) fen(E)%2freq space [ A=) ) E~[Egna (gpe)* EFn(Fp) ~EFno Fpo)] ( ) (190)

Which gives: e<g [0¢z](E = E_p1(epp) [Eenztepz 1) = 0, and

4qz

g [ecg](E—= 0) = x H(N,ry.,,% T) = Constant, as those given in Ref."”

Reng 2 free space
Using the (OP - [E-OP]) transition, given in Eq. (15), at E = E_,1(zp1) T Ernrrg), the optical
conductivity, ogr, given in Eq. (18), in which my,,(x) = m,(x) is now replaced by
m, . (%), has a same form with that of the electrical conductivity, g, given in our recent
work [1], for such the (OP - [E-OP])- transition. So, from Equations (18, 19b, 19c, 19d), and

for E = E_p1(zp1) [Egnzizpz) ] + Erncrp), ONES Obtains respectively, as:

z EpniEp) z
o (N, Fatay T E) = 5 X H(N v T) x (o22)" (2 ),

Having the same form with that of ogr(N,rg.x T) [1], as:

_a® Epn(Fp) : 1 20a
GET[N;rdI:ﬁ:I!x! T, E) Y = H[N’ rd',a}’x’T) X (EFHD':FPD:') (ohmxcm)’ ( )
K [Nr« xTE)= 2a° xH[Nr« XT)X(M)Eand
OT A Pd(a)s ™ 2y n(E)*2free space *(Egnalgps) +EFn(Fp)) +7dla)r= EFno (Fpo)

2q2% Epn(pp) z

Ker (N, Ta0.0,% T,E) = — ?'31 ¥ HIN,ry..%T X(—) , 20b
ET[ dla) ) n{E)%2free space % (Egnaigps) TEFn(Fp)) ( d(a) ) EFno (Fpo) ( )
= [Nr« xTE]= ta” xH[Nr« xT]K(M)Eaf‘d
20T\ "dla)r ™ ®free spece X (Egns (gp2)+ Epn(Fp)) ) Tdla)y EFno(Fpo)

4qz

X H(N, rgra),% T) X (E“‘—F‘”) (20c)

Z2ET (_N’rdiﬂ’x’ T’E) = EpnalFpol

Zfree apacax':Egnz':gpﬂ+EFn':Fp3:'
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4q=

DCUT [Nr rdl:ﬂ:l.l'x.l' T.I'E) =

4q:

X H(N, rgea, % T) X (

hen(E)xefrgg spaCcE

Een(ep) | _
ﬁ) (em™1) and
Efna(Fpal

X H(N, ra 5 T) X (o2 ) (em™). (20d)

DCET [N’ I"d,:E:,,X, T’E) = EFm:l:'FPm

hen(E)xefreg space

One notes here that (i) the electrical conductivity oz (N, rs...% T), given in Eq. (2a), is an
essential result, being used to determine the following electrical-and-thermoelectric

coefficients, and (ii) as noted in Eg. (15), at this discontinuous (OP - [E-OP])- transition,

given in the discontinuous case: EFH.:FP}[mF(xj)}EFH.:FP}[mE,:v}(xj) , since

m, (x) < m,(x) for given x, corresponding to: cor(m,(x)) > ogy (mc,:v} [xj). In our

recent work™, all the electrical-and-thermoelectric properties were investigated for this

discontinuous case.

Some optical coefficients, obtained in Equations (18, 19b-19d, 20a-20d) for given
(N, rac0,% T) -physical conditions, are reported in the following Table 3, in which

Ogt =~ OgT.

Table 3: Here, some optical coefficients, for some particular values of E, are given as

follows.

EineV ag(E) Ko (E) €20 (E) g (E)

Egnl':gpl:' 0 0 O 0

[Egnligpﬂ + Ern(rp}] ToT Kor 207 Kot

E — o0 2 *H _Constant 0 0 —F*H  —Constant
ek fehg ™ Zfres space

EineV oz (E) Kz (E) €3¢ (E) oz (E)

Egn2(gp) 0 0 0 0

[Egn2(ep2) T Epnep)] OgT KgT E2ET Kgr

E — o0 3" —Constant 0 0 —3*H  —Constant
ek RehgX Zfree space
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Therefore, for given [N,rs.),x, T], all the numerical results of [o4(E), k5 (E), £20 (E), and
o, (E)], due to the OP and those of [0z (E), xz(E), £,(E), and o (E)], due to the E-OP,
being determined respectively from Equations (18, 19b-19d], for any E, could thus be used to

explain all their corresponding past-or-future experimental results.

ELECTRICAL-AND-THERMOELECTRIC PROPERTIES [m}, .,y = mg,; (x)[m,(x)]]

Here, if denoting, for majority electrons (holes), the thermal conductivity by

W
cmx K

Orperor) (N Taca- % T) 0N , and the Lorenz number L  by:

Wxohm
]{2

3 2
L=2x (?) = 2.4429637 [ ] = 24429637 x 1078 (VZx K~2), then the well-

known Wiedemann-Frank law states that the ratio, Tﬂ due to the (E-OP and OP)
ET [0T]
transition, respectively, is proportional to the temperature T(K), as:

oTh.ET[0T) (Nra e = T)

oET (0T Nrd (2% T) =L XT. (21)
Further, the resistivity is found to be given by:
Perior] (N Tara) % T) = 1/0eror) (N Ta(0). % T) , noting again that

N* =N — Nepy (wpp) (Taga) - X).

In Eq. (20), one notes that at T= 0 K, ogrory (N,rac.),% T = 0K) is proportional t0 EZ, . g0,

or to (N*)=.Thus, from Eq. (21), one has: ogrior (N = Nep, (xpp)s Taa) % T = 0K) = 0 and

also oy, grior(N = Nepainpg): Tae)»% T = 0K) = 0 at N* = 0, at which the MIT occurs.

Electrical Coefficients
The relaxation time Tzrrory is related to ogrpor by™:

m ()= my

Teror] (N Tara) % T) = Oppior (Norge0), %, T) X .2 —— _ Therefore, the mobility
g - g% (N Ep )

Weror) IS given by:

QXTET[OT] (MrgaxT)
m;“:m(x}x my,

terior (N, Faga) % T) = berror (N rae), T) =

ogr[oT; (Nord (205 T) ( cm® )
QX (N fEpie) Ve . (22)

Here, at T= OK, ugpom(Nrgn.T) is thus proportional to (N*)*3, since

Oerpory(N".rae  T=0K)  is  proportional  to  (N9)*?® . Thus
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TET[DT] [:N$ = ﬂ’rd(a}!T = ':'K:] =0 and I"LET[DT] (N* =0, rd(a}!T = ﬂKj =0 at N =0 ’ at

which the MIT occurs.

Then, the Hall factor is defined by:

_ ‘erprleopr _ Ga(w) - n — mkgT
I"]—IET[IDT] (N; rdI‘E:I;K;Tj - [l:TET[DT::IFDDF]z [Gzl:j’}]""’ - Enl:p:ﬂ:N.-rdl:E:l.-x.-T‘} EFnI:FP:II:NerI:B:“x;I,}, and
therefore, the Hall mobility yields:
z
— cm
HuET[OT] [N’rdia}’x’ T) = UeT[oT] (Nr Taia)-*% T) X I'yeT[OT] (N*,T) (va ), (23)

Noting that, at T=0K, since rygrom(Nirace.xT)=1 , one therefore gets:

Maerior] (N Tara): % T) = Berpor (N Tara)-% T)

Our generalized Einstein relation

Our generalized Einstein relation is found to be defined as™:

DE.'T[EIT":NJFdI:aJJ-"-TJ _ N"_ dEpn(pp) _ kpxT dép (p) (u) |'E din ()Y kg [3xL
- =—X = “lu = —ZXTX u———= [—, (24)
“E.'T[DT:'-.N*rd':n:“x-'T:I q dN | du N du | ™

Where Dgpor (N, raca.x T) is the diffusion coefficient, &, (u) is defined in Eq. (11), and
the mobility werrory(N.racs.= T)is determined in Eq. (22). Then, by differentiating this
function &,y (u) with respect to u, one thus obtains i"dﬁjﬂ Therefore, Eq. (17) can also be

rewritten as:

DE]"[DT-[N;!'d[Bj.-X.-T] __ kgxT % 1 V)W) =V () W' ()
wgroT; (Nrae < T) q W (u) ’
5 _3 _E
Where W'(u) = ABu®* and V'(u) = u™ +272e™® (1 — du) + 2Au®'F(u) (1 + ) + H 2L 2w 2 )
1+bu 4o E

One remarks that: (i) as u— 0, one has: W? =1 and u[V'XxW—-VxW']~1, and

therefore: D), kpxT

, and (i) as u—co , one has: W?#~ A% and

u[V' X W— VX W']# 2au®2A%u®® | and therefore, in this highly degenerate case and at
T=0K, the above generalized Einstein relation is reduced to the usual Einstein one:

DET[0T] (Mg xT)
mgT[oT; (Nrace) < T)

e %EFHD(F[JD} (N*)/q. In other words, Eq. (24) verifies the correct limiting

conditions.
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Furthermore, in the present degenerate case (u > 1), Eq. (24) gives:

4 B
. hu_5+2|:l_1_E~J
Efno (Fpo)lw) % 4 (

D (Nrg@=T) 2
ELIOTL rdf"ﬂ’x’jﬁ—x 1+ - X7
eETOT; LN rdie xT) 3 3 (1 +bu"E+c u‘EJ
2/3 _ 62.3739855 n4
= { ! == it (3
Where a = [3v/m/4] [ )* and ¢ —e)

Thermoelectric Coefficients
Here, as noted above, EFn':Fp} (mr(x:]) = EFn':Fp}(m:(v} (X:]) or EIﬂ':[-"]' [mrtxj) = E|:1(:.'I} (m:(v} (x:]) for

a given T, since m.(x)<m,,(x) for given X, corresponding to:

Oot [mr (X]) = Ot (m:(?} (x) )

Then, from Eq. (20a), obtained for oz (N, r414).% T), the well-known Mott definition for

the thermoelectric power or for the Seebeck coefficient, Sgrqry, is found to be given by:

8lnogy| - kg, 3noerpon(Gngp
ET[UT](N rd|g:I;x T)——K—Xk T:’{ HGETDT] =l>(—B>( “OET[OT .Eﬂ w.l:I.
dE E=Epn(Fp) 3 q agﬂ[m

Then, using Eq. (11), for the degenerate case, &,r, = 0, one gets, by putting

yz

AN R

Feperior (N Tacay % T) = [1 - S
EXGE(y:En':p:UI

- kg EFS]:E.'T[DT:':N-:T} _ |3=L ‘-xEnlp"l ey
SET[OT] [N,l"d,:a},x, T) =3 * a * En[p:] = ‘lql = * (’1+5XEnl:p:lz‘jl = 2'\! L x
3
\ T
+ ZTET[0TIMote 'V ) e
< 0, ZTeroTIMo = z
1+ ZTET[EIT: Mot = Eﬂl: B ’ (25)
according to:
sxEnr -
 —— nipd  —
8SeToT] _ |3><1- % = 1 _ ||E|><L 2 % ZTE.'T[DT-M.:t:X[l— ZTET[DT'Mutt]
- , =z
FEnip ‘\l m? (1+5><Enip)z)z N [1+ z'T'E.'T[I:l'T:!«--[.:n:r_-'
T[:I‘

Here, one notes that: (i) as €,¢,) — +00 or &,y — +0, one has a same limiting value of

[

Serory’ Serpor; = —0, (i) at &,y = |'— ~ 1.8138, smce?m[ﬂ- = 0, one therefore gets:

a minimum ( Sgqpor;) = —VL~ —1.563 x 107* (—) and (iii) at &,r,) = 1 one obtains:

min.

Serjory & —1322 X 107¢ (7).

WwWw.wjert.org 1SO 9001: 2015 Certified Journal 144




Cong. World Journal of Engineering Research and Technology

Further, the figure of merit, ZT, is found to be defined by:

StwopxT 50 a4x ZT, ;
EXT _ 5 _ ET[0T]Mott (26)

.
K L [1+ZTeroriMort]

ZTerrory (N Tar. % T) =

 B(ZT . 5 - ..
Here, one notes that (i) —ifr®T) _ ; y SET0T; 2 %eT(0M), Seromy < 0. (i) at

BEnip L Hnip
. l'F - . 8 ZTgT0m) _ . : =
Eatp) = {7 ¥ 18138, since —[_'_agn.;p; =0, one gets: a maximum [ETET[GT])mm =1

,and ZTerpormen = 1, and (iii) at §,y =1, one obtains: ZTgepm = 0.715 and

Iz

T
ZTET[DT]Mu:utt =3 ~ 3.290,

Finally, the first Van-Cong coefficient, VC1grqry, Can be defined by:

ds v 85 AL
. = _ ZUET[OT ¥ ) — Z2ET[0T) o, _ ZCmipd
VCleriory [N’rd'ﬂ’x’T) =-N"x an* (}c) N* X 8 En(p) ST (27)
T

T

being equal to O for £ s

I!'.I':F':' = NI 3!

and the second Van-Cong coefficient, VC2grqr), as:

VC2er0m] (N,rgey, % T) =T X VC 1errom (V). (28)

the Thomson coefficient, Ts, by:

ds AL as . AL
. = ET[OT] (¥ } — ET[OT n(p)
Tsriom) (Noraco %, T) = Tx =268 () = Tx Zom x =28, (29)
z

|

being equal to 0 for £, = Fy

and the Peltier coefficient, Ptgr(q, as:

PterioT [N’ Taga), % T) =T X Sgrier (V) (30)

One notes here that for given physical conditions N (or T) and for the decreasing &, since

. —-d 5 -
VClgror (N.racs,% T) and Tseriom (N,ra0.% T) are expressed in terms of _l_.dE;T_DT and

d SerjoT) : = —
_dTl_., one has: [VC1griory, Tseromy] <0 forg = .,qll? , [VC1leriory: TSerory] = 0 for

[ M
[ [n*
3

Enlp) = 4|7 » and [vcj‘ET[OT]!TSET[UT]]}ﬂfDrEnl:p}{w| , Stating also that for

—
[,

Enip) = {7
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() Sgror; » determined in Eq. (25), thus presents a same minimum

[SET[DT]) = /L~ —-1563x 107* E),

min.

(i) ZTgror; » determined in Eq. (26), therefore presents a same maximum:

[ZTET[DT]) =1, since the variations of  ZTgror are expressed in terms of
max.

[VC1grory Tserrori] X Serory Serror < 0

Furthermore, it is interesting to remark that the VC2gpor-coefficient is related to our

generalized Einstein relation (24) by:

kg _ @Sgrpory . Derpomy(NraaxT) (vE k (3L
— X VC2 Nr Yargie T)=-— * r (_]’ £ = 5 31
q ET[OT] [ dia) ) E'En:jp) EETOT) |._N;!‘ﬂ::B:|JX.-T:| K q d\ll i) ( )

according, in this work, with the use of our Eq. (25), to:

DET[OT] (Nrgra =T
BET[OT]\Nrdl 2% T)

ZTET[IIIT'Muttx[l_ zTE.'T[DT'Mntt] (V]

X 2 X J
[1+ ZTET[OT Mott]

VCZerioT) (N.rge.xT) = -

Of course, our relation (31) is reduced to: 2—2:2—:- VClgror; and  VC2gpor, being

determined respectively by Equations (24, 27, 28). This may be a new result.

CONCLUDING REMARKS

Some important concluding remarks can be repoted as follows.

In the n*(p*)— GaAs(1l—x)Te(x) — crystalline alloy, 0=x=1 , x being the
concentration, the optical coefficients, and the electrical-and-thermoelectric laws, relations,
and various coefficients, being enhanced by:

(i) our static dielectric constant law, =(ry..%), rar.) being the donor (acceptor) d(a)-radius,

given in Equations (1a, 1b),

(ii) our accurate Fermi energy, Eg, gy, given in Eq. (11) and accurate with a precision of the

order of 2.11 x 10™* [9], affecting all the expressions of optical, and electrical-and-

thermoelectric coefficients,

(iii)our optical-and-electrical transformation duality given in Eq. (15), and finally

(iv)our optical-and-electrical conductivity models, given in Eq. (18, 20a), are now
investigated, basing on our physical model, and Fermi-Dirac distribution function, as

those given in our recent works.™*?
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It should be noted here that for x=0, these obtained numerical results may be reduced to those
given in the n(p)-type degenerate GaAs-crystal.’) Then, some important remarks can be

repoted as follows.

(1) As observed in Equations (3, 5, 6), the critical impurity density Nep,¢cpy), defined by the
generalized Mott criterium in the metal-insulator transition (MIT), is just the density of
electrons (holes), localized in the exponential conduction (valence)-band tail (EBT).
N &batcog)» Deing obtained with a precision of the order of 2.89 x 1077 , respectively, as
given in our recent works.®! Therefore, the effective electron (hole)-density can be defined
as: N* =N —Neporepn) 2 N —NEhocopy» N being the total impurity density, as that

observed in the compensated crystals.

(2) The ratio of the inverse effective screening length k_, ., to Fermi wave number kg,

at 0 K, R .py (N¥), defined in Eq. (7), is valid at any N*.

(3) From Equations (20a, 21-30), for any given X, r; and N (or T), with increasing T (or
[

decreasing N), one obtains: (i) for £,¢,; = ﬂ."lﬂ? = 1.8138, while the numerical results of the

Seebeck coefficient Sgp Present a same minimum [SET[Dﬂ)mm[k —1.563 X 10“‘%],

those of the figure of merit ZTgrory Show a same maximum (ZTgrigry) max. = 1, (i) for

Eatpy = 1, the numerical results of Sgrpgry, ZTgrior, the Mott figure of merit ZTeroruorn

the first Van-Cong coefficient VC1grqr, and the Thomson coefficient Tsgrpqr;, present the

same results: —1.322x 107*Z , 0.715, 3290, 1.105x 107*Z, and 1.657 X 107*=,

respectively, and finally (iii) for £,.,, = Nﬂ“ﬁ—h 2 1.8138, ZTerormon = 1, aS those given in
our recent work.™ It seems that these same results could represent a new law in the

thermoelectric properties, obtained in the degenerate case (£,¢,) = 0).

(4) Further, our electrical-and-thermoelectric relation is given in Eq. (31) by:

i L
kg _ _ 3sgrory ., Derpory(NraxT) (v K [3x%L .
£ x VC2 N,rg%T)=— X ; (—] £ = [==, accordin
. ET[DT](. d(a) ) B Enp) seron(Nraw=T) \K/) @ A= g,

in this work, to:
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D A Mg T IT ; 1-ZT . .
UCEET[UT] (_N:rd(&}:x: T) = _ ET[0T]\ M rdlg* :l W 2w ET[OT Muttx[ ET[OT M:ltt] (V:], belng

BET[OT] (Norg(g)=T) [1+ ZTET[OT Mm:d1

reduced to: —ELI°T1  y¢ lerory and VC2gppor, determined respectively in Equations (24,

HET[OT]

27, 28). This can be a new result.

(5) Finally, for given [N,rg.x, T], all the numerical results of [o4(E), ¥5(E)}, £, (E), and

g

(E)], given in the OP, and those of [0z (E), kg(E), ;£ (E), and o<z (E)], given in the E-

OP, being determined respectively from Equations (18, 19b-19d], for any E, could thus be

used to explain all their corresponding past-or-future experimental results. Therefore, this can

also be explained for ogrpgr(N,ra¢s,% T), obtained in Eq. (20a) for the (OP - [E-OP])-

transition, and their derived electrical-and-thermoelectric results given in Equations (21-31).
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