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ABSTRACT 

In the  crystalline 

alloys, , x being the concentration, the optical coefficients, 

and the electrical-and-thermoelectric laws, relations, and various 

coefficients, enhanced by : (i) our static dielectric constant law, 

, being the donor (acceptor) d(a)-radius, given in 

Equations (1a, 1b), (ii) our accurate Fermi energy at , 

, determined in Eq. (11) and accurate with a 

precision of the order of  [9], affecting all the expressions 

of optical, electrical, and thermoelectric coefficients, are now 

investigated, by basing on our physical model, and Fermi-Dirac 

distribution function, as those given in our recent works.
[1, 2, 3]

 In the 

following, for given physical conditions, all the optical coefficients are 

expressed as functions of  the effective photon energy : , E and , 

being the photon energy and the optical band gap. Then, some important remarks can be 

repoted as follows. From our essential optical conductivity model, , determined in Eq. 

(18), all the optical, electrical, thermoelectric coefficients are determined, as those given in 

Equations (19a-19d, 20a-20d). In particular, from the optical phenomenon and electro-optical 

phenomenon (OP  [E-OP])-transition, obtained for + , and given in Eq. 
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(15), one observes that the optical conductivity  has a same form with that of the 

electrical conductivity, , as those given in Eq. (20a), suggesting thus many important 

concluding remarks on all the optical, electrical, thermoelectric coefficients at such the (OP 

and E-OP)-transition , as those given in Equations (20a, 21-31). 

 

KEYWORDS: Optical-and-electrical conductivity, Seebeck coefficient (S), Figure of merit 

(ZT), First Van-Cong coefficient (VC1), Second Van-Cong coefficient (VC2), Thomson 

coefficient (Ts), Peltier coefficient (Pt). 

 

INTRODUCTION 

In the crystalline alloys, , x being 

the concentration, the optical coefficients, the electrical-and-thermoelectric laws, the 

relations, and various coefficients, being enhanced by: 

(i) our static dielectric constant law, , being the donor (acceptor) d(a)-radius, 

given in Equations (1a, 1b),  

(ii) our accurate Fermi energy, , given in Eq. (11) and accurate with a precision of the 

order of 
[9]

, affecting all the expressions of optical, electrical, and 

thermoelectric coefficients ,  

(iii)our optical phenomenon and electro-optical phenomenon (OP and E-OP)-transition, given 

in Eq. (15), and finally  

(iv) our optical-and-electrical conductivity models, given in Eq. (18, 20a), are now 

investigated by basing on our physical model, and Fermi-Dirac distribution function, as 

those given in our recent works.
[1, 2, 3]

 

 

It should be noted here that for x=0, these obtained numerical results may be reduced to those 

given in the n(p)-type degenerate Ge[Si]-crystals.
[3-13]

 Then, some important remarks can be 

repoted as follows. 

 

(1) As observed in Equations (3, 5, 6), the critical impurity density , defined by the 

generalized Mott criterium in the metal-insulator transition (MIT), is just the density of 

electrons (holes), localized in the exponential conduction (valence)-band tail (EBT)  

, being obtained with a precision of the order of , as given in our 

recent works.
[1, 3]

 Therefore, the effective electron (hole)-density can be defined as: 

, N being the total impurity density, as that observed 

in the compensated crystals.  
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(2) The ratio of the inverse effective screening length to Fermi wave number  

at 0 K, , defined in Eq. (7), is valid at any . 

 

(3) From Equations (20a, 21-30), for any given x,  and N (or T), with increasing T (or 

decreasing N), one obtains: (i) for , while the numerical results of the 

Seebeck coefficient  present a same minimum , 

those of the figure of merit  show a same maximum , (ii) for 

, the numerical results of ,  , the Mott figure of merit , 

the first Van-Cong coefficient , and the Thomson coefficient  present the 

same results:  , 0.715, 3.290, , and , 

respectively, and finally (iii) for , , as those given in 

our recent work.
[1]

 It seems that these same results could represent a new law in the 

thermoelectric properties, obtained in the degenerate case ( ). 

 

(4) Further, our electrical-and-thermoelectric relation is given in Eq. (31) by: 

 ,    ,  according, 

in this work, to: 

, being 

reduced to:  ,      and   , determined respectively in Equations (24, 

27, 28). This can be a new result. 

 

(5) Finally, for given , all the numerical results of [ , , , and 

, given in the OP, and those of [ , , , and  , given in the E-

OP, being determined respectively from Equations (18, 19b-19d], for any E, could thus be 

used to explain all their corresponding past-or-future experimental results. Therefore, this can 

also be explained for , obtained in Eq. (20a) for the (OP  [E-OP])-

transition, and their derived electrical-and-thermoelectric results given in Equations (21-31). 

 

In the following, many important sections are presented in order to investigate all the optical 

coefficients and electrical-and-thermoelectric ones, given in the 
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crystalline alloys  at any temperature 

. 

 

OUR STATIC DIELECTRIC CONSTANT LAW AND GENERALIZED MOTT 

CRITERIUM IN THE METAL-INSULATOR TRANSITION 

First of all, in the crystalline alloys, at T=0 

K
[1, 2, 3]

, we denote : the donor (acceptor) d(a)-radius by , the corresponding intrinsic ones 

by: =  and = , respectively, the effective averaged numbers of 

equivalent conduction (valence)-bands by:  , the unperturbed reduced effective electron 

(hole) mass in conduction (valence) bands by ,  being the free electron mass, 

the relative carrier mass by:  , for given x , the unperturbed 

relative static dielectric constant by: , and the intrinsic band gap by: , as those 

given in the Following Table 1. 

 

Table 1: In the crystalline alloys, the different 

values of energy-band-structure parameters, for a given x, are given in the following. 

___________________________________________________________________________ 

In the -crystalline alloy, in which = =0.122 nm, we have
[1, 3]

: 

, , 

, . 

 

In the -crystalline alloy, in which = =0.117 nm, we have
[1, 3]

: 

, , 

, . 

 

Here, the effective carrier mass  is equal to  Therefore, we can define the 

effective donor (acceptor)-ionization energy in absolute values as: 

, and then, the isothermal bulk modulus, by: 

. 

 

Our Static Dielectric Constant Law  

Here, the changes in all the energy-band-structure parameters, expressed in terms of the 

effective relative dielectric constant , developed as follows. 
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At , the needed boundary conditions are found to be, for the impurity-atom 

volume V , , for the pressure p, , 

and for the deformation potential energy (or the strain energy) , . Further, the two 

important equations, used to determine the  -variation, ∆  ≡  − , are defined by: 

=−  and p=−  , giving rise to :  ( )= . Then, by an integration, one gets : 

= ×(V− ) × ln 

( )= . 

 

Furthermore, we also showed that, as , the compression 

(dilatation) gives rise to the increase (the decrease) in the energy gap , and 

the effective donor (acceptor)-ionization energy  in absolute values, obtained in 

the effective Bohr model, which is represented respectively by : , 

, 

for  , and for , 

. 

 

Therefore, one obtains the expressions for relative dielectric constant  and energy 

band gap , as : 

(i)-for  ,  since = ≤ , being a new 

-law,  

   (1a) 

 

according to the increase in both  and , with increasing  

and for a given x, and 
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(ii)-for , since = ≥ , with a 

condition, given by: ,  being a new -law, 

 ,  (1b) 

 

corresponding to the decrease in both  and , with decreasing 

 and for a given x.  

 

It should be noted that, in the following, all the electrical-and-thermoelectric properties 

strongly depend on this new -law. 

 

Furthermore, the effective Bohr radius  is defined by: 

.                                              (2) 

 

Generalized Mott Criterium in the MIT  

 

Now, it is interesting to remark that the critical total donor (acceptor)-density in the MIT at 

T=0 K, , was given by the Mott’s criterium, with an empirical parameter, 

, as
[1, 2, 3]

: 

,  ,                            (3) 

depending thus on our new -law. 

 

This excellent one can be explained from the definition of the reduced effective Wigner-Seitz 

(WS) radius , in the Mott’s criterium, being characteristic of interactions, by : 

,         (4) 

 

being equal to, in particular, at N= : 

= 2.4813963, for any )-values. Then, from Eq. 

(4), one also has : 

,      (5) 

explaining thus the existence of the Mott’s criterium. 
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Furthermore, by using , according to the empirical Heisenberg parameter 

, as those given in our previous work
[3]

, we have also showed that 

 is just the density of electrons (holes) localized in the exponential conduction 

(valence)-band tail  , with a precision of the order of 

.
[1, 3]

 

 

It shoud be noted that the values of  and  could be chosen so that those of 

 and  are found to be in good agreement with their experimental results. 

 

Therefore, the density of electrons (holes) given in parabolic conduction (valence) bands can 

be defined, as that given in compensated materials:  

)= , for a presentation simplicity.              (6) 

 

In summary, as observed in Tables 7 and 8 of our previous paper
[3]

, one remarks that, for a 

given x and an increasing ,  decreases, while , 

 and  increase, affecting strongly all the optical 

properties and the electrical-and-thermoelectric ones, as those observed in following 

Sections. 

 

PHYSICAL MODEL 

In the crystalline alloys, the reduced effective 

Wigner-Seitz (WS) radius , characteristic of interactions, being given in Eq. (4), in 

which N is replaced by is now defined by: 

,  , being 

proportional to . Here, ,  is the Fermi wave, 

 being the effective averaged numbers of equivalent conduction (valence)-bands. 

 

Then, the ratio of the inverse effective screening length to Fermi wave number 

 is defined by: 

      (7) 

being valid at any . 
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Here, these ratios, , can be determined as follows. 

First, for , according to the Thomas-Fermi (TF)-

approximation, the ratio  is reduced to  

,                                       (8) 

being proportional to . 

 

Secondly, for , according to the Wigner-Seitz (WS)-approximation, 

the ratio  is respectively reduced to 

,                                               (9a) 

 

Where  is the majority-carrier correlation energy (CE), being determined by: 

 . 

 

Furthermore, in the highly degenerate case, the physical conditions are found to be given by: 

,  ,   (9b) 

 

Which gives:   , . 

 

BAND GAP NARROWING (BGN) BY N AND BY T  

First, the BGN by N is found to be given by
[2]

: 

     (10a) 

 

Here, , , , 

, and . 

 

Therefore, at T=0 K and , and for any , one gets: , according to the 

metal-insulator transition (MIT). 
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Secondly, one has
[2]

: 

.                                        (10b)  

 

FERMI ENERGY AND FERMI-DIRAC DISTRIBUTION FUNCTION 

Fermi Energy 

Here, for a presentation simplicity, we change all the sign of various parameters, given in the 

crystalline alloys,  in order to obtain the same 

one, as given in the crystalline alloys, according to 

the reduced Fermi energy , , obtained 

respectively in the degenerate (non-degenerate) case. 

 

For any , the reduced Fermi energy  or the Fermi energy 

,  obtained in our previous paper [9], obtained with a precision of the 

order of , is found to be given by:  

,  and          (11) 

 

Where u is the reduced electron density, , 

,  

,    ,  ,    and   ; 

. 

 

So, in the non-degenerate case ( ), one has:  

as , the limiting non-degenerate condition, and in the very degenerate case ( ), 

one gets:   

as , the limiting degenerate condition. In other words,  is accurate, 

and it also verifies the correct limiting conditions.  

 

In particular, as , since , Eq. (11) is reduced to: 

 , being proportional to , and also equal to 0 at , 
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according to the MIT and noting that  since 

 for given x. 

 

In the following, it should be noted that all the optical and electrical-and-thermoelectric 

properties strongly depend on such the accurate expression of .
[9]

 

 

Fermi-Dirac Distribution Function (FDDF) 

The Fermi-Dirac distribution function (FDDF) is given by: ,  

. 

 

So, the average of , calculated using the FDDF-method, as developed in our previous 

works
[1, 6] 

is found to be given by: 

,      . 

 

Further, one notes that, at 0 K, ,  being the Dirac 

-function. Therefore, . 

 

Then, at low T, by a variable change , one has: 

,  

 

Where       and the integral  is given by: 

, vanishing for old values of . Then, for even 

values of , with n=1, 2, …, one obtains: 

 . 

 

Now, using an identity , a variable change: , 

the Gamma function: , and also the definition of the 

Riemann’s zeta function: ,  being the Bernoulli numbers, 

one finally gets:  .  So, from above Eq. of , we get in 

the degenerate case the following ratio: 
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,   (12) 

 

Where , noting that  , and as 

T , . 

 

Then, some usual results of  are given in the following Table 2, being needed to 

determine all the following optical and electrical-and-thermoelectric properties. 

 

Table 2: Expressions for , due to the Fermi-Dirac distribution function, 

are used to determine the electrical-and-thermoelectric coefficients.
 

__________________________________________________________________________ 

                                                           

          

_________________________________________________________________________ 

 

OPTICAL-AND-ELECTRICAL PROPERTIES 

Optical Phenomenon  Electro-Optical Phenomenon (OP  [E-OP])-Transition 

 

 

First off on, for a presentation simplicity, we change all the sign of various parameters, given 

in the crystalline alloys,  in order to obtain the 

same one, as given in the crystalline alloys, 

according to the reduced Fermi energy , , 

obtained respectively in the degenerate (non-degenerate) case, giving: 

. 

 

Then, in the crystalline alloys, and for the 

temperature T(K), One has: 

(i) in the electrical phenomenon (EP), the reduced band gap is defined by: 

,                        (13) 

 

Where   is the intrinsic bang gap,   and  are respectively the 

reduced band gaps, due to the -and-T effects, as those determined in Equations (10a, 10b), 

and 
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(ii) in the optical phenomenon (OP), the photon energy is defined by: , and the optical 

band gap by: . 

 

Therefore, for , the effective photon energy  is found to be given by:   

.                                      (14) 

 

From above Equations, the (OP  E-OP)-transition means that: 

, given in the OP, in which , is reduced in the 

E-OP, in which  and  are now replaced by 

 and , to: , and reciprocally, 

noting that  since  for given x.   (15) 

 

Eq. (15) thus shows that, in both OP and E-OP, the Fermi energy-level penetrations into 

conduction (valence)-bands, observed in the  type degenerate 

crystalline alloys,  are well defined, noting that 

at this discontinuous (OP  E-0P)-transition: , 

according to the discontinuous case. 

 

Optical Coefficients  

The optical properties for any medium, defined in the OP and E-OP, respectively, according 

to: , can be described by the complex 

refraction:  ,  and   being the refraction index and the 

extinction coefficient, the complex dielectric function:  , where 

, and . Further, if denoting the normal-incidence reflectance and the 

optical absorption by  and , and the joint density of states by: 

 , 

and , one gets
[2]

: 
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, , and   .            (16) 

 

It should be noted that, such the above joint density of states yeilds: (i) as , 

, and (ii) as , .  

 

Further,  is the permittivity of the free space, -q is the charge of the electron, 

 is the matrix elements of the velocity operator between valence (conduction)-and-

conduction (valence) bands, and the refraction index  is found to be defined by
[2]

: 

, as .                              (17) 

 

Now, the optical [electrical] conductivity  can be defined and expressed in terms of the 

kinetic energy of the electron (hole), ,  k being the wave number, as:  

,  which is thus proportional to . 

 

Then, we obtain: , and = , 

with ,  for a presentation simplicity. 

 

Therefore, from above equations (16, 17), if denoting the function H  by: 

,  

 

Where , being proportional to , then, our optical [electrical] 

conductivity model can thus be assumed to be as: 
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Where   . 

 

It should be noted here that:  

(i) , and  

for given physical  conditions, and 

 

(ii) as T  and  [or , and  

for a given E, =Constant, then from Equations (16-18), 

 (E)= Constant,  , , , 

, and , according to the metal-insulator  transition (MIT). 

 

This result (18) should be new, in comparison with that, obtained from an improved Forouhi-

Bloomer parameterization, as given in our previous work.
[2]

 

 

Using Equations (16-18), one obtains all the analytically results, due to the optical 

phenomenon (OP) as: [ , , , and  , and to the electro-optical 

phenomenon ([E-OP]) as: [ , , , and  , 

 

    (19a) 

 

and 

,               (19b) 

 

Which gives: , and , as those given 

in Ref.
[2]

, 

  

             (19c) 

 

Which gives: , and , as those given 

in Ref.
[2]

, and 
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     (19d) 

 

Which gives: , and , 

as those given in Ref.
[2]

 

 

Using the (OP  [E-OP]) transition, given in Eq. (15), at , the optical 

conductivity, , given in Eq. (18), in which  is now replaced by 

, has a same form with that of  the electrical conductivity, , given in our recent 

work
[1]

, for such the (OP  [E-OP])- transition. So, from Equations (18, 19b, 19c, 19d), and 

for , ones obtains respectively, as: 

 

 

Having the same form with that of 
[1]

, as: 

                       (20a) 

 

 and 

 ,      (20b) 

 

 and 

 

      (20c) 

 

 

 

       (20d) 
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One notes here that (i) the electrical conductivity , given in Eq. (2a), is an 

essential result, being used  to determine the following electrical-and-thermoelectric 

coefficients, and (ii) as noted in Eq. (15), at this discontinuous (OP  [E-OP])- transition, 

given in the discontinuous case : , since 

 for given x, corresponding to: . In our 

recent work
[1]

, all the electrical-and-thermoelectric properties were investigated for this  

discontinuous case. 

 

Some  optical coefficients, obtained in Equations (18, 19b-19d, 20a-20d) for given 

 -physical conditions, are reported in the following Table 3, in which  

. 

 

Noting that  is a constant for given  -physical conductions  

 

Table 3: As noted above,  is a constant for given  -physical 

conductions,  then, some optical coefficients, for some particular values of E, are given 

as follows.
 

__________________________________________________________________________ 

E in eV                                                                                        

                         0                             0                            0                               0 

]                                                                                      

                          Constant                 0                       0    Constant 

_________________________________________________________________________ _ 

E in eV                                                                                           

                         0                           0                        0                               0 

]                                                                                    

                          Constant              0                   0    Constant 

_________________________________________________________________________ _ 

 

Therefore, for given , all the numerical results of [ , , , and  

, due to the OP and those of [ , , , and  , due to the E-OP, 

being determined respectively from Equations (18, 19b-19d], for any E, could thus be used to 

explain all their corresponding past-or-future experimental results. 
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ELECTRICAL-AND-THERMOELECTRIC PROPERTIES  

Here, if denoting, for majority electrons (holes), the thermal conductivity by 

 in , and the Lorenz number L by: 

, then the well-

known Wiedemann-Frank law states that the ratio, , due to the (E-OP and OP) 

transition, respectively, is proportional to the temperature T(K), as: 

.                                                                                     (21) 

 

Further, the resistivity is found to be given by: , 

noting again that . 

 

In Eq. (20), one notes that at T= 0 K,  is proportional to , 

or to , from Eq. (21), one has:  and 

also  at , at which the MIT occurs. 

 

Electrical Coefficients 

The relaxation time  is related to  by
[1]

: 

 . Therefore, the mobility 

 is given by: 

.      (22) 

 

Here, at T= 0K,  is thus proportional to  

 is proportional to . , 

 and  at , at 

which the MIT occurs. 

 

Then, the Hall factor is defined by: 

, , and 

therefore, the Hall mobility yields: 
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,                        (23) 

 

Noting that, at T=0K, since , one therefore gets: 

. 

 

Our generalized Einstein relation 

Our generalized Einstein relation is found to be defined as
[1]

: 

,  ,       (24) 

 

Where  is the diffusion coefficient,  is defined in Eq. (11), and 

the mobility  is determined in Eq. (22). Then, by differentiating this 

function  with respect to u, one thus obtains . Therefore, Eq. (17) can also be 

rewritten as:  

, 

 

where  and . 

One remarks that: (i) as , one has:  and , and 

therefore:  , and (ii) as , one has:  and 

, and therefore, in this highly degenerate case and at 

T=0K, the above generalized Einstein relation is reduced to the usual Einstein one: 

. In other words, Eq. (24) verifies the correct limiting 

conditions. 

 

Furthermore, in the present degenerate case ( ), Eq. (24) gives: 

, 

Where ,    and  
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Thermoelectric Coefficients 

Here, as noted above,  or for 

a given T, since  for given x, corresponding to: 

. 

 

Then, from Eq. (20a), obtained for , the well-known Mott definition for 

the thermoelectric power or for the Seebeck coefficient, , is found to be given by: 

. 

 

Then, using Eq. (11), for the degenerate case, , one gets, by putting 

, 

 

,      (25) 

according to: 

. 

 

Here, one notes that: (i) as , one has a same limiting value of 

: , (ii) at , since one therefore gets: 

a minimum , and (iii) at  one obtains: 

. 

 

Further, the figure of merit, ZT, is found to be defined by: 

.                                     (26) 
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Here, one notes that: (i)  (ii) at 

, since , one gets: a maximum  

, and (iii) at , one obtains:  and 

. 

 

Finally, the first Van-Cong coefficient, , can be defined by:      

,             (27) 

 

being equal to 0 for  , 

 

and the second Van-Cong coefficient, , as: 

,                                                 (28) 

 

the Thomson coefficient, Ts , by: 

,                         (29) 

 

being equal to 0 for , 

and the Peltier coefficient, , as: 

.                                                   (30) 

 

One notes here that for given physical conditions N (or T) and for the decreasing , since 

 and  are expressed in terms of  and 

, one has: [  for  , [  for 

, and [ , stating also that for 

: 

(i) , determined in Eq. (25), thus presents a same minimum 

, 
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(ii) , determined in Eq. (26), therefore presents a same maximum: 

, since the variations of   are expressed in terms of 

[ . 

 

Furthermore, it is interesting to remark that the -coefficient is related to our 

generalized Einstein relation (24) by: 

 ,       ,         (31) 

 

according, in this work, with the use of our Eq. (25), to: 

 

 

Of course, our relation (31) is reduced to:  ,       and   , being 

determined respectively by Equations (24, 27, 28). This may be a new result. 

 

CONCLUDING REMARKS 

Some important concluding remarks can be repoted as follows. 

In the , x 

being the concentration, the optical coefficients, and the electrical-and-thermoelectric laws, 

relations, and various coefficients, being enhanced by: 

(i) our static dielectric constant law, , being the donor (acceptor) d(a)-radius, 

given in Equations (1a, 1b),  

(ii) our accurate Fermi energy, , given in Eq. (11) and accurate with a precision of the 

order of  [9], affecting all the expressions of optical, and electrical-and-

thermoelectric coefficients ,  

(iii)our optical-and-electrical transformation duality given in Eq. (15), and finally  

(iv) our optical-and-electrical conductivity models, given in Eq. (18, 20a),  

are now investigated, basing on our physical model, and Fermi-Dirac distribution 

function, as those given in our recent works.
[1, 2]

 

 

It should be noted here that for x=0, these obtained numerical results may be reduced to those 

given in the n(p)-type degenerate Ge[Si]-crystals.
[3]

 Then, some important remarks can be 

repoted as follows. 
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(1) As observed in Equations (3, 5, 6), the critical impurity density , defined by the 

generalized Mott criterium in the metal-insulator transition (MIT), is just the density of 

electrons (holes), localized in the exponential conduction (valence)-band tail (EBT)  

, being obtained with a precision of the order of , respectively, as 

given in our recent works.
[3]

 Therefore, the effective electron (hole)-density can be defined 

as: , N being the total impurity density, as that 

observed in the compensated crystals. 

 

(2) The ratio of the inverse effective screening length to Fermi wave number  

at 0 K, , defined in Eq. (7), is valid at any . 

 

(3) From Equations (20a, 21-30), for any given x,  and N (or T), with increasing T (or 

decreasing N), one obtains: (i) for , while the numerical results of the 

Seebeck coefficient  present a same minimum , 

those of the figure of merit  show a same maximum , (ii) for 

, the numerical results of ,  , the Mott figure of merit , 

the first Van-Cong coefficient , and the Thomson coefficient  present the 

same results:  , 0.715, 3.290, , and , 

respectively, and finally (iii) for , , as those given in 

our recent work.
[1]

 It seems that these same results could represent a new law in the 

thermoelectric properties, obtained in the degenerate case ( ). 

 

(4) Further, our electrical-and-thermoelectric relation is given in Eq. (31) by: 

 ,    ,  according, 

in this work, to: 

, being 

reduced to:  ,      and   , determined respectively in Equations (24, 

27, 28). This can be a new result. 
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(5) Finally, for given , all the numerical results of [ , , , and 

, given in the OP, and those of [ , , , and  , given in the E-

OP, being determined respectively from Equations (18, 19b-19d], for any E, could thus be 

used to explain all their corresponding past-or-future experimental results. Therefore, this can 

also be explained for , obtained in Eq. (20a) for the (OP  [E-OP])-

transition, and their derived electrical-and-thermoelectric results given in Equations (21-31). 
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