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ABSTRACT
In n*(p*)—p(n)— InP,_, [As_Sb,] - crystalline alloys, 0 < x =<1,

various optical, electrical and thermoelectric laws, relations, and
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transition, and given in Eq. (20a), are now investigated, by basing on
the same physical model and mathematical treatment method, as those

used in our recent workst # 3 noting that, for x=0, these obtained

numerical results are reduced to those given in the n(p)-type

degenerate InP-crystal.*® In the following, for given physical conditions, all the optical
coefficients are expressed as functions of the effective photon energy : E* = E— E_,1(zp1), E
and E_,1(zp1), being the photon energy and the optical band gap. Then, some important
remarks can be reported as follows. From our optical [electrical] conductivity model,

oore (E7), determined in Eq. (18), all the optical, electrical, thermoelectric coefficients are
determined, as those given in Equations (19a-19d, 20a-20d). In particular, at the (OP - [E-
OP])-transition (T), obtained for E = E_, (zp1) *Erncrp), and given in Eq. (15), one observes
that the optical conductivity o5 has a same form with that of the electrical conductivity, g,

given in Eq. (20a), being used to determine all the optical, electrical, and thermoelectric
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coefficients, as those reported in Table 3 and also in Equations (18, 19a-19d, 20a-20d, 21-
31).

KEYWORDS: Optical-and-electrical conductivity, Seebeck coefficient (S), Figure of merit
(ZT), First Van-Cong coefficient (VC1), Second Van-Cong coefficient (VC2), Thomson
coefficient (Ts), Peltier coefficient (Pt).

INTRODUCTION

Inthe n*(p*) — InP, __ [As_,Sb_] —crystalline alloys, 0 < x < 1, x being the concentration,

the optical coefficients, the electrical-and-thermoelectric laws, the relations, and various

coefficients, being enhanced by

(i) our static dielectric constant law, =(ry..%), rar.) being the donor (acceptor) d(a)-radius,
given in Equations (1a, 1b),

(ii) our accurate Fermi energy, Eg, gy, given in Eq. (11) and accurate with a precision of the
order of 2.11x 107% 1 affecting all the expressions of optical, electrical, and
thermoelectric coefficients ,

(iii)our optical phenomenon and electro-optical phenomenon (OP and E-OP)-transition, given
in Eq. (15), and finally

(iv)our optical-and-electrical conductivity models, given in Eq. (18, 20a), are now
investigated by basing on our physical model, and Fermi-Dirac distribution function, as

those given in our recent works.[* 2!

It should be noted here that for x=0, these obtained numerical results may be reduced to those
given in the n(p)-type degenerate InP-crystal.?*®! Then, some important remarks can be

repoted as follows.

(1) As observed in Equations (3, 5, 6), the critical impurity density Nep,¢cnpy, defined by the
generalized Mott criterium in the metal-insulator transition (MIT), is just the density of
electrons (holes), localized in the exponential conduction (valence)-band tail (EBT).
N &batcop). being obtained with a precision of the order of 2.91 x 1077, as given in our
recent works. 3 Therefore, the effective electron (hole)-density can be defined as:
N*=N — Nepaepp) 2 N — NE5Tcpg), N being the total impurity density, as that observed

in the compensated crystals.
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(2) The ratio of the inverse effective screening length k., ., to Fermi wave number kg,

at 0 K, R.py (N¥), defined in Eq. (7), is valid at any N*.

(3) From Equations (20a, 21-30), for any given X, rg;,; and N (or T), with increasing T (or

decreasing N), one obtains: (i) for £,¢,; = ﬂqﬂ“a—h =~ 1.8138, while the numerical results of the

Seebeck coefficient Sgp Present a same minimum [SET[Dﬂ)mm[k —1.563 X 10“‘%],
those of the figure of merit ZTgrory Show a same maximum (ZTgrigry) max. = 1, (i) for
Eatpy = 1, the numerical results of Sgrpgry, ZTgrror, the Mott figure of merit ZTeroruorn

the first Van-Cong coefficient VC1griqr;, and the Thomson coefficient Tsgrory, present the

same results: —1.322x 107*Z , 0.715, 3290, 1.105X 107*Z, and 1.657 X 107*=,

|m®

respectively, and finally (iii) for €., = Ny > 1.8138, ZTgrgrmon = L aS those given in
our recent work.™ It seems that these same results could represent a new law in the

thermoelectric properties, obtained in the degenerate case (£, = 0).

(4) Further, our electrical-and-thermoelectric relation is given in Eq. (31) by:

3L -
= |=*, according,
‘\q hi

kg _ _ 2sgrpor; ., Perpory(Nra@xT) (v kg
=B x ve2 N, Ty.%T)=— X - (_)

g ET[DT](' dla) ) & Enip HE,'T[DT:I._Ner:ij,x..T:I K

in this work, to:

DET[OT] (Nrgra =T
BET[OT]\MNrdl 2.%T)

ZTET[DT'Muttx[l_ ETE:T[DT'Mntt] (V] being

X 2 X J
[1+ ZTET[OT Mott]

VC2errory (Norgea.x. T) = —

. DE‘T |:|'T' - - - -
reduced to: E[[D—T- , VClgpor; and VC2gror, determined respectively in Equations (24,

27, 28). This can be a new result.

(5) Finally, for given [N,rg¢..x, T], all the numerical results of [o5(E), x5 (E), £45 (E), and
oy (E)], given in the OP, and those of [oz(E), ¥z(E), £,z (E), and o (E)], given in the E-
OP, being determined respectively from Equations (18, 19b-19d), for any E, could thus be
used to explain all their corresponding past-or-future experimental results. Therefore, this can
also be explained for ogr(gr(N,ra¢s),% T), obtained in Eq. (20a) for the (OP - [E-OP])-
transition, and their derived electrical-and-thermoelectric results, as those reported in Table 3,
and also in Equations (18, 19a-19d, 20a-20d, 21-31).
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In the following, many important sections are presented in order to investigate all the optical
coefficients and electrical-and-thermoelectric ones, given in the

n*(p*) — InP,_, [As,,Sb,] —crystalline alloys at any temperature T(= 0 K),

OUR STATIC DIELECTRIC CONSTANT LAW AND GENERALIZED MOTT
CRITERIUM IN THE METAL-INSULATOR TRANSITION

First of all, in the n*(p*) — InP,__ [As,,Sb.] —crystalline alloys, at T=0 K™ % 3 we
denote : the donor (acceptor) d(a)-radius by rgc,, the corresponding intrinsic one by:
Tda(ao) = Fas(m), reSpectively, the effective averaged numbers of equivalent conduction
(valence)-bands by: g.r, , the unperturbed reduced effective electron (hole) mass in

conduction (valence) bands by m..;(x)/m,, m, being the free electron mass, the relative

m () Xmy, (%)

carrier mass by: m, (x) = €O
ch h

< m,, (%), for given x , the unperturbed relative static

dielectric constant by: £,(x), and the intrinsic band gap by: E_,(x), as those given in the

Following Table 1.

Table 1: In the InP,_, [As,.5b,] —crystalline alloys, the different values of energy-band-

structure parameters, for a given x, are given in the following.?!

In the InP,__As_-crystalline alloy, in Which raqra0)=Tpqm)=0.110 (0.144) nm, we have™":
8o () = 1Xx+ 1x(1—x) = 1, m g (x)/m, = 0.09 (0.3) X x + 0.077 (0.5) X (1 — %),
£o(x) = 1455 X x + 12,5 X (1 —x), E_, (x) = 0.43 X x + 1.424 X (1 — %),

In the InP,_,Sb_-crystalline alloy, in which ra,(a0)=Tpi1)=0.110 (0.144) nm, we have [3]:
8w (%) = 1Xx+ 1x(1-%) =1, myy(x)/m, =01 (04)Xx +0.077 (0.5)X (1-x), £,(x) =168 Xx +125 X (1-x)
E.o(x) =023 Xx+ 1424 X (1—x).

Here, the effective carrier mass m,,)(x) is equal to m_., (x). Therefore, we can define the

effective donor (acceptor)-ionization energy in absolute values as:
13600 % [my, () (x)/my ]
[z (x)]*

_ Edo(zo) x)
Bao(ao) ) = 7wy ¢ '
dofao) [%}X'._L"dn (2ol :IE

Edorae) (%) = meV , and then, the isothermal bulk modulus, by:
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Our Static Dielectric Constant Law [m:‘],:p} (%) = m, (x)]

Here, the changes in all the energy-band-structure parameters, expressed in terms of the

effective relative dielectric constant £(r ), x), developed as follows.

Atrgey = ragraq) the needed boundary conditions are found to be, for the impurity-atom

volume V= (41/3) X (ras), Viotasy = (41/3) X (Taorae) » fOr the pressure p, p, =0,
and for the deformation potential energy (or the strain energy) a, @, = 0. Further, the two

important equations, used to determine the @ -variation, A & = & —a, = a, are defined by :

dp

e —and p— ,giving rise to : ( )— . Then, by an integration, one gets:
[&a[rd':ﬂ:”xj]nfp} = Ed‘:":ﬂ‘:"]' (Kj X (V_ VdD':E.D} ) x In
3 3
Tdrad _ Tdre)
Vdn (BO ‘1) Ednlan} [:X:] X [{‘du;auj) 1] X 1n(rd|:|::a|:|j) =0

Furthermore, we also showed that, as rgsy = Tagrae) (Td(a) < Tdo(asy), the compression
(dilatation) gives rise to the increase (the decrease) in the energy gap E_, ., [rd,:ﬂ},x}, and
the effective donor (acceptor)-ionization energy E; ., [rd,:ﬂ},x) in absolute values, obtained in

the effective Bohr model, which is represented respectively by : + [Aa(rge,x)] ;
- nip

Egnn(gpn} (rdl:a}’xj - Egn [Xj = Ed(a} (rd.:a}:xj - Edc\(ac\} [Xj = Edn(an} [Xj * [(LX}) - 1] =

E'~'-"d::aj:'
+ [daCra®]

for rd(a} = rdl:il:ﬂ.l:\:l’ and for rd(a} = rdn:l:an:}v

2000 \? _
Egnn(gpn} (rdl:a}’xj - Egn [Xj = Ed(a} (rdl:a}’xj - Edc\(ac\} [Xj = Edc\(ac\} [Xj * l(u—) - 1] -

E'~'-"d::aj:'
- [ﬂ'a(rd(a}rxj]m:g}

Therefore, one obtains the expressions for relative dielectric constant £(rg;.),%) and energy

band gap E_, (o) (raca.x), as:

202

¢ Tdrey 4 F BITORS
(80 )7y g o))
Fdorao) Tdoreo)

(i)-for Tgeay = Tagrae), SINCE £(rg(s),X)= - <&£,(x), being a new
l1+
N

E(rd.;ﬂj.,x]-law,
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Tdra 3
Egnn{gpn} [rdl:a:l’x) - Egc\ (X] = Edl:a:l [rdl:s:l’x) - Edol:ac\} (Xj = Edc\l:ac\} (Xj X [(m:.—a;w) - 1] X
FAr 3
In (—d"ar' ) =0,
Tdofao) (1a)
according to the increase in both E_ ;.. (raca)x) and Egep (raca),x), with increasing Fa(a)

and for a given x, and

gglx)
‘ Tdrey 4 F f Tdpmy 4
(.rdmjauj} —1]5'([!1(_{:1':':“:'}

TAar 3 Ty 3 .
condition, given by: [(ﬂ) — 1] X 1n(ﬂ) < 1, being a new &(ry.,),x)-law,

T'doreo) T'do(ao)

(ii)-for rd(a}E I'dofan) » since E(rd,:a},xj = > ED[X:], with a

I
11—
A

.3
Egnn(gpo} (rd':a]’x) - Ego (x) = Ed':a}(rd':&}’x) - Edo':an]' (K) = _Edn':an]' (Xj X [[ﬂ) - 1i| X

Tdo(eo)

In (2 <0, (1b)

corresponding to the decrease in both E_, ;.0 (raca).x) and Eara) (Taca)»X), with decreasing

ra(s) and for a given x.

It should be noted that, in the following, all the electrical-and-thermoelectric properties

strongly depend on this new €(rg.,. x)-law.

Furthermore, the effective Bohr radius ag,gp) (rara).%) is defined by:

e(rg gy ) xh* 2(rg g x)

- = 0.53 X 107% cm X

m;l,:pj I:X}Xmu =q (2)

3En(ep) (Taga)X) = iy ()
n(plh

Generalized Mott Criterium in the MIT [my (x) = m_, (x)]
Now, it is interesting to remark that the critical total donor (acceptor)-density in the MIT at
T=0 K, Nepninop) (Taga»X), was given by the Mott’s criterium, with an empirical parameter,

M as [+23:

n{p)

1y —
NCDnI:CDp}(rdI:a}’xj 13X EIBnI:Bp} [:rdl:a}’x:] = Mnl:p}’ Mﬂ':[:':' - 025’ (3)

depending thus on our new &(ry:4.%)-law.

This excellent one can be explained from the definition of the reduced effective Wigner-Seitz
(WS) radius r ), in the Mott’s criterium, being characteristic of interactions, by:

1/3 13 ot
. = i ! 1 — g (i) f mn[pj',_x}xmﬂ
fantept (N T ®) = () X s L1723 X 10°x (1) xR

(4)

2(rd e )
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being equal to, in particular, at N=Ncpycop) (Fara)E): Tantep),m [NCDH,:CDP}(rd,:ﬂ},x],rd,:a},x):

2.4813963, for any (ra4.%)-values. Then, from Eq. (4), one also has :

i 3 \z 1
NCDI:II:CD[J}[I'E‘I:EL}’X) 83X aBﬂ':B[J:' (rd':ﬂa”x) = (;)5 X 24813963 =0.25= [:WS:]“':P} = M“-':F}’ (5)

explaining thus the existence of the Mott’s criterium.

Furthermore, by using M = 0.25, according to the empirical Heisenberg parameter

alp)

Hppy = 0.47137, as those given in our previous work!®], we have also showed that

np)
Nepnicop) 1S just the density of electrons (holes) localized in the exponential conduction
(valence)-band tail ., Népaicpp) » With a precision of the order of

2.91 X 1077 ,respectively B

It shoud be noted that the values of M, and #,,, could be chosen so that those of

Ncpacepp) aNd NE5 T cpyy are found to be in good agreement with their experimental results.

Therefore, the density of electrons (holes) given in parabolic conduction (valence) bands can
be defined, as that given in compensated materials:

N*(N,rge,¥) =N — Nep, onpp) (Facap¥)= N7, for a presentation simplicity. (6)

In summary, as observed in our previous paper, for a given x and an increasing Tdia)s

£(racq).x) decreases, while E_,, o) (Taray»*), Nepatwop) (Tacar %) and N&patcop) (Tata) X)
increase, affecting strongly all the optical, electrical, and thermoelectric coefficients, as those

observed in following Sections.

PHYSICAL MODEL
In the n*(p*) — InP,_, [As,,Sb_] —crystalline alloys, the reduced effective Wigner-Seitz
(WS) radius r,.ny, characteristic of interactions, being given in Eq. (4), in which N is

replaced by N*, is now defined by:

, being

_ Yrarp _ () ? 1
YR e (N =B 1 v (Norgegyx) = (41::;-) X

SEn(ER) AEn(Ep) ':"d:ja:wx}

proportional to N*"Y3. Here, ¥ = (4/97)%, key(pp)(N°) = (Ery )5 is the Fermi wave,

Eclw)

.. being the effective averaged numbers of equivalent conduction (valence)-bands.
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Then, the ratio of the inverse effective screening length k.., to Fermi wave number
Ken(kp IS defined by:

ksni:pﬁ' RE;':F;}:' Y
P Rowsiepws) T [RsnTFEspTF} - Rsnwsispwsj]e smispl < 1, @)
Fn(Fpl snlsp)

Rongepy (N) =
being valid at any N*.
Here, these ratios, R rr=pre) @14 Ropwsiepws), Can be determined as follows.

First, for N> Nepgwpp)(Tacap®) ,  according to the Thomas-Fermi (TF)-

approximation, the ratio R ppry (N) is reduced to

ke . I_{_‘_. Iq.}rr .
B ) (st = snTF{spTF) _ ‘Fme\ = | 80 (8] a1 (8)
TFi=spTF -1
snTF(spTF) kpnFp kenTFapTFy N T '

being proportional to N*~*/&

Secondly, for N << Nep, (wpp) (Tacay), @ccording to the Wigner-Seitz (WS)-approximation,

the ratio R s =nws; 1S respectively reduced to

d[rZy apy*EcE V)]
¥ Argn (sm )’ (ga)

_ knispiws
Ron(epyws (N} = —"——=05X (

£
kpn e

Where E¢ (N*) is the majority-carrier correlation energy (CE), being determined by:

D.ETSEE z[1-1nlz)] . -
. —0.87553 00808 +Taprep b T )xn(rangepy) -0 093288
ECE [N :] = . - 1.ETETEETE
0.0908 +rgp o) 1+0.03847 728 X150

Furthermore, in the highly degenerate case, the physical conditions are found to be given by:

.
, i i!ﬂx(g —
kg, . koo, | clw) .
FnFp) Mgy — 1 Fn(Fp) — ey o— N 2,—1/2
< =t cMEm_p g N =l x gl (9b)
4En(Ep) Efno(Fpoy  “nm an(Ep] =ni=p) ' in(p) 2(raps) sn(=p)’

. . E r I:N'- ﬁ"“ l{z ) I:N-
Which gives: A, y(N*) = Ernorpa)(¥ ) Epno(rpo)(N*) = ——einiED )

N (p) (7] - 2xmy ) (x) %mg

BAND GAP NARROWING (BGN) BY NANDBY T
First, the BGN by N is found to be given by

B (N Py ) & 3 + =250 NE 4+ 2, X =200 NF (2,503 X [~Eg (tnupy )] X

g ':’d.j E:,,x}l elrg g )

5 P 1 P 3 2

0ol |+ (M : G R G R

rsm:Sp}) * A3 X L':’d.ja:.sx:'] X 11' m;u:p:l':x:' X N" * 234 X L':'-"d.;a:.;f:' X N"" + 235 X E'Z"d.jn:.ﬁf) . Nr’
>

N, = 5595107 cm ™ (10a)
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Here,a; = 3.8 X 107 (eV), a, = 6.5 X 107*(eV), a; = 2.85 X 107(eV), a, = 5.597 x 1073 (eV),
and a; = 8.1 X 107*(eV).

Therefore, at T=0 K and N* = 0, and for any ra,, one gets: AE_,.,; = 0, according to the

metal-insulator transition (MIT).

Secondly, one has:

440.0613 K

" 2.201 - -
AE (g7 (T) = 0.20251 X ([1 +H==) ]m‘ - 1). (10b)
FERMI ENERGY AND FERMI-DIRAC DISTRIBUTION FUNCTION
Fermi Energy
Here, for a presentation simplicity, we change all the sign of various parameters, given in the
p* — InP,__ [As,, Sb,] —crystalline alloys, in order to obtain the same one, as given in the

n* — InP,_, [As,,Sb. ] — crystalline alloys, according to the reduced Fermi energy

EF n(Fp l: N.-!‘d(a'_‘l.-X-T:I

— = 0(< 0), obtained respectively in the
E

EF”':FF:' ' Enl:p}(Ner|:EJ;x,Tj =

degenerate (non-degenerate) case.

For any (N,rg..% T), the reduced Fermi energy &, (N.v4¢.).% T) or the Fermi energy
Epnirp) (N.T4(e),% T), obtained in our previous paper[gl, obtained with a precision of the

order of 2.11 x 107* is found to be given by:

E [u] _ EpmEp in) _ GI:u}+A.uBFI:u} __ Wiu) A=
np) VY T T 1+auf T wiw)

0.0005372and B = 4.82842262,  (11)

M

Where u is the reduced electron density, u[IxI,rd.»ﬂ:.,:;c,TjE,\I—,T}x:I
- Merml

)

]
gl (XxmgxkpT

B
. - z 4 By T
Nogo (T%) = 28,0 X (BN (em™) , Fw=aws(1+bu=+cus)

a= [vA/al, b=1() o= EEEE (1) ang G(u) > Ln(u) + 2 Exu x e

So, in the non-degenerate case (u << 1), one has: Egyrgp (W) = kg T X G(u) > kg T X Ln(u)

asu — 0, the limiting non-degenerate condition, and in the very degenerate case (u = 1),

z
- z z o
g, BTkEg e (N)

. Xm;l,: p) () =my

one gets: Epyippy (0> 1) = kg T X F(u) = kg T X aus (1 +bu =+ cu‘E)
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asu — oo, the limiting degenerate condition. In other words, &) = EF:EF is accurate,

and it also verifies the correct limiting conditions.

In particular, as T—0K , since u*—=0 , Egq (11) is reduced to:
B2k

Epno(rpoy(N*) = ﬂﬁ— , being proportional to (N*)*/3, and also equal to 0 at N* = 0,

;)-Cm pﬁlx}x
according to the MIT and noting that EFHD.:FFD}[mr(x])}EFHD.;FFD}(mE.:v}(XJ) since

m, (x) < m,, (x) for given x.

In the following, it should be noted that all the optical and electrical-and-thermoelectric

properties strongly depend on such the accurate expression of g, (N,rd,:ﬂ,x,T).[g]

Fermi-Dirac Distribution Function (FDDF)
The Fermi-Dirac distribution function (FDDF) is given by: f(E)=(1+e")7" ,
Y= (E - EFn(Fp}jnf(kBTj'

So, the average of EF, calculated using the FDDF-method, as developed in our previous

works™ ® is found to be given by:

3

1 =X

of a2f
2 = 2 —
(EP)enpe = Gy (Epaqep)) X ERyqeny = [ EP X (— = ) dE, = N

Further, one notes that, at 0 K, — === 8(E — Egpo(rpo) ) 8(E — Epporrpe)) beiNg the Dirac

delta (5)-function. Therefore, G, [Ernc..;ppc.}) =1

Then, at low T, by a variable change Y = (E — Epypp )/ (ke T), One has:

_ B
Gy (Epnepy ) = 1+ Eppgpy X [ T }hx (kg Ty + Eppepgy ) dy = 1 + X012, Cp X (kgT)P x

B
EFnl (Fp)

X Ig
Where ¥ =p(p—1)..(p —B +1)/B!  and the integral I is given by:

Pl .
IE - -Jr—cu: (1+e¥ :I‘- -r—cu: |.:_;

BT =dy, vanishing for old values of B. Then, for even

values of f = 2n, with n=1, 2, ..., one obtains

_ o e yxe’
IEn =2 -rD (14+e¥)2 d?
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Now, using an identity(1 + e¥)™2 = ¥=,(—1)*"s x e"*"Y 3 variable change: sy = —t,
the Gamma function: j: t™e™"dt=I(2n+ 1) = (2n)!, and also the definition of the
Riemann’s zeta function: Z(2n) = 2**~1n™"|B,,|/(2n)!, B,, being the Bernoulli numbers,
one finally gets: I, = (2% —2) x ™ X |By,|. So, from above Eq. of (EP}zppz, We get in

the degenerate case the following ratio:

(gF) 1)..(p-2 +1:l 2 mn
GP[EFH':FF'}) EE FEDnF b Z e uznp_;: : (E - EJ X |an| Xy™ = Gpal(ﬂ 12)
n(Fg) -

kgT
“_B—szl , and as

™ mkgT .
e ——, noting that G,_,(yv = =
n@E(N"T)  Epngrg (N°T) 9 p=1(¥ ErnFp)  fmp)

T— 0K, Gyuy(y = 0) = 1.

Where v =

Then, some usual results of G,.,(y) are given in the following Table 2, being needed to

determine all the following optical and electrical-and-thermoelectric properties.

Table 2: Expressions for G,.,(y = Eﬂlj, due to the Fermi-Dirac distribution function,
)]

are used to determine the electrical-and-thermoelectric coefficients.

Gas2(¥) G, (¥) Ggy2(¥) G;(¥) Goya(¥) Gy (y) Ggy2(¥)

TR TR () ) ()

640 384

OPTICAL-AND-ELECTRICAL PROPERTIES
Optical Phenomenon — Electro-Optical Phenomenon (OP - [E-OP])-Transition

[m:;l:p} = m, (Xj [m:{v} (X]]]

First off on, for a presentation simplicity, we change all the sign of various parameters, given
inthe p™ — InP,__ [As_,Sb_] —crystalline alloys, in order to obtain the same one, as given

in then™ — InP,__ [As,,Sb_] —crystalline alloys, according to the reduced Fermi energy

Epn (Fpy (Nrd (2T

Efnrrp) + Gnepy(NoTgr),xT) = — RBT' = 0(= 0), obtained respectively in the

degenerate (non-degenerate) case, giving: Egpa(rpo) = Entrp) (N Tara), % T = 0).

Then, in the n*(p™) — InP,__ [As_,Sb_] —crystalline alloys, and for the temperature T(K),
One has:
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(i) in the electrical phenomenon (EP), the reduced band gap is defined by:

Egn!(gp!} = Ec':v:l - Evc\'::n:l = Egni.l:gpi.} - ﬂEgn(gp}:N’(N*j - IljllEgl:']':gp:l:T(Tj! (13)

Where E_;zpi; IS the intrinsic bang gap, AE ;.. (N") and AE_, .., (T) are respectively the
reduced band gaps, due to the N*-and-T effects, as those determined in Equations (10a, 10b),

and

(ii) in the optical phenomenon (OP), the photon energy is defined by: E = fw, and the optical

band gap by Egnl':gpl} = Egn!fgpﬂ + EFn(Fp}'

Therefore, for E = E_,; (z,1), the effective photon energy E* is found to be given by:

E"=E—Eg(gpn =E— (Egnﬂigpﬂ T EFnEFp}) = 0. (14)

From above Equations, the (OP — E-OP)-transition means that:
E* = [E— Egni(gpu], given in the OP, in which E = [E_.(zp1) + Epnrep ], 1S reduced in the
E-OP, in which E = [E_,i(zp1) T Epnirpy] and m,(x) are now replaced by

E= [Egnﬂ':gpﬂ + EFn(Fp}] and m:(v} [:xjv to: E"=E- Egn!(gpﬂ = EFn(Fp}: and rECiproca”y,

noting that Eg, gy (m,(x)) > Eeniep) (mc.:v} (xj) since m, (x) < m_,(x), for given x. (15)

Eqg. (15) thus shows that, in both OP and E-OP, the Fermi energy-level penetrations into
conduction  (valence)-bands, observed in the n*(p*)— type degenerate
InP,_, [As,Sb. ] — crystalline alloys, Eg,cgy. are well defined, noting that at this
discontinuous (OP — E-OP)-transition: Eg,(gp) (m,(x)) > EFn':Fp}(m:I:v} (x]), according to

the discontinuous case.

Optical Coefficients

The optical properties for any medium, defined in the OP and E-OP, respectively, according
to:  [miy =m(x)[m.,x)]] , can be described by the  complex
refraction: Mg = ngg) — iKgey » Noey aNd  ®qpgy being the refraction index and the
extinction coefficient, the complex dielectric function: &€gg) = £1148) — i€20[287, Where
i* = —1, and Eog) = Mo ” Further, if denoting the normal-incidence reflectance and the

optical absorption by Rqg; and o<q g, and the joint density of states by:
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- . /2 2
_ 1 Zmn,:P:,Lx}) [ E-Egn:(gpa ] e SEE—

DOos_; E :—X(— # B or ,
] H‘F}H[E]( ] 2m® RE E_[Egn:':gpﬂ‘l'EFn[ij_EFnu[Fpnj] V TFno(Fpe)

hgtx|vw(E)®

: , one gets!?:
n(E}<cEX2fres space

and Fo g (E) =

%ore) (E) =JDOS 51011 (E) X Forg (E) = =

han[E] (Ej hc
_ 41‘[0'3['3] [:E:]
CNo[Eg] (Ej X Efree Epace
— ) _ Exeoopg(E) _ ZExwqrp (E) 4m o g, (E)
“olE] [:E:] o ]DDS”'~F‘}“[E] (Ej X F“[E] (Ej kengg) (E) he engE] E) % 2free space

z 2
=2 2 _ _ [nog 1] + o)’
£10[1E] (E) = Norel” — ¥ore] » S20028] (E) = 2Kg g1 No[E) and RB[E](E] = [HG[E'+1]E+KG[E'Z . (16)

It should be noted that, such the above joint density of states yeilds: (i) as E = E_1(zp1) (T),

“ . 3/2
.. i Zmy (%)
JDOS (pyore)(E) =0, and (ii) as E = 0, JDOS, g (E) = x( TE ) xﬁ’EFm,:FpD}.

2In? R
Further, €gee space 1S the permittivity of the free space, -q is the charge of the electron,
| Vorg] (E)| is the matrix elements of the velocity operator between valence (conduction)-and-

conduction (valence) bands, and the refraction index ngg; is found to be defined by

. B_E+C,;
Norgl (B Tae)) = e (Fara)) + Z:}:l—EzELB‘E_:I::_L =1, (rg ) asE = o, (17)

Now, the optical [electrical] conductivity g, can be defined and expressed in terms of the

RIxk®

Zwmy p) (x)xmg

kinetic energy of the electron (hole), E, = , k being the wave number, as:

wk k
17w

z By
Tk kan(ap)

ooz (K) = )” (Dhmlxcm)’ which is thus proportional to

* [k X E'Bn':BP:'] X (nn.:Pj.

-

E. 2,
qz
Where —— =7.7480735 X 107% ghm™?,

ﬂl-tBT

I
Then, we obtain: (E*)gppe = G4(v = ) X Egoerpy, aNd Gz(yj:(l + Y?) = G,y(N,rgr0),x, T),

El-"n[l-"pj
k1

- Eatp) = Entpy(N.Tacm.x, T) for a presentation simplicity.

withy =
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Therefore, from above equations (16, 17), if denoting the function H[N, Ta(a) % T) by:

H(N,ry09.%, T) =

kpn(Fp)(N) |I =
[—R!n[!pjl:”_} > [an,:Fp}(N*:] kA E'Bn':Bp]' [I‘d,:&},}{)] X .,q'Aﬂ':p}(N*:] =

Erna [Fpu)':}‘r-:']

-
s

_ k!niapﬁ' H H
Where R ., (N) = R being proportional t0 Ez_, ppo)s

Fnl

then, our optical [electrical]
conductivity model can thus be assumed to be as:
oo(N,r4¢0.x T,E) =

3 E—Eop,(ppal 1
2 x H[N, Tara)e % T) ® [ ER2 EPY ] ( ), and
T . E_[Egn:igpﬂ_“+EFn'ﬁFpJ_EFm:linu)]

B3

og(N, 14, % T.E) =

z E—Eppqlepg - 1
a gnz(gp2)
% H(N, r4,% T x[ ] ( )- 18
=k [ dla) ) E_[Egnzigpﬂ+EFn[ij_EFm:I[Fp|:lj] chmxcm [ j

It should be noted here that:
(i) GU[E][E = Egnligpl}[Egnzigp:}]) =0, and ogg(E = o0) =

a

=k

x H[N,rd,:ﬂ,x, T) = Constant

for given (N, ry..y,x T) —physical conditions, and

(ii) as T2 0Kand N* =0 [or Eg_y(gpe)(N*)] = 0,according to: H(N, r4y,x,T) = 0, and
for a given E, [E—E_ny(epn)] = [E— Egnigepp]=Constant, then from Equations (16-18),
ngrg; (E)= Constant,  ogp(E) =0, wog(E) =10, =£5p5(E)= (n..)* = Constant ,

£2002e1(E) = 0, and o<qpg; (E) = 0, according to the metal-insulator transition (MIT).

This result (18) should be new, in comparison with that, obtained from an improved Forouhi-

Bloomer parameterization, as given in our previous work.!!

Using Equations (16-18), one obtains all the analytically results, due to the optical
phenomenon (OP) as: [o,(E), xo(E), £.5(E), and o5 (E)], and to the electro-optical
phenomenon ([E-OP]) as: [0 (E), kg (E), £, £ (E), and g (E}],

|V'::E:'|z B‘l‘[zﬁ I.{.F (F :II:N-}
E = . R k4 - nl_ p,]"}f'} X [anl:Fp}(N*j k4 EIBn':B[J} (I‘dl:&},x)]l x G: [N,I'd,:&},x, T), (193.)
Lzmr}zxv.'qn,:pj an (aplt

z
2g

E—Eops (zns z
ko (E) = XH[N,rd,:E},x,T)X[ Ena (Ep1) ] and

”':E:'xzfraaspaca =E E_[Egn'_':gpﬂ'i'EFn':Fp:'_EFnu':Fpufl]
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-
=

qu

E-E [
Kg [E:] = > H[N, Fara)r®s T) X |:E—[ gnz(gpa)

Egmigp—ﬂ+EFn|jij_EFm:|[Fpnj]

n(E) X 2freq space XE ! (lgb)
Which gives: «[ig](E = E_p1(gp1) [Eenz(epy 1) = 0, and x[kg] (E — c0) = 0, as those given
in Ref.[2,

-
=

_ 4% E-Egniigps)
£,0(E) = X H(N, rgeg.% T) X [ o, ] and
Efres space *E : E—|Egn: (gps) YEFn(Fp) “EFno (Fpo)
#q° E—Egna(gpa) :
£re(E) = ——2% % H(N,ry.y,x T x[ (19c)
IE fres space " E [ +dla)r® ) E_[Egnzigpﬂ"'EFm:ij_Ean[Fpuj] !

Which gives: &0,z (E = E [Eonstepn]) =0, and £

en2(gp2 (E— o) = 0, as those given

gnilgpl) Ea[zE]

in Ref. [2], and

4g° [ E—Egns(gpa) I
o, (E) = —— x H[N,rd.«ﬂ,x,T} x ER1ED (—} and
hen(E)X2¢pme space : _E_[E n1 (gp0) + Efn(Fp) “EFnolF n:']_ cm,
B g Ep B B
4g% [ E—Egpalepa) 12 1
ocg (E) = ———2 x H(N, r4c9,% T) X Enz(gpe (=) ()
ﬁ‘:”LE}xzfraespafa ; _E_[Egnzigpﬂ"'Eijij_EanjFpuj]_ cm.

4q""

Which gives: &g [0](E = Egyy (o) [Eanatepn 1) = 00 @Ndeey [o](E- ) = X H(N,ry(,% T) = Constant,

heng Xefres space

as those given in Ref.[

Using the (OP - [E-OP]) transition, given in Eq. (15), at E = E_,1(zp1) T Ernrrp), the optical
conductivity, ogr, given in Eq. (18), in which my,,(x) = m,(x) is now replaced by
m,.,(x), has a same form with that of the electrical conductivity, g, given in our recent

work [1], for such the (OP - [E-OP])- transition. So, from Equations (18, 19b, 19c, 19d), and

for E = E_,1(zp1) [Egnztzpz) ] + Erncrp), ONES Obtains respectively, as:

GDT[NfrdEE}’x’ T’E) = izﬁ b4 H(N, rd,:ﬂ,x,T) bt ( Epnirp )‘ ( 1 )’

EFno(Fpol ohmxcm

Having the same form with that of oz (N,rac0.% T) [1], as:

GET[N’rd(a}rx! T, E) = % x H(_N, I‘d.:ﬂ},}{,T) * ( EFa(Fp) )‘ ( 1 ), (203)

EFno(Fpol ochmxem

z
Zg

Kor N, T3, %X T,E) = X H(N, rgr00,% T) X Epn(Fp) ‘and
OT dia) (e) .

niE)*2free space x':Egn'_':gpﬂ +EFn':prl:' Fno (Fpol
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"

ke (N, ra(0, % T, E) = - e— ;':Zm::gpwzmzm} X H(N, rg00,% T) X (Ei:—i:ﬂ) . (20h)
20T [N’ Ta(a) % T’E) - Zfres space X'iE::-_:::gp-_‘n"' Epn(pp)) % H[N’ rd'iafux’T) X (E::—::ﬂ)z and

£2er (N, Taa), % T.E) = Zfree gpmx-iE:::::gpﬂ+EFn::Fp:u} X H(N, ra,% T) X (Ei::;\l): (200)
Ko [N,rd,:ﬂ,x, T,E) = ﬁml:E}:;;“pm X I—I[N,rd,:ﬂ,x,T) X (;:—E;)z (i) and

ogr (N, a0, % T,E) = ﬁm(ﬂ::;mm X H(N, 1 402.%,T) X (E:J—E;) (=) (20d)

One notes here that (i) the electrical conductivity oz (N, rs..,% T), given in Eq. (2a), is an
essential result, being used to determine the following electrical-and-thermoelectric

coefficients, and (ii) as noted in Eqg. (15), at this discontinuous (OP - [E-OP])- transition,
given in the discontinuous case: Egncgp) (m,(x)) > EFH.:FP}[mE,:‘,} [x)) , since
m, (x) < m,,(x) for given X, corresponding to: oor(m,(x)) > ogp (mc,:v} (x]). In our

recent work™, all the electrical-and-thermoelectric properties were investigated for this

discontinuous case.

Some optical coefficients, obtained in Equations (18, 19b-19d, 20a-20d) for given
(N,racsy,% T) -physical conditions, are reported in the following Table 3, in which

OgT =~ OFT-
Noting that H(N, r4c.),% T) is a constant for given (N, rs¢.),% T )-physical conductions.

Table 3: As noted above, H(N, r4,).% T)is a constant for given (N,ra..x T)-physical

conductions, then, some optical coefficients, for some particular values of E, are given

as follows.

EineV o (E) Ko (E) €30 (E) g (E)

Egnl':gpl:' 0 0 O 0

[Egnligpﬂ + Ern(rp}] ToT Kor 207 Kot

E— o TxH . constant 0 _fXH  _.Constant
T RCnp X Bfree space
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EineV oz (E) kg (E) £5g (E) g (E)

Egn2(gp) 0 0 0 0

[Egn2(ep2) T Epnep)] ) OgT KgT E2ET Kgr

E — 00 3 *H _LConstant 0 0 —=>2*H  _.Constant
mxh Rehg Zfres space

Therefore, for given [N,rs.,).x, T], all the numerical results of [o4(E), x5 (E), £20 (E), and
g (E)], due to the OP and those of [og(E), ¥z (E), £, z(E), and oz (E)], due to the E-OP,

being determined respectively from Equations (18, 19b-19d], for any E, could thus be used to
explain all their corresponding past-or-future experimental results.

ELECTRICAL-AND-THERMOELECTRIC PROPERTIES [m:‘,,:p} = m, (%) [m,[x]]]

Here, if denoting, for majority electrons (holes), the thermal conductivity by
w
cmx K

Ornerior] (N Tac- % T) N , and the Lorenz number L by:

Wxohm

L=2x (Ej = 2.4429637 [ j =2.4429637 X 1078 (V2x K~2), then the well-
g

known Wiedemann-Frank law states that the ratio, —=£"2%  due to the (E-OP and OP)
CET [0T]
transition, respectively, is proportional to the temperature T(K), as:

OTh.ET[0T](Nrd (2% T)

=LxT.

o7 (0T Norg ()% T (2 1)
Further, the resistivity IS found to be given by:
PerioT] (N Tara). % T) = 1/0gror) (N Tar2).% T) : noting again that

N* =N — Nepn (nop) (Taa) )

In Eq. (20), one notes that at T= 0 K, ogrgry (N, r4(4),% T = 0K) is proportional to EZ_, zpoy
&
or to (N*)=.Thus, from Eq. (21), one has: ogr(or(N = Nepy(npp)s Tae)-% T = 0K) = 0 and

also OTh.ET[OT] (N = NCDn':ND[J}’ rdl:ﬂ:l!x.!T = ﬂ}{j =Q0atN*= 0, at which the MIT occurs.

Electrical Coefficients
The relaxation time Tzyror; is related to ozppor by™:

npy XD -
Terror) (N Taa). % T) = Ogrpor) (N rae. % T) X :1—';% . Therefore, the mobility
Sl R

WeT[oT) IS given by:
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_ _ axteon(NraxT) _ cgror(Nraw.xT) | em?
gzior (N Taqe % T) = Heziom (N o T) = P2 P8 m == = = = (G - (22)

Mln gy

Here, at T= OK, pgrem(N*rg, T) is thus proportional to (N*)*3, since
Serior] (N Ta(e), T = OK) is proportional to(N*)*2. Thus, tgpop(N*= 0,rg.,), T = 0K) =0

and ugror(N* = 0,14, T = 0K) = 0 at N* = 0, at which the MIT occurs.

Then, the Hall factor is defined by:

{rgT[0T; " }PDDE _ G y = n — nkgT and
':"‘-'E.'T[IIITj:'FDDF]E (G, (w)]* En(p) (Norg(a).xT) Eijij':”J'-"d':aJ*xJT},

I'HET[OT] (N,rga),xT) = [

therefore, the Hall mobility yields:

cm?
A

HueT[0T] [N,rd.:ﬂg.,x, T) = HEeT[OT] [Nr Tara)»% T) X TyeT[OT] (N*,T) (v - ) (23)

Noting that, at T=0K, since rygriom(N.rae.xT)=1 , one therefore gets:

HuET[OT] (Norga,x T) = HeT[oT] (N.raca.% T)

Our generalized Einstein relation

Our generalized Einstein relation is found to be defined as™"

Derjory(Nra@=T) _ N*  dEpn(rp) _ kgxT dénp ()Y _ I';_L dinp (WY kg _ I';_L
HET[I:IT:I:N-'rﬂ':B:“x-'TII T g X dv*  ~ g X (u du )_ Tx ('Ll du )’q N *ql n (24)
Where Dgpor (N, raca.x T) is the diffusion coefficient, £, (1) is defined in Eq. (11), and
the mobility perrory(N.race.x T) is determined in Eq. (22). Then, by differentiating this
function &,,,,; (u) with respect to u, one thus obtains i"dﬁjﬂ Therefore, Eq. (17) can also be

rewritten as:

DE]"[D']'-[NJI-"d[EjA.T:l _ kgxT % u VW) — Vi)W (u)

HET[OT] (W.ra(e).xT) a W2 {u) !
5 3 _E
Where W'(u) = ABu®~* and V'(u) =u™* +27ze™%(1 — du) +2Au®71F () (1+ %) +§Xw _
1+bu E4cu E

One remarks that: (i) as u— 0, one has: W? =1 and u[V'XxW—-VxW']~1, and

Dpp(u) . k . 2t w3 2
therefore: ™ o keXT gy (i) as u—=o , one has: W*#~ A%u*® and
M |

u[V' X W—Vx W'l % 2au?3A%u®® | and therefore, in this highly degenerate case and at
s gnly aeg

T=0K, the above generalized Einstein relation is reduced to the usual Einstein one:
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DET[0T) (NorgaxT)
wgroT; (NracexT)

EEFW,FPD} (N*)/q. In other words, Eq. (24) verifies the correct limiting

conditions.

Furthermore, in the present degenerate case (u > 1), Eq. (24) gives:

4 Ej
. bu =+2cu =
Epng (Fpo)lu) 4 (
LLLLL L |1+ E X (ﬁ )

1+bu_g+cu_EJ

DE.'T[IIIT":N*"&':BJ-'-"-'TJ ",

- =X
peToT (Nra.<T) 3

Where a = [3vi/4]”°, b=2(5)" and ¢ = 5% (m)*,

Thermoelectric Coefficients
Here, as noted above, EFn':Fp} (mr(x:]) = EFn':Fp}(m:(v} (X:]) or EIﬂ':[-"]' [mrtxj) = E|:1(:.'I} (m:(v} (x:]) for

a given T, since m.(x)<m,,(x) for given X, corresponding to:

Oot [mr (X]) = Ot (m:(?} (x) )

Then, from Eq. (20a), obtained for oz (N, r414).% T), the well-known Mott definition for

the thermoelectric power or for the Seebeck coefficient, Sgrqry, is found to be given by:

Alne, —n® k dlnc -I_fE ; :I
o kB ET[OT] ] _-m kg T[0T (En(py
SET[OT] [N Fa(a): X T) = >( 0 % kpT X = S 5 X . X 50 .

Then, using Eq. (11), for the degenerate case, &,r, =0, one gets, by putting

z

Fsperiom [N, rd.:E},X,T) =|1-— Y

AN R

T
EXGE(y:En"P\'/I

e Ik ZFS]JET[DT-':N-JT} (3L sznl:p:' T
S Nry.%T)=—x-EBEx =1L "= X — P = 2,1 x
ET[UT][ dia) ) 3 q En':p:' ‘\Jl e ( EXEnl:sz) v
1+——
1
< ZTET[OTMott (V ) n
——— = ]=0 ZT, =—
1+ ZTET[DT: Mottt K ! ET[OT]Motr ExEm B , (25)
according to:
— 5%En (p) —
8SgTioT] _ |3>-<L % 3 X T Y =L % 3 % ZTer[oTiMote X [1— ZTET[OTMott)
FEn (g ‘\4 w (stﬁn.;p:."“)z y [1+ 2’-TE.'T[|:|'J';|:«{.cn:d2 '
TI::"
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Here, one notes that: (i) as ,¢p) — 02 or &,y — +0, one has a same limiting value of

—

_ .. _ " . 8 SgTI0T] _ .
Setiory: Serpor; = — 0 (i) at &, = J7 = 18138, since B_En[pT = 0, one therefore gets:

a minimum ( Sgpor;) = —VL~ —1.563 x 107* [E] and (iii) at £,¢,) = 1 one obtains:

min.

Serior; & —1322x 107* (5),

Further, the figure of merit, ZT, is found to be defined by:

5*xogxT _ §° 4% ZTET[0T]Mott
ZT, N, Tyrayx T) = B0 =% = . (26)
ET[DT][ dial ) W L [1+ ZTE.'T[I:I'T:Mntt]z

. A ZT . 5 . g5 ..
Here, one notes that: (i) YZemom) - 5  SET1OT o 2 SETIOM Serory <= 0. (i) at

Henip) L B (p)
. lg . . @ ZTgTr0T1) _ . : =
Entp) = J7 = 18138, since —L_ﬂzn-:pn =0, one gets: a maximum [ETET[nT])mm =1

vand ZTerpormen = 1, and (iii) at §,y =1, one obtains: ZTgep = 0.715 and

Z

ZTer0TIMon = 5 ~ 3,290,

Finally, the first Van-Cong coefficient, V€1, Can be defined by:

_ dSgrpom (V) _ 8 Ser[oT) 8Eaip
VCprior) (N, racg,x T) = —N* x ZE0T (1) — N+ S x -, 27)
=

|

being equal to 0 for £, = J3

and the second Van-Cong coefficient, V€2, as:

VC2eriom) (N,rgcsy,xT) =T X VC Leriory (V). (28)

the Thomson coefficient, Ts, by:

ds 1 [V 85 1 B
, = T x 45ETEn (V) _ eror; |, Bty
TSeriory (NTaca,®T) =T x 2200 (1) = T x el X 22, (29)
]

|

being equal to 0 for £,y = Ny

and the Peltier coefficient, Ptgrigr, as:

PterioT [N, Fara) X T) =T X Sgrer (V) (30)
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One notes here that for given physical conditions N (or T) and for the decreasing &,,), since

. —d SpTroTH
VClgror (N,rgcq.% T) and TSgro1] (N,r40,% T) are expressed in terms of —[—~dN_ and

—

d Sgr0T) . [n® _
—dT[—'-, one haS [Vc 1ET[DT]’TSET[DT]] < ':I fOI’ Enf_p} = "ql? ) [UC]'ET[CIT]’ TSET[DT]] - ':I fOI’
- Mo
Ey=_ =, and [ VC1 Ts ]=0fork,,< = , stating also that for
nip) ﬂql 3 ! ET[0T]’ * SET[OT] n(p) ".,|| 3
_ .
Sate) = |3
() Sgror; » determined in Eq. (25), thus presents a same minimum
[ f'_g J— —4 E
(Serom)__ L~ —1563x107* (I),

(i) ZTgrer; , determined in Eqg. (26), therefore presents a same maximum:

[ZTET[nT])mmzl, since the variations of  ZTgro; are expressed in terms of

[VC1lzriory TSeriori] X Seriom: Serpor) < 0

Furthermore, it is interesting to remark that the VC2gror-coefficient is related to our

generalized Einstein relation (24) by:

kg _ 2 5gr0T) DET[DT-':Nan:Zaﬂ%T:' v kg [3xL
“Ex V(2 N,ry,xT)=— % \ (_) kg _ 1
a zriom (N X% T) Fnp)  werpr(NrawxT) VK a4 (1)

according, in this work, with the use of our Eq. (25), to:

D (Mg T ZT - 1- ZT -
- BET[OT] (Norg(g)=T) [1+ ZTET[OT Mott]

Of course, our relation (31) is reduced to: 2—2{‘2—:- VClgror; and  VC2gpor being

determined respectively by Equations (24, 27, 28). This may be a new result.

CONCLUDING REMARKS

Some important concluding remarks can be repoted as follows.

In the n*(p*)— InP,__[As_Sb ] — crystalline alloys, 0 <x=1 | x being the
concentration, the optical coefficients, and the electrical-and-thermoelectric laws, relations,
and various coefficients, being enhanced by :

(i) our static dielectric constant law, =(r,,x), r4r,) being the donor (acceptor) d(a)-radius,

given in Equations (1a, 1b),
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(ii) our accurate Fermi energy, Eg,zp, given in Eq. (11) and accurate with a precision of the

order of 2.11 x 107* ! affecting all the expressions of optical, and electrical-and-
thermoelectric coefficients ,

(iii)our optical-and-electrical transformation duality given in Eq. (15), and finally

(iv)our optical-and-electrical conductivity models, given in Eq. (18, 20a), are now
investigated, basing on our physical model, and Fermi-Dirac distribution function, as

those given in our recent works.!*"?

It should be noted here that for x=0, these obtained numerical results may be reduced to those
given in the n(p)-type degenerate InP-crystal.™ *! Then, some important remarks can be

repoted as follows.

(1) As observed in Equations (3, 5, 6), the critical impurity density Nepy,¢cpy), defined by the
generalized Mott criterium in the metal-insulator transition (MIT), is just the density of
electrons (holes), localized in the exponential conduction (valence)-band tail (EBT).
N &batcop). being obtained with a precision of the order of 2.91 x 1077 , respectively, as
given in our recent works.®! Therefore, the effective electron (hole)-density can be defined
as: N* =N —Nepuicpm) & N —N&i(cppy» N being the total impurity density, as that

observed in the compensated crystals.

(2) The ratio of the inverse effective screening length k_, ., to Fermi wave number kg,

at 0 K, Ry (N¥), defined in Eq. (7), is valid at any N*.

(3) From Equations (20a, 21-30), for any given X, rg;,; and N (or T), with increasing T (or

decreasing N), one obtains: (i) for £,y = ﬂqﬂ“ﬁ—h ~ 1.8138, while the numerical results of the

.. .. ny _4E
Seebeck coefficient Sgroy Present a same minimum [SET[DT])min.(_ 1.563 X 10 K],
those of the figure of merit ZTgpgr Show a same maximum (ZTgrigry) max. = 1, (ii) for
€atpy = 1, the numerical results of Sgrpgry, ZTgrror, the Mott figure of merit ZTgrorniomn.

the first Van-Cong coefficient VC1griqr;, and the Thomson coefficient Tsgriqry, Present the

same results: —1.322x1n‘4§ . 0.715, 3.290, 1.105><1u“‘§, and 1.55?><1u‘4‘}"—c,

|m®

respectively, and finally (iii) for €,.,; = Ny > 1.8138, ZTergrmon = L aS those given in
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our recent work.™ It seems that these same results could represent a new law in the

thermoelectric properties, obtained in the degenerate case (£,¢,) = 0).

(4) Further, our electrical-and-thermoelectric relation is given in Eq. (31) by:

8SgT0T] % DgrioTy(Nra (2 *T) (‘V:) kg _  [3xL
1 =

- ——, according,
BEnip)  RETOT(Nord(exT) ' g

kp —
—=xVC2 N,r [ ,}{,T = —
a ET[DT](. dila) ) a N

K
in this work, to:

D A Mg T IT ; x[1- 2T . .
ET[oT; \N-Tdle ) w 7 y LTET[OT Mott [ E.'T[E'T Mott] V), being
BET[OT] (Norg(g)=T) [1+ ZTET[OT Mott]

VC2griom) (Nraea,xT) = -
reduced to: E—m[ﬂ- , VClgror and VC2gpor;, determined respectively in Equations (24,
ET[0T]

27, 28). This can be a new result.

(5) Finally, for given [N,rg¢,.x T], all the numerical results of [o5(E), x5 (E), £55 (E), and
oy (E)], given in the OP, and those of [cz(E), ¥z(E), £, (E), and o (E)], given in the E-
OP, being determined respectively from Equations (18, 19b-19d], for any E, could thus be

used to explain all their corresponding past-or-future experimental results. Therefore, this can
also be explained for ogrpgr(N.ra.,% T), obtained in Eq. (20a) for the (OP - [E-OP])-
transition, and their derived electrical-and-thermoelectric results, as those reported in Table 3,
and also in Equations (18, 19a-19d, 20a-20d, 21-31).
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