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ABSTRACT
In n*(p*) — p(n) — GaP;_, As, - crystalline alloys, 0 <x <1,

various optical, electrical and thermoelectric laws, relations, and
*Corresponding Author coefficients, being enhanced by: our static dielectric constant law given
Prof. Dr. Huynh Van

c in Equations (1a, 1b), accurate Fermi energy given in Eq. (11), and
ong

Ve B e Ve finally optical-and-electrical conductivity model, determined at the

Domitia, Laboratoire de optico-electrical phenomenon _ electro-optical phenomenon (O-
Mathématiques et Physique EP_[E-OP])-transition, and given in Eq. (20a), are now investigated,
(LAMPS), EA 4217,
Département de Physique,
52, Avenue Paul Alduy, F-
66 860 Perpignan, France.

by basing on the same physical model and mathematical treatment
method, as those used in our recent works™ % 3! noting that, for x=0,
these obtained numerical results are reduced to those given in the n(p)-

type degenerate GaP —crystal.™* In the following, for given physical

conditions, all the optical coefficients are expressed as functions of the effective photon

energy : E*=E—E E and Egn1(gp1), being the photon energy and the optical band

gni(gp1)
gap. Then, some important remarks can be reported as follows. -From our optical [electrical]
conductivity model, o (E*) , determined in Eq. (18), all the optical, electrical,
thermoelectric coefficients are determined, as those given in Equations (19a-19d, 20a-20d). -
In particular, at the (O-EP_[E-OP])-transition, obtained for E = Egn1(gp1) + Erncrp), and

given in Eq. (15), one observes that the optical conductivity oot has a same form with that of
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the electrical conductivity, ogr, given in Eq. (20a), being used to determine all the optical,
electrical, and thermoelectric coefficients, as those reported in Table 3 and also in Equations
(18, 19a-19d, 20a-20d, 21-31).

KEYWORDS: Optical-and-electrical conductivity, Seebeck coefficient (S), Figure of merit
(ZT), First Van-Cong coefficient (VC1), Second Van-Cong coefficient (VC2), Thomson
coefficient (Ts), Peltier coefficient (Pt).

INTRODUCTION

In the n*(p*) — GaP;_, As,- crystalline alloys, 0 < x < 1, x being the concentration, the

optical coefficients, the electrical-and-thermoelectric laws, the relations, and various

coefficients, being enhanced by :

(i) our static dielectric constant law, £(rgca), X), r'qca) b€ing the donor (acceptor) d(a)-radius,
given in Equations (1a, 1b),

(ii) our accurate Fermi energy, Egngp), given in Eq. (11) and accurate with a precision of the
order of 2.11x 107* ¥ affecting all the expressions of optical, electrical, and
thermoelectric coefficients ,

(iii)our optico-electrical phenomenon and electro-optical phenomenon (O-EP_[E-OP])-
transition, given in Eq. (15), and finally

(iv)our optical-and-electrical conductivity models, given in Eq. (18, 20a),
are now investigated by basing on our physical model, and Fermi-Dirac distribution
function, as those given in our recent works.!

It should be noted here that for x=0, these obtained numerical results may be reduced to
those given in the n(p)-type degenerate GaP-crystal.*®! Then, some important remarks
can be repoted as follows.

(1) As observed in Equations (3, 5, 6), the critical impurity density Ncpncpp), defined by the

generalized Mott criterium in the metal-insulator transition (MIT), is just the density of

electrons (holes), localized in the exponential conduction (valence)-band tail (EBT),

NEbncop): being obtained with a precision of the order of 2.92 x 1077, as given in our

recent works.[* Therefore, the effective electron (hole)-density can be defined as: N* = N —

Nepn(eop) = N — N¢bhcppy: N being the total impurity density, as that observed in the

compensated crystals.
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(2) The ratio of the inverse effective screening length kg spy to Fermi wave number kepip)
at 0 K, Rgnspy(N™), defined in Eq. (7), is valid at any N*.
(3) From Equations (20a, 21-30), for any given X, rgqcey and N (or T), with increasing T (or

decreasing N), one obtains: (i) for &, = \/“32 =~ 1.8138, while the numerical results of the

Seebeck coefficient Sgrior) present a same minimum (SET[OT])min (: —-1.563 x 107* E)

those of the figure of merit ZTgrjor) Show a same maximum (ZTgror)max. = 1, (ii) for
En(p) = 1, the numerical results of Sgrior), ZTerjoT), the Mott figure of merit ZTgrjormott:

the first Van-Cong coefficient VC1grjor), and the Thomson coefficient Tsgrjor), present the

same results: —1.322x10-4§ . 0.715, 3.290, 1.105x10‘4¥, and 1.657x10-4§,

2
respectively, and finally (iii) for &,y = \/g = 1.8138, ZTgr[or)™Mott = 1, as those given in
our recent work.™ It seems that these same results could represent a new law in the
thermoelectric properties, obtained in the degenerate case (§,) = 0).

(4) Further, our electrical-and-thermoelectric relation is given in Eq. (31) by:

kg _ _ 9Sgrjor ., PeTjom)(Nrd@)xT) (V3) kg 3xL :
—=XxVC2 N, rge,%T) = — X (—) — = |==, according,
q ET[OT] ( da) ) O%n(p) ueTioT] (Nrgca)xT) \ K q 2 g

in this work, to:

_ DeT[0T] (erd(a)'X'T) ZTET[OT]Mott X [1- ZTET[OT]Mott] .
2 T)=-— X 2 X In
VC2erior (N ra . T) ueTior)(Nraca)xT) [1+ ZTgrjomiMote]” (V). being
reduced to; —=1°T VClgrjor and VC2grpory, determined respectively in Equations (24,

HET[OT]
27, 28). This can be a new result.
(5) Finally, for given [N,rq,),x, T], all the numerical results of [0 (E), ko (E), £20(E), and
o (E)], given in the OP, and those of [og(E), kg(E), €,5(E), and g (E)], given in the E-
OP, being determined respectively from Equations (18, 19b-19d), for any E, could thus be
used to explain all their corresponding past-or-future experimental results. Therefore, this can
also be explained for ogror)(N, raca), %, T), obtained in Eq. (20a) for the (O-EP_[E-OP])-
transition, and their derived electrical-and-thermoelectric results, as those reported in Table 3,
and also in Equations (18, 19a-19d, 20a-20d, 21-31).
In the following, many important sections are presented in order to investigate all the optical
coefficients and electrical-and-thermoelectric ones, given in the n*(p*) — GaP;_, As, -

crystalline alloys at any temperature T(= 0 K).

Www.wjert.org 1SO 9001: 2015 Certified Journal 48




Katta et al. World Journal of Engineering Research and Technology

OUR STATIC DIELECTRIC CONSTANT LAW AND GENERALIZED MOTT
CRITERIUM IN THE METAL-INSULATOR TRANSITION

First of all, in the n™(p*) — GaP;_, As,- crystalline alloys, at T=0 K [1, 2, 3], we denote :
the donor (acceptor) d(a)-radius by rqc,), the corresponding intrinsic one by: rge(ae)=Te(Ga)
respectively, the effective averaged numbers of equivalent conduction (valence)-bands by:
gc(v) » the unperturbed reduced effective electron (hole) mass in conduction (valence) bands

by m¢)(x)/m,, m, being the free electron mass, the relative carrier mass by: m.(x) =

m¢(x)Xmy(x) . . . . . .
Y < m)(x), for given x , the unperturbed relative static dielectric constant by:

£0(x), and the intrinsic band gap by: E,(x), as those given in the Following Table 1.

Table 1: In the GaP,_, As,- crystalline alloys, the different values of energy-band-structure

parameters, for a given x, are given in the following.!*!

In the GaP;_4As-crystalline alloy, in which rg,(a0)=Tp(Ga)=0.110 (0.126) nm, we have [3]:
Ecw(® =1xx+1x(1—-x)=1 , m)(x)/m, =0.066 (0.291) x x + 0.13 (0.5) X
(1-%),8(x =13.13 Xx+ 11.1 X (1 — x), Ego(x) = 1.52 X x + 1.796 X (1 — x).

Here, the effective carrier mass my,,,)(x) is equal to m)(x). Therefore, we can define the

effective donor (acceptor)-ionization energy in absolute values as:

13600 . o .
Edoaoy(X) = X[[Sm?g])z(x)/m]mev, and then, the isothermal bulk modulus, by :
o
E x)
Bao(ao) () = rpmiea®
do(ao) (4?)><(rdo(ao))3

Our Static Dielectric Constant Law [mj, ) (x) = m¢ (x)]
Here, the changes in all the energy-band-structure parameters, expressed in terms of the
effective relative dielectric constant £(rg(a), X), developed as follows.

Al rqa) = I'do(ao), the needed boundary conditions are found to be, for the impurity-atom

volume V= (4m/3) x (rd(a))g, Vdo(ao) = (41/3) X (rdo(ao))3, for the pressure p, p, = 0,
and for the deformation potential energy (or the strain energy) a, @, = 0. Further, the two

important equations, used to determine the a -variation, A @ = a —a, = «, are defined by :

dp_ B d ivina ri
do_ B4 p:_ﬁ , giving rise to :

d ,da
av v v

_B : : _
{3y~ 7 Then, by an integration, one gets :
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3
[Aa(rag), ], ) = Baocao) ) *(V=Vaocao) )* I ( )= Edo(aoy (%) X [ d(a) —1]><

Tdo(ao)

n(p)

rd(a) 3
n(22) 20
T'do(ao)

Furthermore, we also showed that, as rq) > I'do(ao) (Td(a) < 'doao)). the compression

Vd()

(dilatation) gives rise to the increase (the decrease) in the energy gap Egn(gp)(rd(a),x), and
the effective donor (acceptor)-ionization energy Eqa) (rd(a),x) in absolute values, obtained in
the effective Bohr model, which is represented respectively by : + [Aa(rd(a), X)]n(p)’

2
€0 (%)
X[|—=] —1| =
<€(rd(a))) ]

Egno(gpo) (rd(a)l X) — Ego x) = Eqc) (rd(a)'X) — Eqo(ao) X = Edo(ao) x)

+ [Aa(rd(a), X)]n(p),

for I'aca) = I'do(ao): and for I'q(a) < I'do(ao):

2
€0 (%)
Egno(gpo) (rd(a),x) - EgO(X) = Ed(a) (rd(a): X) - Edo(ao) (X) = Edo(ao) (X) X l(s(rd(a))> -

—_ [Aa(rd(a), X)]n(p).

Therefore, one obtains the expressions for relative dielectric constant £(rq(,), x) and energy

band gap Egn(gp)(Taca) X), as :

€0 (X)

rd@ \*_ ( rd(a) )3
1+[(rdo(ao)) 1]><1n T'do(ao)

<¢g,(x), being a new

(i)-for rqa) = rqo@o), Since s(rd(a),x):J

S(I'd(a), X)'IaW,

T, T 3
Egno(gpo) (rd(a)rx) - Ego X = Ed(a) (rd(a)'x) - Edo(ao) x) = Edo(ao) x) % [(“diil) 1] X ln rdji:})) >0, (1a)

according to the increase in both Egpgp)(Tacay, X) and Eqcay (racay, x), With increasing rqca)

and for a given x, and

(i))-for rqcay < Tdogaoy » SiNCe &(Taca) X) = 83°(X) = > g,(x), with a
Td@ " _ Td(a)
\/1 [(rdo(ao)) 1 ><ln(rdo(ao))
condition, given by: [( rd(a) 1] X ln Td@ ) <1, being a new &(rgc,), X)-law,
rdo(ao) do(ao)
Egno(gpo)(rd(a)rx) - Ego (X) = Ed(a)(rd(a)tx) - Edo(ao) (X) = _Edo(ao) (X) X [( d:E:i) 1] X ln d:E:L)) < 0! (1b)

corresponding to the decrease in both Egno(gpo) (Taca), X) and Eqcay (raca), X), with decreasing

r4q) and for a given x.
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It should be noted that, in the following, all the electrical-and-thermoelectric properties
strongly depend on this new €(rg(a), X)-law.

Furthermore, the effective Bohr radius agpgp) (raca), X) is defined by:

X)xh? ,
@M _ ) 53 % 1078 cm x “L4@Y (2

a r X)) =E—7T7—— " .
Bn(Bp)( d(a) ) mn(p)(X)Xmquz mn(p)(x)

Generalized Mott Criterium in the MIT [m},)(X) = mcq,) (X)]

Now, it is interesting to remark that the critical total donor (acceptor)-density in the MIT at
T=0 K, N¢pnnpp) (Taca), X), Was given by the Mott’s criterium, with an empirical parameter,
astt 23

Mi ()

1
Neoneop) (Tagay X) /3 x agnp) (Ta@)y X) = Mypy, Mpp) = 0.25, (3)
depending thus on our new &(ryca), X)-law.

This excellent one can be explained from the definition of the reduced effective Wigner-Seitz
(WS) radius rgp,(sp),m, in the Mott’s criterium, being characteristic of interactions, by :
3 )1/3 % 1 /3 y my ) () xmg

1
Fsnespym (N, Taca), X) = (m = 1.1723 x 108 x (%)

(4)

aBn(Bp) (Td(a)X) e(rgayx)

being equal to, in particular, at N= Nepnepp) (Tagay X)
Fsn(sp)M (Nepn(ep) (Fagay X), Taca), X)= 2.4813963, for any (rq(a), x)-values. Then, from Eq.

(4), one also has :

1
1 3\3 1
Nepn(epp) (Tagay X) /3 agn(ep) (Taa) X) = (E)3 X sasizees = 025 = (WS)n(p) = Mnp), ®)

explaining thus the existence of the Mott’s criterium.
Furthermore, by using M) = 0.25, according to the empirical Heisenberg parameter
Hyp) = 0.47137, as those given in our previous work®!, we have also showed that

Ncon(cpp) 1S just the density of electrons (holes) localized in the exponential conduction

(valence)-band tail ,  Nghicpp . With a precision of the order of

2.92 x 1077 ,respectively .”!
It shoud be noted that the values of M, and H, ., could be chosen so that those of
Ncpn(cpp) and NEp 1 cpp) are found to be in good agreement with their experimental results.

Therefore, the density of electrons (holes) given in parabolic conduction (valence) bands can
be defined, as that given in compensated materials:

N*(N,rgca), X) = N — Nepnenpp) (Tacay, X)= N7, for a presentation simplicity. (6)
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In summary, as observed in our previous paper, for a given x and an increasing Td(a)»

e(ra(a), X) decreases, while Egnocgpo)(Taay X)), Nepnvp) (Faca), X) and NEEE(CDP)(rd(a),x)
increase, affecting strongly all the optical, electrical, and thermoelectric coefficients, as those
observed in following Sections.

PHYSICAL MODEL
In the n*(p*) — GaP;_, As,- crystalline alloys, the reduced effective Wigner-Seitz (WS)
radius rg,sp), Characteristic of interactions, being given in Eq. (4), in which N is replaced by

N*, is now defined by:

Kn(rp) <1
aBn(Bp)

3gc<v))1/3 » 1

, rsn(sp)(N, rd(a),x) = (4-1'[N* , being

X N*) =
Y rsn(sp)( ) apn(Bp) (Td(a)X)

1

3m2N*\3 . .
L ) is the Fermi wave,

8c(v)

proportional to N*~'/. Here, y = (4/9m)'/3, Kpnerpy (N*) = (

gc(v) being the effective averaged numbers of equivalent conduction (valence)-bands.
Then, the ratio of the inverse effective screening length kg, (sp) to Fermi wave number

Kenkp) 1S defined by:

y — Konsp) _ Kengep) -
Rsn(sp) (N ) ===k = —: 2= RanS(spWS) + [RsnTF(spTF) - RanS(spWS)]e Tsnisp) < 1, (7)
an(FP) ksn(sp)

being valid at any N*.
Here, these ratios, Rsyrr(sprr) and Rgnwsspws), can be determined as follows.
First, for N> Nepnwpp)(faa),X) . according to the Thomas-Fermi  (TF)-

approximation, the ratio R, rr(sprr (N*) is reduced to

+\ — KsnTF(spTF) k;é(Fp) 4YTsn(sp)
RsnTF(spTF)(N )= K = I = <1, (8)
Fn(Fp) snTF(spTF) T

being proportional to N*~%/¢,

Secondly, for N < Nepnnpp) (Tagay), according to the Wigner-Seitz (WS)-approximation,

the ratio Rs,ws(snws) is respectively reduced to

—_ Ksnispws _ 3 d[r2 XEcg(N")|
Rsn(sp)WS (N*) = 71(]:“ - 05 X E —_ ‘y% , (9a)

where Eqcg(N*) is the majority-carrier correlation energy (CE), being determined by:

0.87553 2[1-In(2)]
t xIn(r —0.093288
E (N*) _ —0.87553 0.0908+I'gp (sp) ( 2 ) ( sn(sp))
¢e 0.0908+Tsn(sp) 1+0.03847728xr /378876

Furthermore, in the highly degenerate case, the physical conditions are found to be given by:
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27X (; N )
Ken(Fp) M) _ 1 Ken(Fp) _ - Eev) 1/2
aBn(BIP))) < EFno(llzpo) - An(p) ks_r}(s::) - Rsn(Sp) <L Mnp) (N = £(rg(a)) stn(SP) (%)
H H . *\ EFno(Fpo)(N*) ¥\ — hZXkIZJn(Fp)(N*)
which gives: App)(N*) = T () Efnorpoy(N*) = 2x1y gy X
BAND GAP NARROWING (BGN) BY NANDBY T
First, the BGN by N is found to be given by!?:
1 1
) N £o(X) 3 £0(¥) 3
AEgn(epyn(N*, Taay, x) = a5 + Teod) ™ N2 +a, x Teod) ™ N2 x (2.503 x
= 1
) Mv(c) Eo(®) |2 2
—E X + =0 ] / X N4 +2 [ X N2 +
[ CE (rsn(sp))] r'sn(sp)) ag X 5(rd(a) x) n(p)( ) Ay X (rd(a) x) r
3 1
go(x) |2 5 _ N*
Zas x [s(rd(a),x) XN, N = 9.999%1017cm~3’

Here, a; = 3.8 X 1073(eV), a, = 6.5 X 107 *(eV), a3 = 2.85 x 1073(eV), a, = 5.597 X
1073(eV), and a5 = 8.1 x 107*(eV).

Therefore, at T=0 K and N* = 0, and for any rg(,), one gets: AEgp ) = 0, according to the

metal-insulator transition (MIT).
Secondly, one has?:

2T 2.20172.201
AEgn(gp);T(T) = 0.20251 X ([1 + (m) ] — 1) (10b)

FERMI ENERGY AND FERMI-DIRAC DISTRIBUTION FUNCTION

Fermi Energy

Here, for a presentation simplicity, we change all the sign of various parameters, given in the
pt — GaP;_, As,- crystalline alloys, in order to obtain the same one, as given in the

— GaP;_, As, - crystalline alloys, according to the reduced Fermi energy

Efncrp) + &np)(NoTda), %, T) = EF“(F")S;;“”'X'T) > 0(< 0) , obtained respectively in the

degenerate (non-degenerate) case.

For any (N, rgc), % T), the reduced Fermi energy &,y (N, rgc), %, T) or the Fermi energy
Epncrpy(N, Taay, X, T), obtained in our previous paper™, obtained with a precision of the

order of 2.11 x 10~%, is found to be given by:

_ Epn@Ep)(w) _ G(u)+AuBF(u) V()
En(p)(u) = kBpT e = W' ,A=0.0005372 and B = 4.82842262, (11)
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N*

where u is the reduced electron density, u(N,rge),x, T) = N T New)(T,X) = 28cv) X
(T,

3 2

(wy (em™), P = aws (1+bu™s +cus) *, a= 374, b=1(2)’

2mh2

62 3739855 (11)

1920 and G(u) = Ln(u) +2° 2><u><edlu d—23/2[ ]>0

So, in the non-degenerate case (u < 1), one has: Epyppy(u) = kgT X G(u) = kgT X Ln(u)

asu — 0, the limiting non-degenerate condition, and in the very degenerate case (u > 1),

2

2 _4 8\T3  hXKfy(pp)(N*
one gets: Epperpy(u > 1) = kgT X F(u) = kgT X aus (1 +bu: 4+ cu 3) 3 o PXKinep (N

2><m;‘l(p)(x)><m0

FH(FP)

as u — oo, the limiting degenerate condition. In other words, &, = IS accurate,

and it also verifies the correct limiting conditions.

In particular, as T— 0K, since u"! -0, Eg. (11) is reduced to: Efnorpoy(N*) =

hzxkﬁn(Fp)(N*)
2Xm

, being proportional to (N*)2/3, and also equal to 0 at N* = 0, according to the
n(p) () XMo

MIT and noting that Egno(rpo) (mr(x)) > Efno(Fpo) (mc(v) (x)) since my(x) < mey,)(x) for

given X.

In the following, it should be noted that all the optical and electrical-and-thermoelectric

properties strongly depend on such the accurate expression of En(p)(N, Td(a) X T).[Q]

Fermi-Dirac Distribution Function (FDDF)

The Fermi-Dirac distribution function (FDDF) is given by: f(E) = (1 +e¥)™ !, y=(E—
Eneep))/(ksT).

So, the average of EP, calculated using the FDDF-method, as developed in our previous

works™ ® is found to be given by:

p = P = [ gpx (-9 of _ 1 ¢
(EP)eppr = Gp(Ern(rp)) X EFn(Fp) = f—oo BP x (—5p)dE — 5 kT < e
Further, one notes that, at 0 K, —— = 8(E = Egno(rpo))» S(E — Egno(epoy) being the Dirac

delta (8)-function. Therefore, Gp(EFno(Fpo)) = 1.

Then, at low T, by a variable change y = (E — Egn(gp))/(kgT), One has:
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3 B
Gd&mwﬁz1+Emmanwmﬂyx@ﬂW+&mmﬂdY—1+me Cp X

(kgT)® x E;f(Fp) X Ig, where Cp =plp—-1..p—B+1)/B! and the integral Ig is
given by:

_ o0 yB)(eY _ yB . .
Ig = f_oo(1+ey)2 - f—oo (ey/2—+e_w2)z dy, vanishing for old values of B. Then, for even

values of § = 2n, with n=1, 2, ..., one obtains:

n=2 [T T gy
0 (1+eY)2

Now, using an identity(1 + e¥)™2 = 32 ,(—1)5*'s x Y6~ a variable change: sy = —t,
the Gamma function: f0°° t?Me"tdt =T'(2n+ 1) = (2n)!, and also the definition of the

Riemann’s zeta function: {(2n) = 22" 11?®|B,,|/(2n)!, B,, being the Bernoulli numbers,
one finally gets: I,, = (22" — 2) X ™2™ X |B,,|. So, from above Eq. of (EP)gppr, We get in
the degenerate case the following ratio:

Gp(Brnrp) = G222 = 1+ TP, PO (220 = 2) X [Bynl Xy = s 9), (12)

i1 _ mkgT
Enp)(N*T)  Epnepy(N*T)’

0K, Gps1(y—>0) - 1.

™T — T y=1, and as T—

where y =
Efnep)  $np)

noting that G,_,(y =
Then, some usual results of G,.;(y) are given in the following Table 2, being needed to
determine all the following optical and electrical-and-thermoelectric properties.

Table 2: Expressions for Gy (y = EL)’ due to the Fermi-Dirac distribution function, are
n(p)

used to determine the electrical-and-thermoelectric coefficients.

G3/2 ) G2 (y) Gs/z(Y) G3(y) G7/2 4%)] G4(y) G9/2 4%)]
y2 7yt y? 7y 35y% | 49y* 7y* 21y?  147y*
(1+5+20) (1+%) (1+3-2) (+y) (1+2+20) (12 +7) (1+55+50)

OPTICAL-AND-ELECTRICAL PROPERTIES
Optico-Electrical Phenomenon — Electro-Optical Phenomenon (O-EP - [E-OP])-Transition

[m;(p) = m, (%) [m¢) (X)]]

First off on, for a presentation simplicity, we change all the sign of various parameters, given
in the p* — GaP;_, As,- crystalline alloys, in order to obtain the same one, as given in the

— GaP;_4 As, - crystalline alloys, according to the reduced Fermi energy
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Epnrp) (N,Tg(a) % T . . .
Ernerp) + n(p)(N) Td(a), % T) = — (Fp)iB;d( *D - 0(< 0), obtained respectively in the

degenerate (non-degenerate) case, giving: Epno(rpo) = Ernrp) (N, Taca), X, T = 0).

Then, in the n™(p™) — GaP;_4 As,- crystalline alloys, and for the temperature T(K), One

has:
(i) in the (E-OP), the reduced band gap is defined by:
Egnz(gp2) = Ecv) ~ Evoco) = Egnigpi) ~ AEgn(gp)in(N™) — AEgn(gp);r(T), (13)

where Egpi(gpi) IS the intrinsic bang gap, AEgngp)(N*) and AEgngp) (T) are respectively the
reduced band gaps, due to the N*-and-T effects, as those determined in Equations (10a, 10b),
and

(ii) in the (O-EP), the photon energy is defined by: E = hw, and the optical band gap by:
Egni(gp1) = Egn2(gp2) + Ernrp)-  [Egn2(gp2)]

Therefore, for E = Egn1gp1)[Egn2(gp2)]s the effective photon energy E* is found to be given
by:

From above Equations, the (O-EP_[E-OP])-transition means that:
E* = [E — Egni(gp1)] = Ern(rp), given in the O-EP, in which E = [Egn1(gp1) + Erncep)l, 18
reduced in the E-OP, in which E = [Egn1(gp1) + Ernrpy] @and m.(x) are now replaced by

E = [Egn2(gp2) T Ern(epyl @aNd mc(y)(%), 100 E* = E — Egnp(gp2) = Erncrp), and reciprocally,

noting that EFn(Fp)(mr(X)) > Epnrp) (mc(v) (x)) since m,(x) < m¢)(x), for given x.
(15)

Eq. (15) thus shows that, in both O-EP and E-OP, the Fermi energy-level penetrations into
conduction (valence)-bands, observed in the n*(p*) — type degenerate GaP;_, As, -

crystalline alloys, Egp(gp), are well defined, noting that at this discontinuous (O-EP — E-OP)-

transition: EFn(Fp)(mr(x)) > Epn(rp) (rnc(v) (x)), according to the discontinuous case.

Optical Coefficients
The optical properties for any medium, defined in the O-EP and E-OP, respectively,

according to: [mjy = m(x)[mey(x)]] , can be described by the complex
refraction: Nog; = nopg) — ko) » Nogy and  kopg being the refraction index and the

extinction coefficient, the complex dielectric function: Eqg) = €1011g) — i€20[25), Where
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i2 =—1, and Eolg] = NO[E]Z. Further, if denoting the normal-incidence reflectance and the

optical absorption by Rog) and «qg;, and the effective joint density of states by:

. 3/2 2
1 2my 1,y (%) E-E;p
JDOSh(pyo[g) (E) = 55 X (%) X [E_[E s ]] X \/EFno(rpo), and

gni(gp1) +EFn(Fp) _EFno(Fpo)

hq®x|v(E)|?

n(E)XCEX€free space

, one gets!?:

Forg(E) =

E X €5012e1(E) _ 2E X Ko[g) (E)
flcno[E] (E) hc

Xorg) (E) = JDOS,pyo(g) (E) X Forg (E) =

_ 41'[0'0[]5] (E)
ChoJEg] (E) X €free space,

norg - 1% +Ko(g 2
e1001E](E) = nofgy® — Koer?: €201261 (E) = 2Koenoey, and Rope (E) = [O[EJ]—zO[E]Z : (16)
[noe;+1] +xoE

It should be noted that, such the above joint density of states yeilds: (i) as E = Egp1(gp1)(T),

h?2 X

JDOSy o (E) =0 , and (i) as E— oo, ]Dosn(p)o[E](E)az—;x(
m. Further, ggee space 1S the permittivity of the free space, -q is the charge of the
electron, |v0[E](E)| is the matrix elements of the velocity operator between valence
(conduction)-and-conduction (valence) bands, and the refraction index nqg; is found to be
defined by

4 BoiE+Coi

Ng|[E] (E, rd(a)) = Ny (rd(a)) + Zi:lm - N (rd(a))v aS E — oo. (17)

Now, the optical [electrical] conductivity ogg) can be defined and expressed in terms of the

2 2
kinetic energy of the electron (hole), Eyx = ﬁ k being the wave number, as:
n(p) °
l
— q2><k k Ex \2 . . .
oorr) (k) = ——— X - X [k X apneap) | X (nn(p)) (ohmxcm)’ which is thus proportional to
Ei,
2
where —— = 7.7480735 x 10~° ohm™™.
TIXh
in: 2 = — nkgT 2 — y_Z =
Then, we obtain: (E“)pppr = G2(y = Epn(pp)) X Efnrpy » and Gu(y) = (1 + 3) =

G2 (N, rqa), % T), with y = %(m Enp) = &n(p) (N, Taca), %, T) for a presentation simplicity.

Therefore, from above equations (16, 17), if denoting the function H(N, rgca), x, T) by:
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H(E, N, rge), % T) =

[an(Fp) (N

* % Efno(Fpo) (N*)
Ry % [kencep) (N X agnap) (Faca, X)] \/ An(p) () = =220

T]n(p) (N*)

k _ .
G2 (N, racay, % T), where Rgpspy(N¥) = ﬁ being proportional to EZ,,kpo). then, our

optical [electrical] conductivity models, defined in the O-EP and E-OP, respectively, for a

simply representation, can thus be assumed to be as:

O'O(E, N, rqe), X T) =

2
2 E-E
a gni(gp1) ( 1 )
— X X
mixh H(E' N Ta), X, T) [ EFno(Fpo) ] ohmxcm/’ and

oe(E, N, rqqa), % T) =

2
& X H(E,N, rgca), %, T) X

[E‘EgnZ(ng)]z( 1 ) (18)

EFno(Fpo) ohmxcm

It should be noted here that:

(i) o] (E = Egnicgpn)[Egnzgpn]) =0, and  oopg(E » ) - Constant for  given
(N, rqca), % T) —physical conditions, and

(i) as T- 0 Kand N* = 0 [or Egpo(rpoy(N*)] = 0,according to: H(H, N, rgcay, x, T) = 0, and

for a given E, [E — Egnygpn)] = [E— E =Constant, then from Equations (16-18),

gni(gpi)]
No[g] (E): Constant, GO[E](E) =0, Ko[E] (E)=0, €10[1E] (E) = (Iloo)z = Constant ,

£20128](E) = 0, and «¢og (E) = 0, according to the metal-insulator transition (MIT).

This result (18) should be new, in comparison with that, obtained from an improved Forouhi-
Bloomer parameterization, as given in our previous work.?

Using Equations (16-18), one obtains all the analytically results, due to the O-EP as: [0, (E),
Ko (E), £20(E), and o« (E)], and to the E-OP by: [og(E), kg(E), &, £(E), and «g (E)],

Iv(E)I* 8mh K (pp) (N*) .

v - — ; X [RF Fp o X [an(Fp) (N ) X aBn(Bp) (rd(a),x)] X GZ (N, Tq(a), X T), (193.)

(Zmr)zxm sn(sp)
2
2g2 E-E
Kko(E) = A X H(E,N, rgcay, % T) X [M] and
n(E)X&free space XE EFno(Fpo)
2
2g? [E_Egnz(gpz)]

kg (E) = X H(E,N,rgea), % T) X |——=| , 19b
E( ) n(E)X&free space XE ( d(a) ) Efno(Fpo) ( )

which gives: k[kg](E = Egn1(gp1)[Egn2(gp2)]) = 0, and k[kg](E = ) — 0, as those given

in Ref.[4.
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2
4q? E-Egni(gpy)
&€0(E) = — X H(E,N,r X, T X[— and
20( ) Efree spaceXE ( ) hd(@)y S ) EFno(Fpo)
2
49? [E‘EgnZ(gPZ)]
&(E) = — = XH(E N, rge), %, T) X |[———| , 19c
ZE( ) £free space XE ( d@ ) Efno(Fpo) ( )

which gives: €125 (E = Egni(gp1) [Egnzgpn]) = 0. and €cp5 (E = ) — 0, as those given

in Ref.d and

2
49? [E_Egnl(gpl)] ( 1 )
X5 (E) = X H(E,N,r4¢5),%x, T) X | ———== —) and
0 ( ) hen(E)Xefree space ( d(a) ) EFno(Fpo) cm
2
4 E-Egna(gp) | (L
OCE (E) - flCH(E)XSfree space % H(E’ N' rd(a),X, T) X [ EFno(Fpo) ] (cm)' (19d)

which gives: o [g](E = Egn1(gp1)[Egnzgpz)]) = 0, and

Xo(g) (E = ) — Constant, as those given in Ref. [2].

Using the (O-EP - [E-OP]) transition, given in Eq. (15), at E = Egn1(gp1) + Epncrp) the
optical conductivity, oor, given in Eg. (18), in which my,y(x) = m;(x) is now replaced by
my)(x), has a same form with that of the electrical conductivity, o, given in our recent

work™, for such the (O-EP - [E-OP])- transition. So, from Equations (18, 19b, 19c¢, 19d), and

for E = Egn1(gp1)[Egn2(gp2)] + Ern(rp), ONES Obtains respectively, as:

_ EFn(Fp) 2 1
6o1(E N, Taay %, T) = = x H(E, N, Tgqay, %, T) X ( )

EFno(Fpo) ohmxcm

having the same form with that of cET(N, Td(a), X T) [1], as:

2
opr(E N, rg), %, T) = nq—:h x H(E, N, rg(a), % T) X ( Ern(rp) ) ( ! ) (20a)

Efno(Fpo) ohmxcm

2
KOT(E, N, rqca), X, T) = 2q

2
Efn(rp)
X H(E,N,rgqca), X, T x(—
n(E)Xefree space X(Egn1(gp1) TEFn(Fp)) ( d@ ) Efno(Fpo)
and

2q?

2
X H(E N, raga, % T) X (52202 ) - (20b)

EFno(Fpo)

KET (E, N, r4ca), X, T) =

n(E)X€free spaceX(Egnz(gp2)+EFn(Fp))
4q?

€free space X(Egn1(gp1) TEFn(rp))

2
£201(E N, ra@, % T) = x H(E,N,rqa), X, T) X ( S ) and

EFno(Fpo)

4q?

2
£251(E N, Tg(ay %, T) = x H(E, N, rg(a, %, T) X (M) (20c)

€free space X(Egn2(gp2) T EFn(Fp)) Efno(Fpo)
4q® Ernerp) )~ (1
ot (EN Ta@, % T) = e X H(EN g, % T) X (EF—(FP)) (=) and
4q? Ernp) \° (1
g (BN, Ta(a) % T) = pomcm——— X H(E, Nt % T) X (EF—(FE)) (). (20d)
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One notes here that (i) the electrical conductivity o) (E, N, rqa), %, T), given in Eq. (18), is
an essential result, being used to determine the following electrical-and-thermoelectric

coefficients, and (ii) as noted in Eq. (15), at this discontinuous (O-EP - [E-OP])- transition,

given in the discontinuous case : Egp(ep)(my(x)) > Epneep) (mc(v)(x)), since m,(x) <

m¢(y)(x) for given X, corresponding to: GOT(mr(X)) > Ogt (mc(v) (x)). In our recent work!™,

all the electrical-and-thermoelectric properties were investigated for this discontinuous case.

Some optical coefficients, obtained in Equations (18, 19b-19d, 20a-20d) for given
(E, N, rd(a),x,T) -physical conditions, are reported in the following Table 3, in which
oot > OET-

noting that H(E, N, rqc), %, T) is a constant for given (E, N, rgc), x, T).

Table 3: As noted above, H(E, N, rqca), %, T) is a constant for given (N, rqcy, %, T)-physical

conductions, then, some optical coefficients, for some particular values of E, are given as

follows.
EineV 0o (E) Ko (E) €20(E) <o (E)
Egni(gp1) 0 0 0 0
[Egnigp1) + Erneep)l oot Kot €20T XoT
2 2
E—> o aH _, Constant -0 -0 — 20 Constant
TIXh hcneo XEfree space
EineV og(E) kg (E) &25(E) xg (E)
Egnz(gpz) 0 0 0 0
[Egnz(gp2) + Ernep)] OgT KgT £2ET XgT
2 2
E- o U, Constant -0 -0 o xH —Constant
TXh hcNoo XEfree space

Therefore, for given [N, rqc),x, T], all the numerical results of [o4(E), ko (E), €20 (E), and
o (E)], due to the O-EP and those of [og(E), kg(E), €2 g(E), and o (E)], due to the E-OP,
being determined respectively from Equations (18, 19b-19d], for any E, could thus be used to
explain all their corresponding past-or-future experimental results.
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ELECTRICAL-AND-THERMOELECTRIC PROPERTIES [m;(p) = My (%) [mr(x)]]

Here, if denoting, for majority electrons (holes), the thermal conductivity by

- A\ . n? kB 2
orher[or](N, Ta@), % T) in pueesorell and the Lorenz number L by: Lz?x(;) =

2.4429637 (Wj("zhm) = 2.4429637 x 10~8 (V2 x K~2), then the well-known Wiedemann-
Frank law states that the ratio, w due to the (E-OP and O-EP) transition, respectively,
ET[OT]

is proportional to the temperature T(K), as:

oTh.ET[0T](N.rd(a)%T) —LxT. 1)
ogT[oT](N.Td(a)xT)

Further, the resistivity IS found to be given by:
PeT[oT|(N, Ta@@), % T) = 1/0grom)(N, raca), % T) , noting again that

N* = N = Nepnvop) (Faca) X).
In Eqg. (20), one notes that at T= 0 K, ogrjor)(N, rgca), %, T = 0K) is proportional to Eﬁno(ppo),

or to (N*)%.Thus, from Eq. (21), one has: ogrior)(N = Nepnnpp)ys Fa@), % T = 0K) = 0 and

also oth grjoT)(N = Nepn(npp)s Fd@), % T = 0K) = 0 at N* = 0, at which the MIT occurs.

Electrical Coefficients
The relaxation time tgrjor; is related to ogrjor; by™:

mp p) (X)X mg

Terjor](Ns Fa@), X T) = ogrjor)(N, Ta@), % T) X Therefore, the mobility

q*x(N*/gc(v))
HgT[oT] IS givVen by:
_ ) _ axtroni(Nra@*T) _ oerjor(Nra@xT) , cm?
terior) (N, Faay % T) = Merjor)(N* Faa), T) = MupyXme  ax(N*/ge(v) (s ) (22)

Here, at T= OK, pgror(N*ra@),T) is thus proportional to (N*)*/3, since
oerjor](N*, Ta@y, T = 0K) is proportional to (N*)*/3 . Thus, tgrjomy(N* = 0,14, T =
0K) = 0and pgrpor)(N* = 0,r4(a), T = 0K) = 0 at N* = 0, at which the MIT occurs.

Then, the Hall factor is defined by:

(terjor])FDDF _ G4(y) T kg T nd

[(TET[OT])FDDF]Z N [GZ(Y)]Z’ o En(p)(N,rd(a),X,T) B EFn(Fp)(N:rd(a):X;T)’

FHET[OT] (N, T4, X T =
therefore, the Hall mobility yields:

2
uaeTiom] (N Tacay % T) = Heror) (N, rac) % T) X rugrjory(N*, T) (), (23)

VXs

noting that, at T=0K, since rygrjomy(N,rq@,xT)=1 , one therefore gets:

HueToT](N, Ta@a) % T) = Heromi (N, Ta@), % T).
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Our generalized Einstein relation

Our generalized Einstein relation is found to be defined as™:

D N,rqca)xT N* dE kgXT d§ (w) 3xL dg (w) k 3xL
er[oT](Nra@xT) =N« Fn(*Fp) = kexT (u n(p) ) = [ xTx (u n(p) )l kg _ Ly (24)
ueT[oT](Nra(a) % T) q dN q du bL: du q b2

where Dgrjor(N, racy, x, T) is the diffusion coefficient, &, (u) is defined in Eq. (11), and
the mobility pgrror(N,rac), x T) is determined in Eq. (22). Then, by differentiating this

: . . dE,
function &, (u) with respect to u, one thus obtains %. Therefore, Eq. (17) can also be

rewritten as:

DeTjoT)(N-rda)XT) _ kgxT g Y @XW@ =V xw' (W
ueT[oT](N.raca) % T) q W2(u)

3
where W'(u) = ABuP™! and V'(u) = u™ + 272e7 (1 — du) + 2AuB~*F(w) | (1 + &) +

4 8

sxbu 3+zen 3 | One remarks that: (i) asu - 0, one has: W2 = 1and u[V' X W — V x W'] =

1+bu 3+cu 3

Dn(p) (u) ~ kB XT

1, and therefore: , and (ii) as u — oo, one has: W2 ~ A%u?B and u[V' x W —

V x W'] ~ Zau?/3A%u?B, and therefore, in this highly degenerate case and at T=0K, the

above generalized Einstein relation is reduced to the wusual Einstein one:

DetjoT](Nra@xT) 2 C
ueT(oT)(N.raca)xT) 3

Fno(Fpo)(N™)/q. In other words, Eq. (24) verifies the correct limiting

conditions.

Furthermore, in the present degenerate case (u > 1), Eq. (24) gives:

4 8
bu 3+2cu 3
DeT[oT] (Nrrd(a)'X'T) 2 _ Ernorpo)(Ww) 4 < >
~ 2 x X1+ - X7—=|
uetior](Nra@a)xT) 3 q 3 <1+bu‘§+cu‘§>

where a = [3vm/4]””, b=1(%)" and c = 23225 (xy*,

Thermoelectric Coefficients

Here, as noted above, Epyeep)(my(x)) > Epneep) (mc(v)(x)) or  Eypy(m(x) >
En(p) (mc(v)(x)) for a given T, since m,(x) < mny(x) for given X, corresponding to:
oor(m(x)) > oy (mc(v) (X))-

Then, from Eq. (20a), obtained for ogrjor(N, raca, %, T), the well-known Mott definition for

the thermoelectric power or for the Seebeck coefficient, Sgrior), is found to be given by:
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SET OT] (N rd(a),x T) = — X X kBT X

01MET[0T]] —m? % kg % oInogTioT)(§n(p))
0E E=EFn(Fp) 3 q aEn(p)

Then, using Eqg. (11), for the degenerate case, &,y =0, one gets, by putting

y2

FspeT[OT] (N; Td(a), X, T) =1-—F—
3xCz (y_‘zn(p)>

-2 kg _ 2FspeT(oT)(N"T) 3xL 2XEnp)
S N, Ty, X, T) = —— x =B 5 ZSRETIOTIL 70 222 o Z720n) _ — 9 T, x
ET[OT]( @ ) 3 q En(p) " ( SXEn(p)2>
H—0
T
v ZTET[OT]MOLL (V) 2
— () <0, ZT =—,
1+ ZTeT[0T]Mott \K ET[OT|Mott ™ 35¢2
according to:
3XEnp)”
9Sgrjor) _  [3XL T P [3xL 2 ZTEgT[0TMott X[ 1~ ZTET[OTMOtt)
= = 0 .
Pone) ™ <1+3X5n(p)2> e [1+ ZTET0TIMOtt]
T2

Here, one notes that: (i) as &) = + or &,y — +0, one has a same limiting value of

Serjory: Setpor) = —0, (ii) at &y = \F ~ 1.8138, since aET[OT = 0, one therefore gets:

n(p)

a minimum ( Sgror) —VL = -1.563 x 107* (g) and (iii) at §,(,) = 1 one obtains:

min.
- \%
Serjor) = —1.322 x 107* (3).

Further, the figure of merit, ZT, is found to be defined by:

s? T §? 4X ZT o
ZTerion (N, ray, % T) = == F= =T = ﬁ 29)
. O(ZT S as ..

Here, one notes that: (i) 2emom) _ 5y Semior) , 9 Semjom, Serfor] < 0, (ii) at &) =

9&n(p) L 9%n(p)
2 . d(ZT

/“?z 1.8138 , since (a;—T[OT])z 0, one getss a maximum (ZTgror) =1

n(p) max.

;and ZTgrommore = 1, and (iii) at §,) =1, one obtains: ZTgror =~ 0.715 and

T[Z
ZTET[OT]MOtt = ? =~ 3.290.

Finally, the first Van-Cong coefficient, VC1gr[oy, can be defined by:

— g+ o ISETIOT] (VY _ sy 9SET[OT] ,  98n(p)
VClET[OT](Nv ISIORS T) =—-N X_dN* (K) = N* X %nto) X N (27)

being equal to O for &, ) = Jg ,

and the second Van-Cong coefficient, VC2gt[oTy, as

VCZET[OT] (N, rd(a), X, T) = T X VClET[OT] (V), (28)
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the Thomson coefficient, Ts, by:

Tsgr[oT] (N, T4(a) % T) =Tx % (E) =T X %T([;T] X %, (29)
. 2

being equal to O for &,,) = \/;

and the Peltier coefficient, PtgrjoT), as:

Pterior (N, rga),x T) = T x Setior; (V). (30)

One notes here that for given physical conditions N (or T) and for the decreasing &), since

. —-ds
VC1griom (N, racay % T) and Tsgriory(N, raca), x, T) are expressed in terms of —d';I;[OT] nd

ds 2
%, one has: [VClgrior), Tserjory] < 0 for §,¢p) > \/g [VC1gr(ot), TSET[OT]] = O fOr

2 2 .
En(p) = \/g and [VClgtioty, Tserjory] > 0 for &,y < \/g stating also that for &, =

2

.
(1) SgrjoT), determined in Eqg. (25), thus presents a same minimum (SET[OT])min = —VL =~
_ -4 (¥
1563 x 107+ (%),
(i)  ZTgrory , determined in Eq. (26), therefore presents a same maximum:
(ZTET[OT])max =1, since the variations of  ZTgror) are expressed in terms of
[VC1grior), Tseriom] X Serjor, Serjor) < 0.
Furthermore, it is interesting to remark that the VC2gr[ory-coefficient is related to our

generalized Einstein relation (24) by:

kg _ 9Sgrjor] _ Deriom|(Nrag@xT) (V2 kg 3xL
% ve2 N, g % T) = — X (—) kp (2L 31
q ET[OT] ( d@ ) &n(p) peTom (N ra@xT) \K q 2 (31)

according, in this work, with the use of our Eqg. (25), to:

_  Derjori(Nrgea)yx.T) ZTET[0TMott X[ 1~ ZTET[0TIMott)
VC2 N, rgp%T) = — X 2 X V).
ET[OT]( d(a) ) IJ-ET[OT](NIrd(a)'X'T) [1+ ZTET[OT]Mott]Z ( )
. . D .
Of course, our relation (31) is reduced to: ML[OT] VClgrjory and VC2grior), being
ET[OT]

determined respectively by Equations (24, 27, 28). This may be a new result.

CONCLUDING REMARKS

Some important concluding remarks can be repoted as follows.
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In the n*(p*) — GaP;_, As, — crystalline alloys, 0 < x < 1, x being the concentration,
the optical coefficients, and the electrical-and-thermoelectric laws, relations, and various
coefficients, being enhanced by :

(i) our static dielectric constant law, £(rqc), X), I'qca) b€ing the donor (acceptor) d(a)-radius,
given in Equations (1a, 1b),

(ii) our accurate Fermi energy, Egnrp), given in Eq. (11) and accurate with a precision of the
order of 2.11 x 10~*" affecting all the expressions of optical, and electrical-and-
thermoelectric coefficients ,

(iii)our optical-and-electrical transformation duality given in Eq. (15), and finally

(iv)our optical-and-electrical conductivity models, given in Eq. (18, 20a),
are now investigated, basing on our physical model, and Fermi-Dirac distribution

function, as those given in our recent works.™ 2

It should be noted here that for x=0, these obtained numerical results may be reduced to those
given in the n(p)-type degenerate GaP-crystal.> ® Then, some important remarks can be
repoted as follows.

(1) As observed in Equations (3, 5, 6), the critical impurity density Ncpncpp), defined by the
generalized Mott criterium in the metal-insulator transition (MIT), is just the density of
electrons (holes), localized in the exponential conduction (valence)-band tail (EBT),
NEbncop): being obtained with a precision of the order of 2.92 x 1077 , respectively, as
given in our recent works.®! Therefore, the effective electron (hole)-density can be defined
as: N* = N — Nepn(cpp) = N — Népnceppy » N being the total impurity density, as that
observed in the compensated crystals.

(2) The ratio of the inverse effective screening length ke, sp) to Fermi wave number Kgpip)
at 0 K, Rgn(spy(N™), defined in Eq. (7), is valid at any N*.

(3) From Equations (20a, 21-30), for any given X, rgqy and N (or T), with increasing T (or
decreasing N), one obtains: (i) for &, = \/i—z =~ 1.8138, while the numerical results of the

.. .. - _4!
Seebeck coefficient Sgrior) present a same minimum (SET[OT])min. (— 1.563 x 10 K),
those of the figure of merit ZTgrjor) Show a same maximum (ZTgror)max. = 1, (ii) for
Enep) = 1, the numerical results of Sgrior), ZTerjoT), the Mott figure of merit ZTgriormott:

the first Van-Cong coefficient VC1grjor), and the Thomson coefficient Tsgror), present the
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same results: —1.322x10—4§ . 0.715, 3.290 1.105><10—4§, and 1.657x10—4§,

respectively, and finally (iii) for &,y = \/g =~ 1.8138, ZTgrjor)Mort = 1, as those given in

our recent work.™ It seems that these same results could represent a new law in the

thermoelectric properties, obtained in the degenerate case (§,) = 0).

(4) Further, our electrical-and-thermoelectric relation is given in Eq. (31) by:

__OSgrjoT] DeTioT](Nraca) % T) (V_Z) kg 3xL

kg _ .
—= X VC2 N, %, T) = — = [=, according,
q ET[OT]( RO ) %n(p) ker[or) (Nrg(a) X T) g

q T2
in this work, to:

D N,r xT 7T X|1—-ZT .
eT[or](Nrac)xT) X 2 X —ET[OT]Mott [ ET[gT]MOtt] (V), being
ueT[oT)(N.rd(a) % T) [1+ ZTET[0TIMOtt]

VCZET[OT] (N, rd(a), X, T) = —

DETi0T]

reduced to: , VClgrjory and VC2grjo), determined respectively in Equations (24,

MET[OT]
27, 28). This can be a new result.

(5) Finally, for given [N, rqca), %, T], all the numerical results of [0 (E), ko(E), £20(E), and
o (E)], given in the O-EP, and those of [og(E), xg(E), £,(E), and «g (E)], given in the
E-OP, being determined respectively from Equations (18, 19b-19d], for any E, could thus be
used to explain all their corresponding past-or-future experimental results. Therefore, this can
also be explained for ogror)(N, rgca), %, T), obtained in Eq. (20a) for the (O-EP - [E-OP])-
transition, and their derived electrical-and-thermoelectric results, as those reported in Table 3,
and also in Equations (18, 19a-19d, 20a-20d, 21-31).
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