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ABSTRACT
Inthe n™(p*) — CdTe(1 — x)S(x) [CdTe(1 —x)Se(x)] — crystalline

alloys, 0 = x = 1, x being the concentration, the optical coefficients,

*Corresponding Author and the electrical-and-thermoelectric laws, relations, and various
Prof. Dr. Huynh Van

Cong

coefficients, enhanced by: (i) our static dielectric constant law,

r.X), Ty being the donor (acceptor) d(a)-radius, given in
Université de Perpignan Via =(rat)-®) Tate g ( ptor) d(a) 9

Domitia, Laboratoire de Equations (la, 1b), (ii) our accurate Fermi energy at T=0K,
Mathématiques et Physique Etn(rp) (Erno(rpo)) , determined in Eq. (11) and accurate with a
(LAMPS), EA 4217,
Département de Physique,

52, Avenue Paul Alduy, F-
66 860 Perpignan, France. investigated, by basing on our physical model, and Fermi-Dirac

precision of the order of 2.11 x 107* affecting all the expressions of

optical, electrical, and thermoelectric coefficients, are now

distribution function, as those given in our recent works.™ 23! In the

following, for given physical conditions, all the optical coefficients are

expressed as functions of the effective photon energy : E* = E— E_,;(zp1), E and Egpgzp1),
being the photon energy and the optical band gap. Then, some important remarks can be
repoted as follows. From our essential optical conductivity model, o5 (E*), determined in Eq.
(18), all the optical, electrical, thermoelectric coefficients are determined, as those given in

Equations (19a-19d, 20a-20d). In particular, from the optical phenomenon and electro-optical
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phenomenon (OP - [E-OP])-transition, obtained for E = E_, ;zp1) *Egn(eny, and given in Eq.
(15), one observes that the optical conductivity oot has a same form with that of the
electrical conductivity, agr, as those given in Eq. (20a), suggesting thus many important
concluding remarks on all the optical, electrical, thermoelectric coefficients at such the (OP

and E-OP)-transition, as those given in Equations (20a, 21-31).

KEYWORDS: Optical-and-electrical conductivity, Seebeck coefficient (S), Figure of merit
(ZT), First Van-Cong coefficient (VC1), Second Van-Cong coefficient (VC2), Thomson
coefficient (Ts), Peltier coefficient (Pt)

INTRODUCTION

In the n*(p*) — CdTe(1 — x)8(x) [CdTe(1 — x)Se(x)] —crystalline alloys, 0 = x =1, x
being the concentration, the optical coefficients, the electrical-and-thermoelectric laws, the
relations, and various coefficients, being enhanced by:

(i) our static dielectric constant law, £(r4,.x), ra(,) being the donor (acceptor) d(a)-radius,

given in Equations (1a, 1b),

(ii) our accurate Fermi energy, Eg,zp, given in Eq. (11) and accurate with a precision of the
order of 2.11x107% 1 affecting all the expressions of optical, electrical, and

thermoelectric coefficients ,

(iii)our optical phenomenon and electro-optical phenomenon (OP and E-OP)-transition, given
in Eq. (15), and finally

(iv)our optical-and-electrical conductivity models, given in Eq. (18, 20a), are now
investigated by basing on our physical model, and Fermi-Dirac distribution function, as

those given in our recent works.!* %]

It should be noted here that for x=0, these obtained numerical results may be reduced to those
given in the n(p)-type degenerate CdTe-crystal.®*®! Then, some important remarks can be

repoted as follows.

(1) As observed in Equations (3, 5, 6), the critical impurity density Ncpy,¢cpp), defined by the
generalized Mott criterium in the metal-insulator transition (MIT), is just the density of
electrons (holes), localized in the exponential conduction (valence)-band tail (EBT).

N &batcop). being obtained with a precision of the order of 2.88 x 1077, as given in our

recent works.!®! Therefore, the effective electron (hole)-density can be defined as:
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*=N = Neparepp) = N — Ngpaeopy» N being the total impurity density, as that observed
in the compensated crystals.
(2) The ratio of the inverse effective screening length k_, ., to Fermi wave number kg,

at 0 K, R,y (N¥), defined in Eq. (7), is valid at any N*.

(3) From Equations (20a, 21-30), for any given X, rg;,; and N (or T), with increasing T (or

decreasing N), one obtains: (i) for £, = Nﬂ“ﬁ—h =~ 1.8138, while the numerical results of the

Seebeck coefficient Sgriqry present a same minimum [SET[Dﬂ)mm(k —1.563 X 10“‘%],
those of the figure of merit ZTgropy Show a same maximum (ZTgrigr) max. = 1, (i) for
€atpy = 1, the numerical results of Sgrpgry, ZTgriory, the Mott figure of merit ZTerornomn.

the first Van-Cong coefficient VC1grory, and the Thomson coefficient Tsgpqr;, present the

same results: —1.322x 107*Z , 0.715, 3290, 1.105x 107*Z, and 1.657 X 107*=,

|m®

respectively, and finally (iii) for €., = N ry > 1.8138, ZTergrmon = L aS those given in
our recent work.™ It seems that these same results could represent a new law in the

thermoelectric properties, obtained in the degenerate case (£, = 0).

(4) Further, our electrical-and-thermoelectric relation is given in Eq. (31) by:

3L -
= |=*, according,
‘\q hi

85gTI0T] s DerjoT;(Nora () %T) (E) kg
k)

kg _
—= X VC2 NrgxT)=— r a
. ET[OT] (N,rar0.%,T) Bnip) peromy(NramxT) VK a

in this work, to:

__ DeroT) (Nrgra =T

ZTeT[oTMote X [1~ ZTET[0T)MOM] .
( V), bein
“E'T[EIT:'-_st‘d:jB:ux-T:l (v, g

X 2 X J
[1+ ZTET[OT Mott]

VC2errory (Norgea,x T) =

D 1 . . . .
reduced to: ﬁ:ﬂ”—:- , VClgror and VC2gpor, determined respectively in Equations (24,

27, 28). This can be a new result.

(5) Finally, for given [N,rg¢,.x T], all the numerical results of [o5(E), x5 (E), £45 (E), and
g (E)], given in the OP, and those of [oz(E), kz(E), £,z (E), and o<z (E)], given in the E-
OP, being determined respectively from Equations (18, 19b-19d], for any E, could thus be

used to explain all their corresponding past-or-future experimental results. Therefore, this can
also be explained for oo (N, r4¢.,% T), obtained in Eq. (20a) for the (OP - [E-OP])-

transition, and their derived electrical-and-thermoelectric results given in Equations (21-31).
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In the following, many important sections are presented in order to investigate all the optical
coefficients and electrical-and-thermoelectric ones, given in the
n*(p*) — CdTe(1— x)S(x) [CdTe(1— x)Se(x)] — crystalline alloys at any temperature

T(= 0 K).

OUR STATIC DIELECTRIC CONSTANT LAW AND GENERALIZED MOTT
CRITERIUM IN THE METAL-INSULATOR TRANSITION

First of all, in the n*(p*) — CdTe(1— x)S(x) [CdTe(1 — x)Se(x)] —crystalline alloys, at
T=0 K231 we denote : the donor (acceptor) d(a)-radius by r,,, the corresponding intrinsic
one bY: Tyura0)=Tre(cd), the effective averaged numbers of equivalent conduction (valence)-
bands by: g..., , the unperturbed reduced effective electron (hole) mass in conduction

(valence) bands by m,; (x)/m,, m, being the free electron mass, the relative carrier mass

L () oy, ()
m (2 +my ()

by: m.(x) = < m,.(x), for given x , the unperturbed relative static dielectric

constant by: £,(x), and the intrinsic band gap by: E_,(x), as those given in the Following

Table 1.

Table 1: In the CdTe(1 — x)S(x) [CdTe(1— x)Se(x)] —crystalline alloys, the different

values of energy-band-structure parameters, for a given X, are given in the following.

In the CdTe,_,S,-crystalline alloy, in which ra,ra0)=Trerca;=0.132 nm (0.148 nm), we
havel®l: g () = 1(1) x x+ 1(1) X (1-x) = 1, m e, (x)/m, = 0.197 (0.801) X x + 0.095 (082) X (1 —x),
£,(x) =9 Xx+ 1031 X (1 —x), E,,(x) = 258 X x + 1.62 X (1 — x),

In the CdTe,_,Se,-crystalline alloy, in which ra,as)=rre(cay=0.132 nm (0.148 nm), we
havel®): g, ()= 101) xx+ (1) X (1-%) =1, m g (x)/m, = 0.11 (0.45) X x + 0.095 (0.82) X (1 —x),

£,(x) =102 X x+ 1031 X (1 —x), E_(x) = 1.84 X x + 1.62 X (1 — %),

Here, the effective carrier mass my,(x) is equal to m,,, (x). Therefore, we can define the

effective donor (acceptor)-ionization energy in absolute values as:
13600 [my p(x)/mg ]
[z (x)]*

_ Edglag) )
Baolao) ) =7amy -
dolao) [%}}C'._rdu (=ol JS

Egoran) (%) = meV , and then, the isothermal bulk modulus, by
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Our Static Dielectric Constant Law [mj, (x) = m_, ()]

Here, the changes in all the energy-band-structure parameters, expressed in terms of the

effective relative dielectric constant £(r44).%), developed as follows.

Atrge, = ragraq) the needed boundary conditions are found to be, for the impurity-atom
volume V= (47/3) X (rar)’, Vaa(ae) = (47/3) X (rao(asy) , for the pressure p, p, =0,

and for the deformation potential energy (or the strain energy) a, @, = 0. Further, the two

important equations, used to determine the a -variation, A & = a —a_, = a, are defined by :

Sz —— and p— : giving rise to : ( )— . Then, by an integration, one gets:
[&a(rd':ﬂ:”xj]nrp} = BdDI:E.D:I [x:] ><(\/_ Vdgl:ag} ) X In
3 3
Tdrad _ Tdra)
Vo m:l‘i) EdD'ED} [:X:] X [(‘du[nuj) 1] X ln(rdu,:agj) =0

Furthermore, we also showed that, as rgisy = Tagrae) (Tdia) < Tde(asy), the compression
(dilatation) gives rise to the increase (the decrease) in the energy gap E., .y, [rd,:aj,,x}, and
the effective donor (acceptor)-ionization energy E; ., [rd,:ﬂ},x) in absolute values, obtained in

the effective Bohr model, which is represented respectively by : + [Aa(rge,x)] ;
; nip

-

_ _ 2o(x) \°
Egnn:i(gpn:i} (rd(a}’x:] - Egn:i [:X:] - Ed(a} (rd(a}’x:] - Edn:i(an:i} [:X:] - Edn:i(an:i} [:X:] X |( — ) -

2lrgy aj:'

1] =+ [ﬂcx(rd,:ﬂj,x]]

n{p)

for rdl a) — ri:]i:n aolh and for rdl a) = rdi:n aol

-

_ _ 2o(x) \°
Egnn:i(gpn:i} (rd(a}’x:] - Egn:i [:X:] - Ed(a} (rd(a}’x:] - Edn:i(an:i} [:X:] - Edn:i(an:i} [:X:] X |( — ) -

2lrgy aj:'

1] = — [ﬂcx(rd,:ﬂj,x]]

n{p)

Therefore, one obtains the expressions for relative dielectric constant £(r44).%) and energy

band gap E.,, () (Taca.x), as:

2502

(i)-for Tgeay = Tagrae), SINCE £(ryiay,X)= - < &£,(x), being a new

[y ey o ® BITORE
i1+[|:;“-} _1]}([“(;&}
N Tdoraoy Tdorao)

£(raca»x)-law,
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, 3
Egno(gpo) (Tate)X) — Ego (%) = Eaa) (Yaa)»X) — Edo(as) (%) = Edofas) (%) X [(rd—“) - 1} X

Tdo(ao)

Tdrs) 3

{

n (222 ) 2 0,
Tdofao)

(1a)
according to the increase in both E_, ;.. (raca)x) and Egep (raca),x), with increasing Fa(a)
and for a given x, and

(i)-for raray < ragaey » SiNCe £(rgea).x) = =olx) > £,(x), with a

I ¢ TAr = ¢ TAr E
!1—[|: dia } —1]::-cln|1 dz) }
o T'doreo) Tdofrao)

Fdr 3 Fdr 3 .
condition, given by: [(ﬂ) — 1] X ln(ﬂ) < 1, being a new &(ry .. x)-law,

T'doreo) T'do(ao)
Fdra) 3
Egno(gpo) [rd(a}’x) - Egc\ (Xj = Ed(a} [rd(a}’x) - Edo(ao} (Xj = _Edol:acu:l (Xj X [(m} -
Fdra)
1] X In (rdn[au)} £ I:I’ (1b)
corresponding to the decrease in both E_, ;.0 (racay.x) and Eara) (Taca)»X), with decreasing

ra(s) and for a given x.

It should be noted that, in the following, all the electrical-and-thermoelectric properties

strongly depend on this new £(rg., x)-law.

Furthermore, the effective Bohr radius ag,gp) (rara).%) is defined by:

e(rg gy ) xh* 2(rg g x)

- = 0.53 X 107% cm X

m;l,:pj I:X}Xmu =q (2)

3En(ep) (Taga)X) = iy ()
n(plh

Generalized Mott Criterium in the MIT [my (x) = m_, (x)]

Now, it is interesting to remark that the critical total donor (acceptor)-density in the MIT at
T=0 K, Nepninop) (Taga) %), was given by the Mott’s criterium, with an empirical parameter,

[1,2,3].

M as

n{p)

1y _
NCDnI:CDp}(rdI:a}’xj 3 X dgn(Bp) (rd(a}’xj = Mn(p}’ Mn':[:'} = 0.25, (3)
depending thus on our new &(ry:4.%)-law.

This excellent one can be explained from the definition of the reduced effective Wigner-Seitz

(WS) radius r ), in the Mott’s criterium, being characteristic of interactions, by:
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1

(4)

rsn(sp:l,}l (N’rdl:a}fx) = (%)1;’3 X =11723 % 1I:IB X (%)1;’3 M

EBn:ijj':"d:: Bj*x:' E':'-"d:jaj )

being equal to, in particular, at N= Nepncepp) (Taca) )
P entep) vt Nepacenp) (FagayX)s Tagay %)= 24813963, for any (r...%)-values. Then, from Eq.

(4), one also has:

1; 3 z 1
NCDHI:CDFI] (rdl:a}’x:] 12X EBH':BFI:' (I‘d,:&}_,!{) = (;)5 X 248313963 =0.25= (WSJH'P:' = Mﬂ':l’:" (5)

explaining thus the existence of the Mott’s criterium.

Furthermore, by using M = 0.25, according to the empirical Heisenberg parameter

n(p)

Hppy = 0.47137, as those given in our previous work!®], we have also showed that

np)
Nepnicop) 1S just the density of electrons (holes) localized in the exponential conduction
(valence)-band tail . Népn(cppy » With a precision of the order of

2.88 X 1077 ,respectively B

It shoud be noted that the values of M., and #,,, could be chosen so that those of

Ncparepp) @Nd NE5 o epp) are found to be in good agreement with their experimental results.

Therefore, the density of electrons (holes) given in parabolic conduction (valence) bands can
be defined, as that given in compensated materials:

N*(N,rge), %) = N — Nep, onpp) (Facap¥)= N7, for a presentation simplicity. (6)

In summary, as observed in Tables 7 and 8 of our previous paper’®, one remarks that, for a
given x and an increasing raws , £(rac..x) decreases, while E,czpo (Tacex)
Nepatvop) (Taca»X) and NEFTop.(rac.x) increase, affecting strongly all the optical
properties and the electrical-and-thermoelectric ones, as those observed in following

Sections.

PHYSICAL MODEL
In the n*(p*) — CdTe(1— x)S(x) [CdTe(1 — x)Se(x)] — crystalline alloys, the reduced

effective Wigner-Seitz (WS) radius r characteristic of interactions, being given in Eq.

sn(=p)

(4), in which N is replaced by N*, is now defined by:
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kgt 3g_ropy 1/3 1 .
X T oy (N¥) = “E2EB) - 9 , , E( “-) ,  bein
4 S“"Sp}( ) “En(Ep) Ten(sp) [N,rdkﬂ},X) s * x 2gn (Bp) (FdgayX) d

i ) z - ‘: - -
proportional to N*"Y2. Here, ¥ = (4/9m)"3, kgyep,)(N*) = (3” al )5 is the Fermi wave,

Eclw)
g1, being the effective averaged numbers of equivalent conduction (valence)-bands.
Then, the ratio of the inverse effective screening length k., .., to Fermi wave number
kpnikp is defined by:

ken(sp) kEé'ﬁpr' e fer]
T Ronws(epws) T [RsnTrEspTr} - Rsnwsispwsﬂe L (7)
anlap)

R (N9) =

=n(zp) N kg n(Fp)

being valid at any N*.
Here, these ratios, R ,rr=pre) @14 Ropwsiepws), Can be determined as follows.

First, for N> Nepgwpp)(Tacap®) ,  according to the Thomas-Fermi (TF)-

approximation, the ratio R ppey (N*) is reduced to

k kg [4yr

— TF(spTFy _ Fo(Fpy __ B0 (B[

R ) (N*) = = = = « 1 (8)

TF(=pTF —1 f
snTF(=pTF) kpniFp konTF@pTEy N 0T '

being proportional to N*~ /€.

Secondly, for N << Nep, cwpp) (Tacey), a@ccording to the Wigner-Seitz (WS)-approximation,

the ratio R s (=nws; 1S respectively reduced to

g
1

d[r:ni!meEE IZN'J:)
L t— , (9a)

_ Eantspiws
Rsn(sp}ws[N*j = m::n =05X% (

Where E.; (N*) is the majority-carrier correlation energy (CE), being determined by:

D.ETSEE z[1-1nlz)] . -
. —0.87553 00808 +Taprep b T )xn(rangepy) -0 093288
ECE [N :] = . - 1.ETETEETE
0.0908 +rgp o) 1+0.03847 728 X150

Furthermore, in the highly degenerate case, the physical conditions are found to be given by:

|2 =

kg N 1 kg2 o
Fon(Fp) = nipl = - F—TFm = eniep) - 1’ ﬂnrp}(N&] = _
8En(Ep) EfnaiFpo) Aprm I'{gm:gp‘_] - - E'~""|i|jﬂl1}

Eclw)
—-1/2

=n(=p)’

% q°k

(9b)

i i Epng (Fpa) (N RExkE o (N
Which gives: A, (N*) = % Epno(epe)(N%) = -esup) )

Zwmy p) (x)xmg

BAND GAP NARROWING (BGN) BY NANDBY T

WwWw.wjert.org 1SO 9001: 2015 Certified Journal 157




Cong et al. World Journal of Engineering Research and Technology

First, the BGN by N is found to be given by!?:

N 20() : ne :
&EEH':EP:“N[NS’ rd(ﬂ)’x) ~at z[r:-:a:wx) XNy +a, 2':F|:|:n:wx) XN, % (2'503 X
5

‘ - e = ; = =
[_ECE [rsn(gp})] X er:Bp)) +a, X |: 2glx) )]4 x |WiE g N: +2a, % [ gg () )i|:! « N:‘ +

elrga) .\‘| m;,:pj (=) elrg g«

o

5.555x10*7 em ™3 (loa)
Here, a;=38x10"3(eV) , a, =65xX10"%(eV) , ay=2.85x107%(eV)
a, =5.597 X 1073 (eV), and a; = 8.1 X 10~ *(eV).

E 4
2qlx]) z - _
2a_ X ["7] X N¢, N, =

E':"d.jaj.ﬁ”j

Therefore, at T=0 K and N* = 0, and for any rg,, one gets: AE 0, according to the

gnigp)

metal-insulator transition (MIT).

Secondly, one has?:

2T Z.zm 1.::!‘_
AE (g (T) = 020251 X [1 +H==) ] —1]. (10b)

FERMI ENERGY AND FERMI-DIRAC DISTRIBUTION FUNCTION

Fermi Energy

Here, for a presentation simplicity, we change all the sign of various parameters, given in the
p* — €dTe(1 —x)S(x) [CdTe(1 — x)Se(x)] —crystalline alloys, in order to obtain the
same one, as given in the n™ — CdTe(1 —x)S(x) [CdTe(1 — x)Se(x)] —crystalline alloys,
according to the reduced Fermi energy

Epp (Fpy (Nord (2% T)
kpT

Efn(rp) + Enpy(NoTqa), % T) = =0(< 0), obtained respectively in the

degenerate (non-degenerate) case.

For any (N,rs..% T), the reduced Fermi energy &, (N.t4¢.).% T) or the Fermi energy
Epnrp) (NoTacay,% T), obtained in our previous paper’, obtained with a precision of the

order of 2.11 x 107*, is found to be given by:

Epnpp (0} _ G':U:"l'RUBFI:u:I _ Wiu)

Engy) () = 52 T = e A= 0.0005372and B = 482842262, (1)
"
i i Nr Y L T)= P
Where u is the reduced electron density, u(N,rg..xT) Ne (T
Ny (T.X) = 28,00 X (wy (em™®) , F(u)= au§(1 +bus+ cu‘gj_;,
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o 2 62.3739855 4 _E .
a= [3,;'%;4]“5, b=£[z3) ac=T[ﬁ) , and Glu) = Ln(u)+2 zxuxe du.

d—zﬂf‘[‘- —i]:::n.

27 i

So, in the non-degenerate case (u << 1), one has: Ep,pp (W) = kg T X G(u) >~ ky T X Ln(u)

asu — 0, the limiting non-degenerate condition, and in the very degenerate case (u = 1),

R ki (M
one gets: Efnppy > 1) = kg T X Flu) = kgT x auS{l—l—bu 5—|— cu s:} J'EE';X—
My (pilxl<mg

as u — oo, the limiting degenerate condition. In other words, €., = EF“ "2 s accurate,

and it also verifies the correct limiting conditions.

In particular, as T—0K , since u*—=0 , Egq (11) is reduced to:
KE

Epno(rpo)(N*) = ﬂiﬁ?— , being proportional to (N*)*/3, and also equal to 0 at N* = 0,

;Km pﬁlx}){m
according to the MIT and noting that EFHDI:FFD}[mr(x])}EFHD':FFD}[m:(v}(x]) since

m,(x) < m_.,(x) for given x.

clwv)

In the following, it should be noted that all the optical and electrical-and-thermoelectric

properties strongly depend on such the accurate expression of g, [N,rd,:ﬂ,x,T).[g]

Fermi-Dirac Distribution Function (FDDF)
The Fermi-Dirac distribution function (FDDF) is given by: f(E)=(1+e")7! |
Y= (E - EFn(Fp}jf(kBTj'

So, the average of EF, calculated using the FDDF-method, as developed in our previous

works™ ® is found to be given by:

_ p aF 8 _ 1 et
(EP)eppr = Gy, (Epngrpy) X Efnirm = Jr EF X { BE) dE, T X TTreT)E
Further, one notes that, at 0 K, — === 8(E — Epo(rpo) )y 8(E — Egnorrpsy) beINg the Dirac

delta (8)-function. Therefore, G, [EFHDI:F[:ID}) =1

Then, at low T, by a variable change Y = (E — Egperpy )/ (kgT), one has:

G [:EFH,FP})_ 1+ Exfiey X U e X (ke TY + Epnerpy) dy = 14+X0_,, CEX

(kg T)® X E_ X Ig

Fanp}
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Where ¢ =p(p—1)..(p —B +1)/B!  and the integral I is given by:

st N
IE - -Jr—q.c '1+E }-. .r_

=dy, vanishing for old values of B. Then, for even

“":Ie 24e=v/ :I

values of B = 2n, with n=1, 2, ..., one obtains:

_ o ey xe’
Ln =2 [ crapdy

Now, using an identity(1 + e*)™2 = ¥=,(—1)*"s x e"*"Y 3 variable change: sy = —t,
the Gamma function: j: t™e™"dt=I(2n+ 1) = (2n)!, and also the definition of the
Riemann’s zeta function: Z(2n) = 2**"1n™"|B,,|/(2n)!, B,, being the Bernoulli numbers,
one finally gets: I, = (2% —2) x ™ X |B,,|. So, from above Eq. of (EP}zppz, We get in

the degenerate case the following ratio:

(EF) plp—1)..(p—2n+1) 2 In _
Gy (Epn(eg) ) = —EE:-E;F 14 Ty B e X (227 = 2) X [Bog | Xy™° = Gy (), (12)
ke T . mkpT k1
Where y=———=_—"E___  noting that G _,(v=—E=-"3=1 , and as
Y n(p)(N"T)  Epnepp (N°T) g p=1( EFn(Fp) Eu::p:l:]

T_} 0 Kl Gp}l(}r - ﬂ:] —* 1

Then, some usual results of G,.,(y) are given in the following Table 2, being needed to

determine all the following optical and electrical-and-thermoelectric properties.

Table 2: Expressions for G,..,(v = Eulj, due to the Fermi-Dirac distribution function, are
(B3

used to determine the electrical-and-thermoelectric coefficients.

Gay2(¥) G, (¥) Ggy2(¥) G3(y) Go/2(¥) G,y (¥) Ggy2(¥)
2 2 35y° 49y 24p" 147y
(1+% +s40) (1+y?){1+% ;;4)(14_3; ](1+_+ 334) (1+2 "+ 15 ) (1+_+ 178 )

OPTICAL-AND-ELECTRICAL PROPERTIES
Optical Phenomenon — Electro-Optical Phenomenon (OP - [E-OP])-Transition

[m;':[:':' = m, (Xj [mcl:v} (Xj:l]

First off on, for a presentation simplicity, we change all the sign of various parameters, given
in the p™ — €CdTe(1 —x)S(x) [CdTe(1 —x)Se(x)] —crystalline alloys, in order to obtain
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the same one, as given in the n® — CdTe(1 —x)S(x) [CdTe(1 —x)Se(x)] —crystalline
alloys, according to the reduced Fermi energy

Epn (Fp i N-'rd::a'_‘l.-x-T:l
kgT

Efnrrp) 1 Enip (Mg xT) = = 0(= 0), obtained respectively in the

degenerate (non-degenerate) case, giving: Ezpairps) = Erntrp) (N Tara), % T = 0).

Then, in the n™(p™) — €dTe(1—x)S(x) [CdTe(1—x)Se(x)] —crystalline alloys, and for
the temperature T(K), One has:
(i) in the electrical phenomenon (EP), the reduced band gap is defined by:

Egn!(gp!} = Ec':v} - Evn:t':cu} = Egni.(gpl} - &Egn':gp}:N(Ngj - E"Eglz'ﬂ:gp}:T[Tja (13)

Where E_.;izpi is the intrinsic bang gap, AE.,.,)(N7) and AE,, ., (T) are respectively the
reduced band gaps, due to the N*-and-T effects, as those determined in Equations (10a, 10b),

and

(ii) in the optical phenomenon (OP), the photon energy is defined by: E = fw, and the optical

band gap by Egnl':gpl} = Egn!fgpﬂ + EFn(Fp}'

Therefore, for E = E_,,; (z,1), the effective photon energy E* is found to be given by:

E"=E- Egnl':gpl:' =E- [Egnﬂfgpﬂ + EFnI:Fp}) = 0. (14)

From above Equations, the (OP — E-OP)-transition means that:

E* = [E— E_n1(gn ], given in the OP, in which E = [E_,11.p1) + Egncepy ], IS reduced in the
E-OP, in which E=[E_ i(zp1) + Epnirpy] and m,(x) are now replaced by
E=[E

en2(zp2) T Epnrrpy] and myqy (x), to: E*X=E— Ecn2(epz) = Ernrpy, and reciprocally,

noting that Ez,pg) (M, (%)) = Egqirp) (mc,:v} (xj) since m, (x) < m_,,(x), for given x. (15)

Eqg. (15) thus shows that, in both OP and E-OP, the Fermi energy-level penetrations into
conduction  (valence)-bands, observed in the n*(p*)— type degenerate

CdTe(1— x)S(x) [CdTe(1 — x)Se(x)] —crystalline alloys, Eg, g, are well defined, noting
that at this discontinuous (OP — E-OP)-transition: Ep,zg (m,(x)) = EFH,:FP}[mE,:v} (x]),

according to the discontinuous case.

Optical Coefficients
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The optical properties for any medium, defined in the OP and E-OP, respectively, according
to:  [mg =m.(x)[m,,(x)] , can be described by the  complex
refraction: Mg = ngpg; — iKgrey » Nopgy aNd  kgpg; being the refraction index and the

extinction coefficient, the complex dielectric function: &gy = 40118 — i€20[287, Where

i* = —1, and Eog) = Nopm” Further, if denoting the normal-incidence reflectance and the

optical absorption by Rqpg; and o<qpg;, and the joint density of states by:

Hm-.- -..II:X} E—Ep o Femal Z
DOS,, E =_X(L) x[ ns (gp) ] e
J <0t () R E~[Egn: (gpo+ Brn(Fp) ~EFno(Fpo)] v FFno(Fpo)

hgix|wiE)|®

n(E)xcEXEfres space

and Fy g (E) = , one gets!?:

E X £201281 (E) _ 2E X %151 (E)

%ore) (E) = JDOS, (5011 (E) X Fog) (E) = —— [;[E] B he
OLE
CNolE] (E] X Efree spa:e’
= . — Exzy0[2E)(E) — 2Exxgg (E) _ 4nog g (E)
DCB[E] [E] ]DDS"'~F‘}“[E] (Ej A F“[E](Ej ﬁl:ﬂl][EjI:E} ko :ﬂl][E:I:E}foraa Fpace
[nog 1] TroE
EiD[iE](Ej = ﬂn[E] — K{,[E] ) EHG[HE](EJ = 2Kp g1 No[g)» and RB[E](E] _L._L. . (16)

nu[E_ +1:| + H'l][E_

It should be noted that, such the above joint density of states yeilds: (i) as E = E_,1¢zp1) (T),

JDOS, (pyore; (E) =0 , and (ii) as E— o

Zmp (%) . .
JDOS . yore1 (E) = % X (“F—‘ﬂ) X \/Efnorrpo)- FUIMHET, £ge space IS the permittivity

of the free space, -q is the charge of the electron, | v“[E](E]| is the matrix elements of the

velocity operator between valence (conduction)-and-conduction (valence) bands, and the

refraction index ng g is found to be defined by

I:IL:E-H:I:IL

Noe) (B Tata)) = Ne(Taca) + 2 1§55 E+C

= 1. (ra) asE > oo, (17)

Now, the optical [electrical] conductivity oqg; can be defined and expressed in terms of the

kinetic energy of the electron (hole), By, = ————

Zxmp ) (x)=my

, k being the wave number, as:

g =k Tuk k
CFD[E](L"“j T omxh X Egniap

172
X [k X agnrep ] X (nE“ ) , which is thus proportional to E, .
; nip)
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Then, we obtain: (E2)gpps = G,(y = 2

z
2 = jr‘_ = .
EFﬂ.[ijj X EFHI:FP}’ and G: (F]_(l + 3 ) - GZ [:N’rdl__a:lrxr T],

with y = » Eatp) = Earpy(Noraca.x, T) for a presentation simplicity. Therefore, from

tam
above equations (16, 17), if denoting the function H(N, rg¢. % T) by:
H(N,rgc0,xT) =

k(e (V) . |' 9 =
[Rm,:mj.::r} X [Keatep) (N X 3ga(sp) (st 0)] X [Ane) (V) =

G,(N, rgcy,x T)

Efno(Fpa) ( N-:'i|
M (p) (N7}

"
r

konr . . . .
Where R, (N*) = —=2EL which is proportional t0 EZ, . gpe) TOr given (N,ryey,x T)-

an':prl
physical conditions, our optical [electrical] conductivity model can thus be assumed to be:
oo(N, T4r0.% T,E) =
qz
= X H(N, rg¢e.% T) X

=k

-

[ E—Eeni(gpy) ]L( 1 ) and
E_[Egn'_l:gp'_"+EFn':Fp:|_EFnu':Fp|:lfl] ohmxem/’

Og [:N, ra(a) % T,E) =
Z
—— X H(N,r4(9,% T) X

-

E—Egpzigpn - 1
E-|Ecnzigpz) YEPnFp)~ EFno(Fpo) ohmxcm

z
where # = 7.7480735 % 107° ohm™. It should be noted here that:

Z
. _ q _
(1) 0org) (E = Egntepn) [Egnztgeny]) = 0, and ogpg; (E = o0) = —5 X H(N,rg,).% T) = Constant

for given (N, ry..y,x T) —physical conditions, and

(ii) as T2 0Kand N* =0 [or Eg_y(gpe)(N*)] = 0,according to: H(N, r4y,x,T) = 0, and
for a given E, [E—E_ny(epn)] = [E— Egnigepp]=Constant, then from Equations (16-18),
ngrg; (E)= Constant,  ogp(E) =0, wo(E) =10, =5p5(E)= (n..)* = Constant ,

£2002e1(E) = 0, and o<y (E) = 0, according to the metal-insulator transition (MIT).

This result (18) should be new, in comparison with that, obtained from an improved Forouhi-

Bloomer parameterization, as given in our previous work.!!
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Using Equations (16-18), one obtains all the analytically results, due to the optical
phenomenon (OP) as: [o,(E), xo(E), £.5(E), and o5 (E)], and to the electro-optical
phenomenon ([E-OPY) as: [ox (E), ke (E), £,,2(E), and o (E)],

[w(E)® _ g & kpypp) (87
= —— X | o X [k (N X @pagey) (rag %)] [ X G2(N, g, T), (192)
'~2mr}5x1|.""lnipfl smlsp)
29% I E—Egp: (epl 12
= <4 gn1(gpd)
Kg(E) = — X H(N,rg.%xT) % and
0( j nI‘E}xzf”“PBEBXE [ dla) ) _E_[Egn'_':gpﬂ+EFninJ_EFnul:FpuJ]_
g2 r E—E Formed 2
K(E) = — ks ¥ H(N,r0,%T) X gnz(gpz) ’ 19b
E[ :] nI‘E}XEfm“PBE‘BXE [ d(a) ) _E_[Egmigp—ﬂ+EFn|jij_EFm:|[Fpnj]_ ( )

Which gives: k[iz](E = E_p1(gp1) [Eenz(ep 1) = 0, and k[kg] (E — c0) = 0, as those given

in Ref.[?,

4q° E—Egns(gps) .
£,0(E) = 1 ® H[:N,rd,«ﬂ,x,T) ® [ ERZEP ] and
Efres space *E : E_[Egnﬂ_igpﬂ+EFm:Fp:|_EFm:I|:Fp|:|‘_'|]
_ #q° E—Egna(gpa) :
£5g (E) = — 2 x H(N, rgr0),%, T) X [ i ik (19¢)
Bfree space * B E—|Egnz(gp=)t EFniFp) ~EFno (Fpo

which gives: &, (E = Egny (gpn) [Egnatepn 1) = 0, and £ (E = c0) = 0, as those given
in Ref.[? and

«, (E) =
41:1:"
fen(E) X 2fres space

E-E

Snslspe ]‘ (cm™) and

*HIN, ryr.xT K[
[ dla) ) E_[Egnﬂ_igpﬂ"'EFn':Fp:'_Ean':Fpnf']

o (E) = S — * H[N,rd.:ag.,X,T) ® [E_[E EFenz(gpn ]‘ (em™), (19d)

hen(E)®2freg space Eﬂz':gpﬂ'l'EFﬂiFP:l_EFHDIZFPDJ]

Which gives: oy [ec](E = Ecntep) [Egn:,:gp:]]) =0, and % [x](E=®)= XH(N rdlﬂ,x,T):Constant,

'E“x”freespm

as those given in Ref.

Using the (OP - [E-OP]) transition, given in Eq. (15), at E = E_,1(zp1) + Egnrep, the optical
conductivity, ogr, given in Eq. (18), in which my,y(x) = m,(x) is now replaced by

m,.,(x), has a same form with that of the electrical conductivity, g, given in our recent
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work™, for such the (OP - [E-OP))- transition. So, from Equations (18, 19b, 19c, 19d), and

for E = E .1 (zp1) [Egnztzpz) ] + Erncrp), ONES Obtains respectively, as:

oor(N.r4¢0.x T,E) = % X H(N, r¢,%T) X ( . )‘ ( ; )’

EFno(Fpa) ohmxcm

Having the same form with that of oz (N,rac0.% T) [1], as:

z Eo_r 2
. —a ) Fo(Fp) ( 1 )
oer(N.rac), % T,E) = Z— X H(N, 1400, %, T) X (Epmmp.ﬂ) ——), (20a)
2q° Efn(Fp) \
K N,ry.xT,E) =— ,q ®¥ HIN, ry7,%T) X (—P) and
OT[: dla) ) "'~E}xzfraaspaca #(Egnalgps) *Epn(pp)) [: dla) ) EFno (Fpol
2q° Efn(Fp) |
Ker (N, T, % T.E) = — 2 ¥ H(N,ryr.xT) x (—p) . (20b
ET[: dla) ) "'~E}xzfraaspaca *(Egnolgpz) +EFn(Fp)) [: dla) ) EFno (Fpol ( )

tlu:]2

Epnirp .
X H(N, rgeq.%T) X (—E ) and

FrnolFpol

201 (N g(a), % T.E) =
0T il d|~ pup Lop B - i
a) Zfres spacax'~£gn:'.gp'_‘l+EFnl.FpJ}

4,:]5

EZjET (_Nr rdl:a:l!x! T!E) = * H(N, rd,:a:,,x, T) * (EFIH—IFF;')‘ (ZOC)

Zfree apacax':Egnz':gpﬂ+EFn':Fp3:' EFno(Fpol

_ #q° ( Epn(Fp) )2 -1
o N.ry.xT.E] = - ®H(N, rg..%5T) X | —— cm and
oT [ d(a) ) ﬁ':nl*E}xzfrBB!pEE‘B [ d(a) ) Epno(Fpol [ ]
— #q° ( Epn(Fp) )2 -1
o N,rsr.0.5T,.E) =— ¥ H(N,ry,xT) x| ———— cm” T 20d
ET [ dla) ) ﬁ':”LE:'xzfraa!paca [ dle) ) Epno(Fpol [ ] ( )

One notes here that (i) the electrical conductivity o (N, rs...% T), given in Eq. (2a), is an
essential result, being used to determine the following electrical-and-thermoelectric

coefficients, and (ii) as noted in Eg. (15), at this discontinuous (OP - [E-OP])- transition,

given in the discontinuous case: EF,,.;FP}[mr(x]]}EF,,.;FP}(mE,:v}(x]), since

m, (x) < m.,(x) for given x, corresponding to: cor(m,(x)) = ogy (mc,:v} [xj). In our

recent work!, all the electrical-and-thermoelectric properties were investigated for this

discontinuous case.

Some optical coefficients, obtained in Equations (18, 19b-19d, 20a-20d) for given
(N,rgr5.% T) -physical conditions, are reported in the following Table 3, in which

Ogt -~ OgT.
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Table 3: Here, some optical coefficients, for some particular values of E, are given as

follows.

EineV oo (E) Ko (E) €20 (E) g (E)

Eeni(gpn) 0 0 0 0

[Eenitept) T Ernrm] Opt KoT ZapT Kot

E— o0 TXH _Constant 0 0 —*9XH  _Constant
mxhk fomgx Tfres space

EineV oz (E) xg(E) £2g (E) g (E)

Egna(gp) 0 0 0 0

[Egn:(gp:} + Ern(rp}] OgT KeT 28T g

E— o 2% _Constant 0 0 —*H  _Constant
Tk Reng ™ 2free space

Therefore, for given [N,rs.,).x, T], all the numerical results of [o4(E), x5 (E), £20 (E), and
g (E)], due to the OP and those of [og(E), ¥z (E), £, z(E), and oz (E)], due to the E-OP,
being determined respectively from Equations (18, 19b-19d], for any E, could thus be used to

explain all their corresponding past-or-future experimental results.

ELECTRICAL-AND-THERMOELECTRIC PROPERTIES [m},,;y = mg,; (x)[m,(x)]]

Here, if denoting, for majority electrons (holes), the thermal conductivity by
w
cmx K

O eror) (Mo Taca- % T) 0N , and the Lorenz number L by:

Wxohm

L=2x (?) = 2.4429637 [ = ] = 24429637 x 1078 (VZx K~2), then the well-

Z

known Wiedemann-Frank law states that the ratio, —£°% ' due to the (E-OP and OP)
CET [0T]

transition, respectively, is proportional to the temperature T(K), as:

OTh.ET[0T](Nrd (2% T)

=LXT
ogT [Ty (Nora (2 T) ' (21)
Further, the resistivity is found to be given by:
Perior] (N Tara) % T) = 1/0eror) (N Ta(0). % T) , noting again that

N*=N— N con (nop) (raca) %)
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In Eq. (20), one notes that at T= 0 K, ogror (N,rac.),% T = 0K) is proportional t0 EZ, . g0,

or to (N*)=.Thus, from Eq. (21), one has: ogrior (N = Nep, (xpp)s Tae) % T = 0K) = 0 and

also oy, grior(N = Nepainpg): Tate)»% T = 0K) = 0 at N* = 0, at which the MIT occurs.

Electrical Coefficients

The relaxation time Tgryory is related to oy ory by™:

_ MLy g (303 Mg .-
Terjor) (N Taca), % T) = Ogpor (N rgra),% T) X —E—q;:-:n:N'fg.:.;ﬂ} . Therefore, the mobility pgriqr

is given by:

_ _ axtgroq(Nra@aT) _
HET[OT] [N, Taig):* T) = HEeT[OT] [N éc’rl:l'haJ”T) = [ y -

My () mg

GET[DT":“J"dIZaJsX-TJ ( :mzj
LE s -y Ve . (22)

Here, at T= OK, ugrop(N*ra,,,T) is thus proportional to (N*)Y3, since
Oeror) (N Ta(e), T = 0K) is proportional to (N¥)¥3 Thus
TeT[OT] (N*= 0,rg). T = 0K) =0 and WeT[OT] (N* = 0,ryee), T = OK)=0 at N°=0, at

which the MIT occurs.

Then, the Hall factor is defined by:

{reT[0T; " }PDDE _ _Gi» y = T _ nkgT and
irm[DT-JFDDF]E [Go()]% En(pNra(a)xT)  Eppyppy(Nrgia)xT)

Fyerior) (N Tage) - % T) = [

therefore, the Hall mobility yields:

cm®
s

HHET[OT] [N,rd.:ﬂg.,x, T) = UeT[oT] [Nr Taia)-% T) X I'yer[oT] (N*,T) (v » ) (23)

Noting that, at T=0K, since rygrpom(N.rae.xT)=1 , one therefore gets:

berioT] (NoTa(a)- % T) = Herpor (NoTaca). % T)-

Our generalized Einstein relation

Our generalized Einstein relation is found to be defined as™:

Dgr DT-':NJE'd[BjK-TJ _N" dEFnin} _ kgxT ':]En':pf' (u) ||m ':]En':pf' (w) kg |m
Perom Tra@x T N Tl 2 Ty |y = [ gy (o ke B oy
HET[OT] l-.N*rd':a:le'T:l aq dN q du T du q o

Where Dgpor (N, raca.x T) is the diffusion coefficient, &, (u) is defined in Eq. (11), and

the mobility peprory(N.race.x T)is determined in Eq. (22). Then, by differentiating this
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function &, (u) with respect to u, one thus obtains i“dﬁjﬂ Therefore, Eq. (17) can also be

rewritten as:

DE.'T[IIIT":NJ'&IZE:H-‘"-T) __ kgxT % u V) =W ) =V i) =W ()
pgrioT) (Nrace =T) q W(u) ’

s s =
Where W'(u) = ABu® and V'(u) = u™ + 272e™** (1 — du) + 2Au®F(u) | (14 ) + S22 S
1+bu” E+cu

One remarks that: (i) as u—0, one has: W?*>~1 and u[V'XW—-VxW']~1, and

HE
g

therefore: ~ am(®) . kexT

, and (i) as u—o , one has: W2~ A%u*® and

u[V/ X W—Vx W'] % Zau*3A%u®8 | and therefore, in this highly degenerate case and at
T=0K, the above generalized Einstein relation is reduced to the usual Einstein one:

DET[0T) (NorgaxT)
wgroT; (NracexT)

& %EFW(FPD} (N*)/a. In other words, Eq. (24) verifies the correct limiting

conditions.

Furthermore, in the present degenerate case (u = 1), Eq. (24) gives:

4 £\
. hu_5+2cu_E~J
DET[IIIT"-.NJf'd':a:“-‘{'T) o (

reroT; (Nrae = T)

Efng ':Fpuﬂ':'-‘::'

%x x |14+ 2%

_s AN
(1+bu E4cu B

2/3

Where a = [3y7/4]", b= g[g): and ¢ = S23739855 ()

1520 B

Thermoelectric Coefficients
Here, as nOted above! EFn':Fp} [mrtxj) = EFn':Fp}(m:(V} (X:]) or Eﬂ':[-“]' [mr(x:]) = EI!'JI:[:I} (m:(v} (X:]) for
a given T, since m.(x)<m,,(x) for given X, corresponding to:

Oor [mr (K]) = Opr (m:(v} (x) )

Then, from Eq. (20a), obtained for ogrgry(N.r4¢4).% T), the well-known Mott definition for

the thermoelectric power or for the Seebeck coefficient, Sgrqry, is found to be given by:

_-m kg 51“'35.']‘[01"] _ - kg, @lncerory(ngm)
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Then, using Eq. (11), for the degenerate case, $,r, = 0, one gets, by putting

z

= ¥
FE}JET[DT] [N! r.:].:a},x, T) =1|1— ﬁ ’
3G =
8 v En':pf'J
_ - kg TFseeromND [ Bhgp) o
Seriom) (Norag . T) = 5 X F X = == = S Xy = 2L
(1+ —= )
 ZTET[0T Mot (v ) 2
%z /=0 ZT. -_m
1+ ZTET0T Mot K ET[OT]Motx Exgi.;p;. | (25)
according to:
83k ()
[ n(p) —
E'EET[DT' — [3%L WD L — IE % 2 % ZTET[DT'MnttX[i— ZTET[DT'Mutt]
Fnpy N (1+_EXE|:1':P:'—E~)E N [1+ ZTer o Mord
TI::"

Here, one notes that: (i) as €,¢,) — + or&,,) — +0, one has a same limiting value of
I_

Z
Serory’ Serpor; = —0, (i) At &,y = |— ~ 1.8138, smceaﬂ- = 0, one therefore gets:

a minimum ( Sgpor;) = —VL~ —1.563 x 107* [ ] and (iii) at £,¢,) = 1 one obtains:

min.

Serjory & —1322 X 107¢ (7).

Further, the figure of merit, ZT, is found to be defined by:

5*xogxT _ §° 4% ZTET[0T]Mott
ZT N, Tyrayx T) = B0 =% = . (26)
ET[DT][ dial ) W L [1+ 2T [DTZMm]z

. A ZT . 5 . g5 ..
Here, one notes that: (i) ¥Zemom) - 5  SEL1OM) o 2 SETIOM Serory <= 0. (i) at

BEnim L BEn(m
[ ZTeT[0my) _
Eate) = 3~ 18138, since BEW =0, one gets: a maximum (ZTgrpory) =1

,and ZTeoruer = 1, and (i) at ;) =1, one obtains: ZTgppp > 0.715 and

Z

Finally, the first Van-Cong coefficient, VC1 g, can be defined by:

_ dSgriom VY _ 8 SeT[oTy & Enip)
UC]'ET[UT] [N;rd(&},}{, T) = —N* b4 T«I'['_.— (E ) = N* b4 B_En,[;.- x _Wl (27)
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—
|

ﬂ':P} = -uql? '

being equal to O for £

And the second Van-Cong coefficient, VC2gpqry, as:

VC2erom) (N,rgce),x T) =T X VC 1errom (V). (28)

The Thomson coefficient, Ts, by:

ds . (Vv a5 - BE
- = ET[OT] /¥ ) — ET[OT nlp)
TSerom) [N’rd'ﬂ’x’T) =TX—4 (}c) Tx Bn () X ar (29)
[z

I
nipl — d".ll?,

being equal to O for £

and the Peltier coefficient, Ptgriqr, as:

PterioT [N’ Ta(a): % T) =T X Sgrper (V). (30)

One notes here that for given physical conditions N (or T) and for the decreasing &), since

. —d SgT[oT]
VCleror (N,ra¢0,% T) and TSero1] (N,ras.% T) are expressed in terms of —[_'a_w- and

—

d Sgr0T) . [n® _

—dT[—'-, one haS [Vc 1ET[DT]-"TSET[DT]] "{: ':I fOf Enf_p} :::“ "ql? y [UC]'ET[CIT]’ TSET[DT]] - ':I fOF
[ [

Entp) = 3 and [ VClgrory Tsgriom] = 0 for &,y {‘wl? , stating also that for
[ 2

_ .
Eate) = |3
() Sgror; » determined in Eq. (25), thus presents a same minimum
[ 'I'_E J— —4 E
(Serom)__ L~ —1563x107* (1),

(i) ZTgpor ,» determined in Eq. (26), therefore presents a same maximum:

[ZTET[DT])mm=1, since the variations of  ZTgror are expressed in terms of

[VCigriory TSetiom] X Seror: Serfor; < 0

Furthermore, it is interesting to remark that the VC2gpory-coefficient is related to our

generalized Einstein relation (24) by:

8 Sgrpor; . PeTpomy(Nera(axT) (vE k 3xL
[OT] [ (&) ( ), E_ | (31)

ke ) =_ v

K
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according, in this work, with the use of our Eq. (25), to:

DET[OT] (Nrgra =T

ZTET 0T Mot % [1~ ZTET0T)Mort ] (V)
ugr[or) (Nra(e.=T) .

X 2 X J
[1+ ZTET[OT Mott]

VC2errory (Norgea.x. T) = —

Of course, our relation (31) is reduced to: 2—;[2—:- VClgror; and  VC2gpor, being

determined respectively by Equations (24, 27, 28). This may be a new result.

CONCLUDING REMARKS

Some important concluding remarks can be repoted as follows.

Inthe n™ (p*) — CdTe(1 — x)S(x) [CdTe(1 —x)Se(x)] — crystalline alloys, 0 <= x < 1, x
being the concentration, the optical coefficients, and the electrical-and-thermoelectric laws,
relations, and various coefficients, being enhanced by:

(i) our static dielectric constant law, =(r4..x), ra, being the donor (acceptor) d(a)-radius,

given in Equations (1a, 1b),

(ii) our accurate Fermi energy, Eg,zp, given in Eq. (11) and accurate with a precision of the

order of 2.11 x 107* [9], affecting all the expressions of optical, and electrical-and-
thermoelectric coefficients ,

(iii)our optical-and-electrical transformation duality given in Eq. (15), and finally

(iv)our optical-and-electrical conductivity models, given in Eq. (18, 20a), are now
investigated, basing on our physical model, and Fermi-Dirac distribution function, as

those given in our recent works.[*?

It should be noted here that for x=0, these obtained numerical results may be reduced to those
given in the n(p)-type degenerate CdTe-crystal.’) Then, some important remarks can be

repoted as follows.

(1) As observed in Equations (3, 5, 6), the critical impurity density Nep,¢cnpy, defined by the
generalized Mott criterium in the metal-insulator transition (MIT), is just the density of
electrons (holes), localized in the exponential conduction (valence)-band tail (EBT).
N &batcog)» Deing obtained with a precision of the order of 2.88 x 1077 , respectively, as
given in our recent works [3]. Therefore, the effective electron (hole)-density can be defined
as: N* =N —Ngpuiepp) 2 N —N&acppy» N being the total impurity density, as that

observed in the compensated crystals.
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(2) The ratio of the inverse effective screening length k.., to Fermi wave number kg,

at 0 K, R,y (N¥), defined in Eq. (7), is valid at any N*.

(3) From Equations (20a, 21-30), for any given X, r; and N (or T), with increasing T (or

decreasing N), one obtains: (i) for £,.,; = Nﬂ“ﬁ—h =~ 1.8138, while the numerical results of the

Seebeck coefficient Sz present a same minimum [SET[Dﬂ)mm(x —1.563 X 10‘4:";),
those of the figure of merit ZTgrory Show a same maximum (ZTergr))max. = 1, (ii) for
€atpy = 1, the numerical results of Sgrpgry, ZTgrior, the Mott figure of merit ZTgrornomn.

the first Van-Cong coefficient VC1gpqr, and the Thomson coefficient Tsgrpqr;, present the

same results: —1.322x 107#Z , 0.715, 3290, 1.105X 107*2, and 1.657 X 107%=,

respectively, and finally (iii) for £, = Mﬂ“ﬂ—h >~ 1.8138, ZTergrmon = L aS those given in
our recent work.™ It seems that these same results could represent a new law in the

thermoelectric properties, obtained in the degenerate case (£,¢,) = 0).

(4) Further, our electrical-and-thermoelectric relation is given in Eg. (31) by:

9SeT[0T] | DerjoT;(Norate%T) [v:) kg
i)

kg _
— X VC2 Nry.xT)=— - —, =
q ET[Dﬂ[ Tala)r® ) dEnip) neroTy(Nora = T) q

—
__|3xL .
= [=, according,

K W ™

in this work, to:

DeT[0T) (Norare 2 T)

ZTeT 0T More X [1~ ZTET 0T Mor ] (V), being
EETOT W Mrar gj.-X.-T) ,

X2 X 2
[1+ ZTET[0T) Mott]

VC2g11a1 (N,rd.:ﬂ:;.,x, T) =-

. DET[0T] . . . .
reduced to: E{‘; , VClgpgr; and VC2groq, determined respectively in Equations (24,

27, 28). This can be a new result.

(5) Finally, for given [N,rg.x, T], all the numerical results of [o4(E), ¥5(E), £, (E), and
s (E}], given in the OP, and those of [6z(E), xz(E), =, (E), and ©<z (E)], given in the E-
OP, being determined respectively from Equations (18, 19b-19d], for any E, could thus be

used to explain all their corresponding past-or-future experimental results. Therefore, this can
also be explained for ogrpgr(N,ra¢s,% T), obtained in Eq. (20a) for the (OP - [E-OP])-

transition, and their derived electrical-and-thermoelectric results given in Equations (21-31).
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