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ABSTRACT

In n*(p*) — p(n) — GaP,_, Te,- crystalline alloy, 0 = x < 1, various

optical, electrical and thermoelectric laws, relations, and coefficients,

*Corresponding Author being enhanced by: our static dielectric constant law given in
Prof. Dr. Huynh Van Equations (1a, 1b), accurate Fermi energy given in Eq. (11), and
Cong

finally optical-and-electrical conductivity model, determined at the
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N _ optico-electrical phenomenon _  electro-optical phenomenon (O-
Domitia, Laboratoire de . ] ) ] )
e A 6 Fyeue EP_[E-OP])-transition, and given in Eq. (20a), are now investigated,

(LAMPS), EA 4217, by basing on the same physical model and mathematical treatment

Département de Physique, method, as those used in our recent workst 23 noting that, for x=0,
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these obtained numerical results are reduced to those given in the n(p)-

type degenerate GaP -crystal.[**! In the following, for given physical

conditions, all the optical coefficients are expressed as functions of the effective photon

energy : E* = E — Egy; (gp1), E and Egni(gp1), beING the photon energy and the optical band

gap. Then, some important remarks can be reported as follows. -From our optical [electrical]

conductivity model, oqg (E*), determined in Eq. (18), all the optical, electrical,

thermoelectric coefficients are determined, as those given in Equations (19a-19d, 20a-20d). -

In particular, at the (O-EP_[E-OP])-transition, obtained for E = Egp1(gp1)*Erntrp), and given

in Eq. (15), one observes that the optical conductivity oot has a same form with that of the
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electrical conductivity, ogt, given in Eq. (20a), being used to determine the new laws,
relations, and coefficients, investigated for the optical, electrical, and thermoelectric
properties, observed in n*(p*) —p(n) — GaP;_, Te,- crystalline alloy, as those reported in
Table 3 and also in Equations (18, 19a-19d, 20a-20d, 21-31).

KEYWORDS: Optical-and-electrical conductivity, Seebeck coefficient (S), Figure of merit
(ZT), First Van-Cong coefficient (VC1), Second Van-Cong coefficient (VC2), Thomson
coefficient (Ts), Peltier coefficient (Pt).

INTRODUCTION

In the n*(p*) — GaP,_, Te,- crystalline alloy, 0 =x =1, x being the concentration, the

optical coefficients, the electrical-and-thermoelectric laws, the relations, and various

coefficients, being enhanced by:

(i) Our static dielectric constant law, £(rac.). %), rac) being the donor (acceptor) d(a)-radius,
given in Equations (1a, 1b),

(ii) Our accurate Fermi energy, Eryep), given in Eq. (11) and accurate with a precision of the
order of 2.11x10* [9], affecting all the expressions of optical, electrical, and
thermoelectric coefficients ,

(iii)Our optico-electrical phenomenon and electro-optical phenomenon (O-EP_[E-OP])-
transition, given in Eqg. (15), and finally

(iv)Our optical-and-electrical conductivity models, given in Eq. (18, 20a), are now
investigated by basing on our physical model, and Fermi-Dirac distribution function, as

those given in our recent works.!*2?]

It should be noted here that for x=0, these obtained numerical results may be reduced to those
given in the n(p)-type degenerate GaP-crystal.*** Then, some important remarks can be
repoted as follows.

(1) As observed in Equations (3, 5, 6), the critical impurity density Nepyccpp), defined by the
generalized Mott criterium in the metal-insulator transition (MIT), is just the density of
electrons (holes), localized in the exponential conduction (valence)-band tail (EBT),
NGba(cpp), being obtained with a precision of the order of 2.92 x 107, as given in our
recent works.® Therefore, the effective electron (hole)-density can be defined as:
N* =N — Nepa(eop ~ N — N&pacenp), N being the total impurity density, as that observed in

the compensated crystals.
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(2) The ratio of the inverse effective screening length kg, ., to Fermi wave number kg, g,

snisp

at 0 K, Ryysp(N7), defined in Eq. (7), is valid at any N*.

(3) From Equations (20a, 21-30), for any given X, rq¢;y and N (or T), with increasing T (or
decreasing N), one obtains: (i) for &, = E ~ 1.8138, while the numerical results of the

Seebeck coefficient Sgror) present a same minimum (SET[OH }min. (2 —-1.563 x 107* ‘—ID those
of the figure of merit ZTgr(or; Show a same maximum (ZTgror))max. = 1, (i) fOr &,y = 1,
the numerical results of Sgrar), ZTer[or), the Mott figure of merit ZTgr(grymor the first Van-
Cong coefficient VC1gror), and the Thomson coefficient Tsgqgr;, present the same results:

—1.322 % 10‘45 , 0.715, 3.290, 1.105 x 10‘45, and 1.657 x 10‘45, respectively, and finally

z
(iii) for &) = ﬂ? >~ 1.8138, ZTer[omMort = 1, @S those given in our recent work.™M It seems

that these same results could represent a new law in the thermoelectric properties,

obtained in the degenerate case (&, = 0).

(4) Further, our electrical-and-thermoelectric relation is given in Eg. (31) by

kg _ 9sprpor] , DET[om)(Nrag=T) (Vz) kg 3IxL . .
— X VC2 N,rga1,%T) = — X - —), == |=, according, in
q ET[OT] ( d(a) ) 3En(p) PET[OT](Naf'ﬂ(a)J'LT) K q 2 g

this work, to:

DeroT) (Nraea)=T) ZTeriomMott X[ 1~ ZTET(0T)Mott]
X 2 X = (V)
LeT[OT] (MraexT) [1+ ZTerjomMotd]

VC2grory (N, rac, %, T) = — : being

reduced to: @ VC1gr[ory and VC2grior;, determined respectively in Equations (24, 27,
ET[OT]

28). This can be a new result.

(5) Finally, for given [N, r4c),x, T], all the numerical results of [og(E), ko (E), £20(E), and
g (E)], given in the O-EP, and those of [og(E), kg(E), e2g(E), and e (E)], given in the
E-OP, being determined respectively from Equations (18, 19b-19d), for any E, could thus be
used to explain all their corresponding past-or-future experimental results. Therefore, one
observes that the optical conductivity oot has a same form with that of the electrical
conductivity, og, given in Eqg. (20a), being used to determine the new laws, relations, and
coefficients, investigated for the optical, electrical, and thermoelectric properties, observed in
n*(p*) —p(n) — GaP;_, Te,- crystalline alloy, as those reported in Table 3 and also in

Equations (18, 19a-19d, 20a-20d, 21-31). In the following, many important sections are
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presented in order to investigate all the optical coefficients and electrical-and-thermoelectric

ones, given in the n* (p*) — GaP;_, Te,- crystalline alloys at low temperature T(= 0 K).

OUR STATIC DIELECTRIC CONSTANT LAW AND GENERALIZED MOTT
CRITERIUM IN THE METAL-INSULATOR TRANSITION

First of all, in the n* (p*) — GaP,_, Te,- crystalline alloy, at T=0 K [1, 2, 3], we denote : the
donor (acceptor) d(a)-radius by r4c,, the corresponding intrinsic one bY: Tae(ao)=Tp(Ga):
respectively, the effective averaged numbers of equivalent conduction (valence)-bands by:

g.(+), the unperturbed reduced effective electron (hole) mass in conduction (valence) bands

by mgy(x)/m,, m, being the free electron mass, the relative carrier mass by:

m,(x) = me()xmy(x) m, (%), for given x , the unperturbed relative static dielectric constant

me (x)+my(x)

by: £,(x), and the intrinsic band gap by: E,, (x), as those given in the Following Table 1.

Table 1: In the GaP, ,Te,- crystalline alloy, the different values of energy-band-
structure parameters, for a given x, are given in the following.”

In the GaP;_, Te,-crystalline alloy, in Which ra c.ey=rp cay=0.110 (0.126) nm, we have®:
(X)) =1xx+ 1x(1-x) =1, M, (X)/m, = 0.209 (0.4) X x + 0.13 (0.5) X (1 —x),

£o(x) = 123 X x + 11.1 X (1 — ), Ego (%) = 1.796 x X + 1.796 X (1 — X).

Here, the effective carrier mass m; (%) is equal to m.q(x). Therefore, we can define the

effective donor (acceptor)-ionization energy in absolute values as:
13600><[m;,:P)(x]fm0]
[20(x)]?

= _FBaoa®
Bdo(aoj [:X) - (%r)x{rdg(ao])a ’

Edo(a0y(X) = meV, and then, the isothermal bulk modulus, by:

Our Static Dielectric Constant Law [mj,) (x) = m,(x)]

Here, the changes in all the energy-band-structure parameters, expressed in terms of the

effective relative dielectric constant £(ra.), %), developed as follows.
Al T4y = Taoa0), the needed boundary conditions are found to be, for the impurity-atom
volume V= (4m/3) x (rd(a])g, Vio(ao) = (41/3) X (rdo(aoj}a, for the pressure p, p, = 0, and

for the deformation potential energy (or the strain energy) «, a, = 0. Further, the two
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important equations, used to determine the « -variation, Aa = @ —a, = «, are defined by:

dp__

o dp— ,glvmg rise to : —( ) = Then by an integration, one gets:

]
[(L 1] xIn (22 )" = o,
Pdofro) rdo(ﬂo‘

[ﬂﬂf (rd(_aj’x)] n(pj:Bdu(auj (%)X (V_Vd o(ao) |)

Furthermore, we also showed that, 8 Tgg) > Idogao) ( Taca) < Tdogao)), the compression
(dilatation) gives rise to the increase (the decrease) in the energy gap Egn(gpj(rd(a],x), and the
effective donor (acceptor)-ionization energy E,., (rd(a],x) in absolute values, obtained in the
effective Bohr model, which is represented respectively by : + [ﬂa(rd(a],x)]n(pj,

2
Ea0X) _
(ECI d(a)) ) 1

Egnu(_gpo} Crd(_aj’X) - Ego[x} = Ed(a} (rd(aj’x} - Edo(acrj CX) = Edo(ao} [X) X

=+ [ﬂ.a [rd(a:,,xj]ncpl,

for raga) = Tag a0y, aNd fOr ray = Tag (a0,

so(ln

2
Egnc[gpcn(rd[aux) Egu(X) Ed[au[rd(aux} Edu(_acu[X} Edo(_am[X) [ - 1] == ['ﬂ“:I [rd(aer)]n(pl

E(Id(ﬂ" ]

Therefore, one obtains the expressions for relative dielectric constant e(ra), %) and energy

band gap Egl‘ll:gpjl [:rd,:a:,,x), as.

Eg ()

(i)'for Td(a) = Tdo(ao) since E[:rd(aj’szl

Joo ) ()

=< £,(x), being a new

E(rd(aj, X)'Ia.W,

rap. 33
EEnolEPD){rd'E}JX:} EED(X} = Ed'a}(rd'ﬂlx} Egorac)() = Egalao)(x) X [( = 1} X In (#) =0, (13.)

Fdof iD) dofan)

according to the increase in both Egpey) (racayx) and Egpy (rgca.x), With increasing ry(., and for a

given x, and

(ii)-for Tag) < Tao(ao), SINCE £(Taga) )= - Z"("‘:' ->¢,(x), With a condition,
ll_[(rm.;a) ) _1]X1n(rl'd|;a) )
N doiao) doiao)

given by: [(:‘( 1] x In :(() <1, being a new €(rgy. X)-law,

Taray 8 Tdral 3
Egno(gpe)(Tata).X) — Ega(¥) = Eata)(raca). %) — Edoae) () = —Edo(ao) () X [(:—’)) - 1] xin(Z2) =0, (lb)

corresponding to the decrease in both Eporepe (Taca)x) @nd Egp (raex), with decreasing ryey

and for a given x.
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It should be noted that, in the following, all the electrical-and-thermoelectric properties

strongly depend on this new &(rg,y. x)-law.

Furthermore, the effective Bohr radius ag,(gp) (raca). ) is defined by:

(a) X)X B2 _ )
2Ca@ XM _ 53 x 1072 cm x Z24@ @)

z mj, () () '

a@) (Ta@ X) = o ot

Generalized Mott Criterium in the MIT [m}) (x) = m,(x)]

Now, it is interesting to remark that the critical total donor (acceptor)-density in the MIT at
T=0 K, Nepnwpp) (Ta)- %), was given by the Mott’s criterium, with an empirical parameter,
My, as[l, 2, 3]:

Nepn(epp) (Tag)- X) 2 x apn@p)(Tag)-X) = Mugp), May = 0.25, 3)

depending thus on our new &(rgg), x)-law.

This excellent one can be explained from the definition of the reduced effective Wigner-Seitz

(WS) radius rs,(sp),m, in the Mott’s criterium, being characteristic of interactions, by :

1/3 1/3 o) ;
Fanesp)aa(N.TagayX) = (ﬁ) X o~ L1723 X 10° &) S (4) being

agn(Bp)(Td(a)X) e(TagayX)
equal tO, |n particular, at N:NCDn(CDpj (rd(ajp X) rsn(sle (NCDH(CDPJ [:I‘d(a],X), rd(a],x):

2.4813963, for any (ra, x)-values.

Then, from Eq. (4), one also has :

I

1y 3 1
Neonieop)(TagayX) /3 X 2pn(ep) (rd(ajuxj = (_) X 32813963 0.25 = (WS)yq = My, ®)

41

Explaining Thus The existence of the mott’s criterium

Furthermore, by using M, = 0.25, according to the empirical Heisenberg parameter
) = 0.47137, as those given in our previous workE! we have also showed that N¢pn(cop)

is just the density of electrons (holes) localized in the exponential conduction (valence)-

band tail, Népaccnp), With a precision of the order of 2.92 x 10~7 , respectively .I*

It shoud be noted that the values of M, and %, could be chosen so that those of
Necon(cop) and NESE(CDPJ are found to be in good agreement with their experimental results.

Therefore, the density of electrons (holes) given in parabolic conduction (valence) bands can

be defined, as that given in compensated materials:
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N"(N,T4¢2).X) =N — Nepavpp) (Taca), X)= N*, for a presentation simplicity. (6)

In summary, as observed in our previous paper®, for a given x and an increasing Td(a)s

e(raa),x) decreases, while Egno(gpo](rd(a]!x)) Neonavop) (Taa)» %) and NESE(CDp](rd(Sj’X)
increase, affecting strongly all the optical, electrical, and thermoelectric coefficients, as those

observed in following Sections.

PHYSICAL MODEL
In the n*(p*) — GaP;_, Te,- crystalline alloy, the reduced effective Wigner-Seitz (WS)

radius r characteristic of interactions, being given in Eq. (4), in which N is replaced by

sn(sp)

N*, is now defined by:

=y 3z 1/3
=y — “Fn(Fp) . — Beiv) 1 H H
¥ X T apy (N7) = _&aBn(Bp} <1, Tonge)(Nrgax) = (mg) X being proportional to

1

i Ng)a is the Fermi wave, g.) being the

N2 Here, v = (4/9m)"2, Keneep) (N")E(

Beiv)

effective averaged numbers of equivalent conduction (valence)-bands.

Then, the ratio of the inverse effective screening length k., ..., to Fermi wave number kg, .,

sn(sp

is defined by:

L ksn(sp} k];ra}(l?ﬁ _ -r 1
Rsn(_sp‘u (N )= k = L2 - RanS(spWS‘,I + [RsnTF[spTPﬁ - RanS(spWSfl]e el < 1, (7)
‘ Fn(Fp) =n(sp)

Being valid at any N*.
Here, these ratios, Ry, 1rsprr) and Reuws spwsy, Can be determined as follows.
First, for N > Nepnupp) (Taay» %), according to the Thomas-Fermi (TF)-approximation, the

ratio Reyrr(sprry(N*) Is reduced to

sy _ EsnTE(spTEH) k;;(r-'p) 4¥Tsn(sp)
Rante(sprry(N) = = —= = — = « 1, (8)
Fn(Fp) snTF({spTF) n

being proportional to N*~*/¢.

Secondly, for N <« Nepnvpp) (Tacay)s according to the Wigner-Seitz (WS)-approximation,

the ratio R s snws 1S respectively reduced to

Ker( dfr® . xE EN*‘}]
+) — Ksn(sp)ws _ o _ Al sp*Fesv)]
Rsn(sijS [:N ) = Kpn =0.5X (21’: 4 drsn(sp) )’ (ga)

Where E¢(N*) is the majority-carrier correlation energy (CE), being determined by:

0.87553 (2[1—In(z)]
—0.87553 + 0.0909+I‘5n(5p} m2
0.0908+T5n(5p) 1+0.03847728xrir %57

)XIn(rsn(sp))-0.093288

Ecg(N") =

wWww.wijert.org 1SO 9001: 2015 Certified Journal 107




Cong. World Journal of Engineering Research and Technology

Furthermore, in the highly degenerate case, the physical conditions are found to be given by:

[zmx(="—)

Ken (Fp) Mnip) 1 Kea( Fp) | Beiw) -1/2
SRS B = < =B =R <1, Nurey (N9 =3 x q2k_ 2 9b
3en(ep)  ErnotFpe)  An(p)  Ksagsp) sn(sp) » e 2(ra) anlep)’ (9b)

A2 XK ey (N

. . E ( N*
. =4 _ Erno(rpa)(M’) =y — p
Which gives: A, (N) = —P—%}(N_) » EFnoFpoy(N7) = P -

BAND GAP NARROWING (BGN) BY NANDBY T
First, the BGN by N is found to be given by!?:

1 1
N £0 (%) 3 £0 (%) 3
AE gn(gpyn(N* Taga),x) = a; + o X Ni + 82 X g 5 X Np X (2.503 X [~Ecg(Tsncsp) )] X
E i 1 i 2 1
Eo(x) |4 My (c) : solx) |2 z go(x) |2 s
rsn(Sp)) Tag X [E(rd(ajux)] X \’ my iy (%) X Ny + 23, X E(rd(ajux)] X Ni+ 225 X I:S(rd(a)ax)] XN,
N
Nr = Sosoxiot7em ™ (10a)
Here, a; = 3.8x 107 3(eV), a, = 6.5 x 107*(eV), az = 2.85 X 1073(eV),

a, = 5.597 X 1073(eV), and az = 8.1 X 1074(eV).
Therefore, at T=0 K and N* = 0, and for any rq(,), one gets: AEgy ) = 0, according to the

metal-insulator transition (MIT).

Secondly, one has?:

1

o7 220172201
AEgs (gpy1(T) = 0.20251 X ([1 +(ooess) } - 1). (10b)
FERMI ENERGY AND FERMI-DIRAC DISTRIBUTION FUNCTION
Fermi Energy
Here, for a presentation simplicity, we change all the sign of various parameters, given in the
p* — GaP,_, Te.- crystalline alloy, in order to obtain the same one, as given in the

n* — GaP;_, Te.- crystalline alloy, according to the reduced Fermi energy

Epnr BTN . . .
EFn(ij,En(p](N,rd(a],x,T)zw:& 0(< 0), obtained respectively in the degenerate

(non-degenerate) case.

For any (N,ryq).xT), the reduced Fermi energy &np(N.raw),xT) or the Fermi energy
Egn(Fp)(NoTa), x T), Obtained in our previous paper[gl, obtained with a precision of the order

of 2.11 x 107*, is found to be given by:

_ Eeagrgy() _ GQu)+Au®F(u) _ V(u)
Snp) (W) = kgT  1+AuE W)’

A =0.0005372 and B = 4.82842262, (11)
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Where u is the reduced  electron  density, u(N, T4y % T) = N
Nc(v}(Tij
E E
o (E)xmoK E s _&\~
Ne) (T,%) = 28, ¥ (m—“%)z (cm™3), F(u) = au= (1 +bu"z +cu a) :
2/3 55 _2 _
a = [3vm/4] / : b=§(§)2 , c=%@}4 : and  G(u) 2 Ln(u) + 272 x u x e”9%;

d = 2372 i_—i]:u:).

V27 16

So, in the non-degenerate case (u <« 1), one has: Eg,gp)(u) = kT X G(u) ~ kgT x Ln(u) as

u — 0, the limiting non-degenerate condition, and in the very degenerate case (u > 1), one

2
2 _: _By T AZxkE oo (NF
gets: Eppcppy(u>» 1) = kpT X F(u) = kgT x aus (1 +buz+ cu a) ? o Do @) ooy s oo,

zxm;,:p:,(x}Xmo

the limiting degenerate condition. In other words, &, =—"=* is accurate, and it also
E

verifies the correct limiting conditions.

. . . A2k ey (N
-1 . y — Fn(Fp)
In particular, as T — 0 K, since u™* — 0, Eq. (11) is reduced t0: Egyqppo)(N*) = T g )

being proportional to (N*)2/3, and also equal to 0 at N* = 0, according to the MIT and noting

that Egno(rpo) (mr(x)) > Efno(Fpo) (mC{V) (x)) since m,.(x) < m.,(x) for given x.

In the following, it should be noted that all the optical and electrical-and-thermoelectric

properties strongly depend on such the accurate expression of &, (N ragax T).[g]

Fermi-Dirac Distribution Function (FDDF)
The Fermi-Dirac distribution function (FDDF) is given by: f(E)=(1+e¥)™",

Y = (E = Epnrpy) / (ke T).

So, the average of EP, calculated using the FDDF-method, as developed in our previous
works™® is found to be given by:

af 1 ef

_ P _ oo af
(EPYepDF = Gp (Efn(rp) X Epperpy = o EP % (_ E) dE, —35= aT  (rel)?’

Further, one notes that, at 0 K, —%= 8(E — Egno(kpoy)s 8(E — Erno(rpey) being the Dirac

delta (8)-function. Therefore, G, (Egno(rpo)) = 1.

Then, at low T, by a variable change y = (E — Eg,ry))/(kgT), One has:
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_ _ = ef P g

Gp (EFn(ij) =1+ EFII:(FIJJ X f_mm X (kBTY‘l‘ EFn(ij) d? =1+ Zfl=l,2,...cp X (kBT)ﬁ X
-B

EFn(Fp] X1Ig

where CE =p(p—1) ..(p—B+1)/B! and the integral I is given by:

Bxa¥ B
_ = yrxe _ [z a] Y - -
=) om0 = f—mi{ewzﬂ—qud’f’ vanishing for old values of B. Then, for even values

of B = 2n, with n=1, 2, ..., one obtains:

B o y2hxel
12n - ..[0 (1+e¥)2

Now, using an identity(1 +e¥)™2 = X2,(—1)**sx e"&"Y) a variable change: sy = —t, the
Gamma function: fom t?"e~*dt =T'(2n+ 1) = (2n)!, and also the definition of the Riemann’s
zeta function: ¢(2n) = 2** *n*"|B,,|/(2n)!, B,, being the Bernoulli numbers, one finally

gets: I, = (22" —2) x " x |B,,|. So, from above Eq. of (EP)rppr, We get in the degenerate

case the following ratio:

(EP) (p=1)..(p=2n+17
Gy (Eengrpy) = B F:;DF =1+30,F 7[223,. % (227 —2) X [Byy | xy = Gpz1 (), (12)
n(Fp) .
kT . mkgT T
where y= ————=—"2"_— noting that G,_,(y = —— = =1, and as T— 0K,
Y WMD) By (NT) J p=1(¥ EFn(Fp) Eu[m)

Gp=1(y 2 0) > 1.

Then, some usual results of G;.;(y) are given in the following Table 2, being needed to

determine all the following optical and electrical-and-thermoelectric properties.

L

Table 2: Expressions for G,.;(y = ), due to the Fermi-Dirac distribution function,

Sn(p)
are used to determine the electrical-and-thermoelectric coefficients.
Ga2(y) G, (V) Gs2(¥) G2 (V) Gy/2(¥) Gy (V) Goy2(¥)
(1+5+2) [(+5) [ (e -2 | ) | (120 + 20 | (e 22+ ) [ (145 + 250

OPTICAL-AND-ELECTRICAL PROPERTIES

Optico-Electrical Phenomenon — Electro-Optical Phenomenon (O-EP - [E-OP])-Transition

[m;(p} = m,(x) [mc(v} (K)]]

First off on, for a presentation simplicity, we change all the sign of various parameters, given
in the p* — GaP,_, Te,- crystalline alloy, in order to obtain the same one, as given in the

n* — GaP;_, Te,- crystalline alloy, according to the reduced Fermi energy
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EFn(FpJ,En(pJ(N,rd(a],x,TjEw> 0(< 0), obtained respectively in the degenerate

(non-degenerate) case, giving: Epyg(ppo) = Epn(ep) (NoTaapx T = 0).

Then, in the n* (p*) — GaP;_, Te,- crystalline alloy, and for the temperature T(K), One has:
(i) in the (E-OP), the reduced band gap is defined by:

Egnz(gpz) = Ec(v} - Evo(co} - Egni{gpi} - ﬂEgn(gp):N(Ng) - ﬂEgn{gp}:T(T)’ (13)

Where Egpnicapi) IS the intrinsic bang gap, AE (N*) and AE (T) are respectively the

gnlgp) gnigp)

reduced band gaps, due to the N*-and-T effects, as those determined in Equations (10a, 10b),
and
(i) in the (O-EP), the photon energy is defined by: E = hw, and the optical band gap by:
Egni(gp1) = Egna(gp2) + Een(rp)  [Egna(gp2)]
Therefore, for E = Egn1(ap1)[Egnzcap2) ] the effective photon energy E* is found to be given
by:

E* = E — Egni(gp1) [Egna(gpz)] = 0. (14)

From above Equations, the (O-EP_[E-OP])-transition means that:
E* = [E — Egni(gp1)] = Een(rpy, given in the O-EP, in which E = [Egpni(gp1) + Egn(ep)]s 1S
reduced in the E-OP, in which E = [Egn1(gp1) + Een(rpy] @nd m,(x) are now replaced by

E = [Egna(gp2) + Een(epy] aNd my (%), 10: E* = E — Egna(gp2) = Epnrp), and reciprocally,

noting that Epn(pp}(mr(x)) > Egn(ep) (mc(v} (x)) since m,(x) < m.q,(x), for given x. (15)

Eq. (15) thus shows that, in both O-EP and E-OP, the Fermi energy-level penetrations into
conduction (valence)-bands, observed in the n*(p*) — type degenerate GaP;_, Te,-

crystalline alloy, Eg,rp) are well defined, noting that at this discontinuous (O-EP — E-OP)-

transition: Eg,(gp) (m,(x)) > Efn(Fp) (mc,:v] (x)), according to the discontinuous case.

Optical Coefficients

The optical properties for any medium, defined in the O-EP and E-OP, respectively,
according to: [mj, =m,(x)[m.,(x)], can be described by the complex
refraction: Nog; = nopg) —ixorg; » noy and ko being the refraction index and the

extinction coefficient, the complex dielectric function: Egrg) = €1011g) — i€20[25), Where
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i2 = —1, and Eorg; = Nopg?. Further, if denoting the normal-incidence reflectance and the

optical absorption by Rgg; and «qg;, and the effective joint density of states by:

. 3/2 2
_ 1 (Pp® E—Egna(gp1) R
]Dosn(p}o[m (E) = 2m? X ( ? % E_[Egm[gp:lju+EFn(ij_EFnoc_'Fpoj|] % EFHD(FPD}, and

hg?xv(E)|?

n{E)xcEXEfree space

Fog (E) = , one gets [2]:

E X £20128)(E) _ 2E X k(g (E)
hengpg (E) N hc

Korg (E) = JDOS,(py01E (E) X Forg (E) =

- 41‘[00 [E] (E)
Chg[E] (E) X Efree space,

[nu[s]-l]zﬂu[n]z
Inog 1] xom® (1
[ng[E]+1] +KB[E]2

£101261(E) = Nog;” — Kopey s E20126] (E) = 2Kopg)Nog), and Ro g (E) =

It should be noted that, such the above joint density of states yeilds: (i) as E = Egy1 (gp1) (T),

. 1 ami e
]Dosn(pj 0[E] (E) =0, and (”) as E — oo, ]Dosn(pj 0[E] (E) - P X (—h;L) X Y EFno(Fpoj-
Further, eseespace IS the permittivity of the free space, -q is the charge of the electron,

|vG[E] (E)| is the matrix elements of the velocity operator between valence (conduction)-and-

conduction (valence) bands, and the refraction index ngg is found to be defined by [2]:

a4 BoiE+Cyi

i=1 Ez—BiE+Cj - nm(rd(aJ}’ a's E — 0, (17)

Nog) (E Ta@) = Ne (fg)) + X2

Now, the optical [electrical] conductivity ogg; can be defined and expressed in terms of the

h2xk?

kinetic energy of the electron (hole), E, = Py —
n(p) °

, k being the wave number, as:

Zxk k E L .
oorE) (K) = ——— X —— [k X agnep)]| X (ﬁ) (ohmx::m)’ which is thus proportional to
Ex’,
2

Where - =7.7480735 X 10~ ohm ™.

xR
Then, we obtain: (E%ppr = Go(y = E“kBT ) X Efu(p): and

Fn(Fp)

2
G2 (y):(l + %) = G2 (N, rd,[a}, }i, T), Wlth y = E:[?, En{p} — En[p) (NJ rd(ﬂ}! x—y T) fOI’ a

presentation simplicity.
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Therefore, from above equations (16, 17), if denoting the function H(N, Tdca), X T) by:

Kpn(pp) (N E J(N*)
H(EN.1g(). %, T) = [MLN] X [Ken(rp) (N*) X apa(ap) (Taca) %)) X J a(p) (N*) = m""—J X

py(N®)
Gy (N, g0, %, T),
Where Rgp(spy(N*) = % being proportional to EEHD(FPD}, then, our optical [electrical]

conductivity models, defined in the O-EP and E-OP, respectively, for a simply representation,

can thus be assumed to be as:

g E—Esnitgpn 2 1
Og (E, N, rd(a],x,T} = H(E: N, Ta@). X, T) X ( )’ and

EFno[Fpoj chmxcm.
UE(E, N, rg0a). %, T) =

) e ]2
L X H(E, N, raga), 5 T) X [E ED““D”] (=) (18)

Erno(Fpo) ohmxcm

It should be noted here that

OLL [E](E = Egni(gpn) [Egnz(gpz}]) =0, and oqg(E — %) — Constant for  given
(N, r4c2), %, T) —physical conditions, and

(i) as T=0Kand N* = 0 [or Egno(epo) (N")] = 0, according t-::-:H(H, N, r4q(a), X, T) = 0, and
for a given E, [E— Egni(gp1)] = [E— Egnigpip]=Constant, then from Equations (16-18),
nog; (E)= Constant, oo (E) = 0, ko (E) =0, 1005 (E) = (n,)* = Constant,

200281 (E) = 0, and =g (E) = 0, according to the metal-insulator transition (MIT).

This result (18) should be new, in comparison with that, obtained from an improved Forouhi-
Bloomer parameterization, as given in our previous work.

Using Equations (16-18), one obtains all the analytically results, due to the O-EP as: [o,(E),
ko(E), £20(E), and 4 (E)], and to the E-OP by: [og(E), kg(E), €2 (E), and «g (E)],

Iv(E)|2 smZh kpn(rp)(N*) .
= 3 X - Fpﬂ ) X [an[Fp} (N*) X 3gn(zp) (rd[a},x)]l X GZ(N, Ta(a), X, T), (19a)
(2mr)2x, Mn(p) sn(sp)
2
_ 2¢° [E‘Eeniigpﬂ]

Ko (E) = e P—te H(E,N, 1405, % T) X o— and
K (E) = 2a° x H(E,N, ra0),%, T) X [Mr (19b)

E n(E) xzfree space®E P ) ErnoFpo) ’

Which gives: k[kgl(E = Egn1(ep1) [Egnz(gpz)]) = 0, and x[kg](E — ) — 0, as those given in

Ref. [2],

2
2 E-Epnq
£,0(E) = — % x H(E,N,rg0),% T) X [M] and

Efree space™ Erno(Fpo)
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2
EzE[:E) N Efreespace XE X H(E’ N’ rd(a‘]’x’ T} % [ EfnoFpo ! (19C)
p (Fpo)
Which gives: &;1,5(E = Egns (gp1) [Egnzgp)]) = 0, @nd g (E— o) — 0, as those given in
Ref. [2], and
2
_ 4q° M] 1
o0 (B) = s e s X H(E N,Ta0,% T) x[ —— (m) and
2
B 2q? E—Egnz.:gpz)] 1
e (E) B fien(E) % 2free space X H(E, N, fa@ % T) % [ Erno(rpo) (Cm), (19d)

Which gives: ocg [<g](E = Egn1(ap1) [Egnz (gpzy]) = 0, @nd

gy (E = o0) — Constant, as those given in Ref. [2].

Using the (O-EP - [E-OP]) transition, given in Eq. (15), at E = Egn1(gp1) + Eencepy, the
optical conductivity, ogr, given in Eq. (18), in which m ., (x) = m.(x) is now replaced by
m.q(x), has a same form with that of the electrical conductivity, ogr, given in our recent

work [1], for such the (O-EP - [E-OP])- transition. So, from Equations (18, 19b, 19c, 19d),

and for E = Egp1(gp1) [Eana(gp2)] + Erncrp), ONES Obtains respectively, as:

z A2
oor(E,N,raq@), % T) = % x H(E, N, rq(a), %, T) X ( Een(rp) ) ( 1 ),

Epnocppoj ohmxcm

having the same form with that of o (N, rqa), %, T) [1], as:

(2
ogr(EN, T, x, T) :ﬂq—; x H(E,N, rq(a),%,T) x( EFn(Ep) ) o) (209)

Erno(Fpo) ohm>cm
2q?
n(E)}xzfree spaceX(Egni(gp1)EFn(rp))

32
x H(E,N,r4(a),% T) X (m) and

Erno(Fpo)

KOT(EJ N! rd(a}! X, T) =

2q?

n(E)X¢free space X (Egnz(gpz) +EFn(rp))

oy 2
X H(E,N, 1, %, T) X (Epﬂ) . (20b)

E,N T)=
KET( » N, Td(a), %, ) EFno(Fpo)

2
4q? ( EFn(Fp) )
£ E N,rgr-,%5T) = X H(E,N,rg4¢2,%T) X |———| and
20T ( d(a) ) Efree space X(Egn1(gp1)TEFn(ep)) ( d(a) ) Erno(rpo)
2
eour(E N, rq(a), %, T) = 4a” x H(E, N, raa), %, T) X (M) (20¢)
£free space ¥ (Egnz(zpz) tEFn(rp)) Erno(Fpo)
%ot (E,N, T XT}=4—qZ><H(ENr XT}X(MT (L) and
oT L& tdla), & hen(E)x efreespace » N tdla), & Erno(Fpa) cm
ocgr (E N, T, % T) =——2% X H(EN,T xT}x(M)z (). (20d)
ET 2 Ld(a)s & hen(E) Xefree space o tdl) S EFno(Fpo} em/’

One notes here that (i) the electrical conductivity ogg) (E. N, r4¢2). % T), given in Eqg. (18), is an

essential result, being used to determine the following electrical-and-thermoelectric
coefficients, and (ii) as noted in Eqg. (15), at this discontinuous (O-EP - [E-OP])- transition,
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given in the discontinuous case : Egy(gp) (m,(x)) > Epn(ep) (mcm (x)), since m,(x) < mg,(x)
for given x, corresponding to: cor(m,(x)) > ogp (mc,:vJ (x)). In our recent work [1], all the

electrical-and-thermoelectric properties were investigated for this discontinuous case.

Some optical coefficients, obtained in Equations (18, 19b-19d, 20a-20d) for given

(E,N,r4(s), % T) -physical conditions, are reported in the following Table 3, in which
JoT = OgT-

noting that H(E, N, rgqc,),x, T) is a constant for given (E,N,rgc.),x,T).

Table 3: As noted above, H(E, N, rqc),x, T) is a constant for given (N, rgqc), x, T)-physical

conductions, then, some optical coefficients, for some particular values of E, are given as

follows.
EineV go(E) ko (E) £20(E) %o (E)
Egnl(gpl] O 0 0 O
[Eeni(ept) + Eenpy] ot Kot €20T XoT
z z
E— oo a xH —Constant -0 =0 _faxH — Constant
XA hc"xxafreespace
EineV og(E) g (E) &:5(E) g (E)
Egnz[gpz) O O O 0
[E gn2(gp2) T EFn(ij] Ot KT £2ET XEgT
2 2
E— o A —Constant -0 -0 _daH —Constant
mxh hehg Xefreespace

Therefore, for given [N, rqc, %, T], all the numerical results of [og(E), xo(E), £26(E), and
&g (E)], due to the O-EP and those of [og(E), xg(E), £2(E), and o« (E)], due to the E-OP,
being determined respectively from Equations (18, 19b-19d], for any E, could thus be used to
explain all their corresponding past-or-future experimental results.
ELECTRICAL-AND-THERMOELECTRIC PROPERTIES [m}, ) = m(y) () [m, (x)]]

Here, if denoting, for majority electrons (holes), the thermal conductivity by
w

emxK’

Orn.ET[oT] (NoTa(a), % T) in and the Lorenz number L by:
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WXOm) — 24429637 x 107 (V2 x K~2), then the well-known

L= “?2 x (%B)z = 2.4429637 (

Wiedemann-Frank law states that the ratio, G?Eﬂ due to the (E-OP and O-EP) transition,
ET[OT]
respectively, is proportional to the temperature T(K), as:

OThET[OT] (NTa(x)=T)

OeT[oT] (Nrata) X T)
Further, the resistivity Is found to be given by:
Peror) (N T, X, T) = 1/0erion (N, ra, %, T), noting again that

N* = N — Nepn(nop) Taca), X)-

In Eqg. (20), one notes that at T= 0 K, ogriory (N, raca), % T = 0K) is proportional to EEHD(FPD},
or to (N*)g. Thus, from Eq. (21), one has: ogrior)(N = Nepn(nop), Taga), X T = 0K) = 0 and

also o1, 5101 (N = Nepn(npp), Taa), % T = OK) = 0 at N* = 0, at which the MIT occurs.

Electrical Coefficients
The relaxation time tgror) IS related to ogrjor; by [1]:

My gy (X)X Mg

o Therefore, the mobility pgy oy is

Terpor] (N, Fa@), X, T) = oprory(N, ra), %, T) X

given by:

axterpon)(Nrg@xT) _ oerpom(NrgaxT) (C’“Z )
1 (9 DO o) VXS

HeT(om) (N.va@, %, T) = HET[0T] (N rqa), T) =
(22)

Here, at T= OK, Mgpon(N'Tae,T) is thus proportional to (N*)'/3, since
ogrior)(N", Tacay, T = 0K) is proportional to (N*)4/3, Thus,
Teror)(N” = 0,13(), T=0K) =0 and  pgpon(N" = 0,r4q), T=0K) =0 at N*=0, at

which the MIT occurs.

Then, the Hall factor is defined by:

(tetjom®)FDDF _ Galy) m kg T

PHET[OT] (N, rg@),x,T) = [ ~ [Go (]2 y=

= = , and
{teT[0T)'¥DDF] En(p)(NraaxT)  Epnerp)(Nraga)xT)

therefore, the Hall mobility yields:

- cm?
HHET[OT] (N, rgc), % T) = HET[OT] (N, rgca), % T) X rusrior)(N", T) (o) (23)
Noting that, at T=0K, since rypror)(N,ra@),%T) =1, one therefore gets:

HyeTiOT] (N, Td(a), % T) = METr0T) (N,rg @)% T).
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Our generalized Einstein relation

Our generalized Einstein relation is found to be defined as [1] :

L LE

HETIOT) {I‘Lrﬂ(a}xﬂ q dN* q du

Where Dgror (N, 4. T) is the diffusion coefficient, Eacpy (W) Is defined in Eq. (11), and the

mobility Vgror (N, rs0, % T) is determined in Eq. (22). Then, by differentiating this function

. LodE .
Engpy (1) With respect to u, one thus obtains %. Therefore, Eq. (17) can also be rewritten
as:
DeTpoT) (Nras) xT) _kexT V (u)x Win) =V (u) x W' (u)
LeTrOT) (Mrac)xT) q W2 (u) !
Where W'(u) = ABu®? and

V/(u) = ut + 2 2e99(1 — du) + 2AuB-1E(u) [(1 +28) + ¢ w . One remarks that: (i)

1+bu 3+r:u a

asu — 0, one has: W? 2~ 1 and u[V' x W —V x W'] ~ 1, and therefore: M ~ 5T and (i)
q

as u — oo, one has: W2 ~ A%u?® and u[V' x W — V x W'] ~ 2au®*/3A*u*®, and therefore, in this
highly degenerate case and at T=0K, the above generalized Einstein relation is reduced to

DET[DT] {N, ETEY) J(.T}

the usual Einstein one:
HET[OT) (NrgexT)

&

EEFnO(Fpoj(N")/q. In other words, Eq. (24) verifies

the correct limiting conditions.

Furthermore, in the present degenerate case (u >> 1), Eq. (24) gives:

_4 _E
(bu 24+2cu 3)

D N.rg(g)*T Ernol
erpor)(Nretd ]‘ >< Fno FEo)(u]x 1+ X(ﬁ

UETrOT] (Nrge)=T) q

i)
1+bu_5+cu_5)“

Where a = [3vr/4]”%, b =1 (11) and e = & 3123290355 (n)

Thermoelectric Coefficients
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Here, as noted above, Epn(rp) (M (%)) > Epnrp) (mc(v] (X)) or
Engey (M (X)) > ) (mc(vj(x)) for a given T, since m.(x) <mg,(x) for given X,

corresponding to: ogt [mr(x)) > Opr (mc(ﬂ (x)),

Then, from Eq. (20a), obtained for ogy(or) (N, racs). . T), the well-known Mott definition for the

thermoelectric power or for the Seebeck coefficient, Sgrigr), is found to be given by:

alnG'ET[gT]] . —m? % kg % aanET[UT]{E'n(P]:l
dE

S o —m® kg Kk
ror) (Norage. % T) = 3 @l BT X E=Epmrs) 2 4 L.
=Een (p )

Then, using Eq. (11), for the degenerate case, &, =0, one gets, by putting

_ Ve
FspeToT) (N Tae.x T) = |1 - — |,
Bszt e )

[zt
J—J k 2ngET[0T](Nx,T] IxL 2X§m') N ET[OT]Mott v
S N, Tye, %, T) = 5 x 28 5 —SEON 2 [3XL ® __ L xI — (%
ET[OT]( dfa) ) 3 T g Entp) ~ (1+—2_ % ) 1+ ZTET[OT]Mott(K)
2
0,  ZTET(oT]Mott = =
[OTMott = 32— . (25)
according to:
s:-:i,,,([_.,}2
88eTi0T) Bl oy~ Tt _ [, ZTerromMot (1~ ZTeT[0TMott]
L z P 2. 2 2 z .
O%np) ™ (1+°"-E:§p3 ] T [1+ ZTerromppott]

Here, one notes that: (i) as &, — +% org,) — +0, one has a same limiting value of

. .. _ e ~ . aSET[O—[—J -0 h f .
Seriory® Seror  ~0, (i) at §ugy) = |5 > 1.8138, since = = 0, one therefore gets: a

minimum (SET[OT]) = —L~—1563 x107* (‘—;) and (iii) at &) =1 one obtains:

min,

SET[OT] ~ —1322x%x107* (E)

Further, the figure of merit, ZT, is found to be defined by:

§2xopxT & 4 ZTeT[oT]Mott

ZTerrom (N rag,x, T) = 20T _ 5 X ETerompon 26

ET[OT]( 4@ ) K L [14 ZTeriomMott] (26)

o H(ZTerrom s as .
Here, one notes that (i) ——ZHoW _ p “ET0OT, JoETIOn Sero; <0, (i) at
BEnip) L on(p)
_m® . 8( ZTeTiomy) ) . _

fap =5 ~ 18138, since ot 0 One gets a maximum (ZTerpom),, =1

,and ZTgrommere = 1, and (i) at &, =1, one obtains:  ZTgpqn ~0.715 and

,I_[Z

ZTET[OT]MGtt = 3 = 3.290.
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Finally, the first Van-Cong coefficient, VC1gror), can be defined by:

ey S8ETomy (VY _ e B8eTom .
VClET[OT](Nrrd(a]:X:T)— N™ x N (K)_N X 5§n.:u:. ® pYve (27)

being equal to 0 for &) = E ,

And the second Van-Cong coefficient, VC2gr(or), as:

VC2erior) (N.Taca), % T) = T X VClgrpom (V) (28)

The Thomson coefficient, Ts, by:

ds v as G
Tserror) (N.racx T) = T X % (E) =TX %[0;] 8 a_rpj’ (29)
being equal to 0 for &,¢,) = J%
And the Peltier coefficient, Ptgror), as:
Ptgrior (N.rae. % T) = T X Sgrpory (V). (30)

One notes here that for given physical conditions N (or T) and for the decreasing &), since

d SeTjoT] d SetjoT]
dN* and dT '’

VC1grory(N.racy.x T) and Tsgrpor) (N, tac.x T) are expressed in terms of -

one has: [VClgriory. Tserpory] < 0 for &g > J; » [VC1grom), Tserom] = 0 for &ug) = J;

2z

and [VC1grjor), Tseror)] > 0 for &) < J% , stating also that for &) = =

3
() Sgror, determined in Eg. (25), thus presents a same minimum
= T~ _ - (¥
(Serom)_ = —VL =~ —1563 x 107 (%),
(i) ZTgror, determined in Eqg. (26), therefore presents a same maximum:
(ZTeror) =1, since the variations of  ZTerpor; are expressed in terms of
[VC1grory, Tserfory] X Serpor). Setjom < O-
Furthermore, it is interesting to remark that the VC2grpor)-coefficient is related to our

generalized Einstein relation (24) by:

8 SeTpoT] o Detjor) (Nora()T) (V_z) kg _ [3xL (31)

kg
—x VC2 N, % T)=— !
q ET[OT] ( Faa). %, ) % ueTror) (Nrae)=T) ™

according, in this work, with the use of our Eq. (25), to:
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DetjoT) (Mraca)xT)

ZTer(oTiMott*[1— ZTET[0T)Mott] (

VC2 N,rs,xT) = — w2 X V).
ET[OT]( i@ ) keTjor) (Nra(a)xT) [1+ZTerjoT)Mott] )
- - . DET[DT] -
Of course, our relation (31) is reduced to: o VClerpon and  VC2gror;, being
ET[OT]

determined respectively by Equations (24, 27, 28). This may be a new result.

CONCLUDING REMARKS

Some important concluding remarks can be repoted as follows.

In the n*(p*) — GaP,_, Te, — crystallinealloy, 0 < x < 1, X being the concentration, the

optical coefficients, and the electrical-and-thermoelectric laws, relations, and various

coefficients, being enhanced by :

(i) Our static dielectric constant law, £(r4c.). ), rac,) being the donor (acceptor) d(a)-radius,
given in Equations (1a, 1b),

(ii) Our accurate Fermi energy, Eryep), given in Eq. (11) and accurate with a precision of the
order of 2.11 x 1074F], affecting all the expressions of optical, and electrical-and-
thermoelectric coefficients,

(iii)Our optical-and-electrical transformation duality given in Eq. (15), and finally

(iv)Our optical-and-electrical conductivity models, given in Eq. (18, 20a), are now
investigated, basing on our physical model, and Fermi-Dirac distribution function, as

those given in our recent works.?

It should be noted here that for x=0, these obtained numerical results may be reduced to those
given in the n(p)-type degenerate GaP-crystal.®! Then, some important remarks can be
repoted as follows.

(1) As observed in Equations (3, 5, 6), the critical impurity density Nepyccpp), defined by the
generalized Mott criterium in the metal-insulator transition (MIT), is just the density of
electrons (holes), localized in the exponential conduction (valence)-band tail (EBT),
N&pacop), being obtained with a precision of the order of 2.92 x 107 , respectively, as
given in our recent works.®! Therefore, the effective electron (hole)-density can be defined
as: N* =N — Nepa(cop) = N — Nepacepp)» N being the total impurity density, as that observed

in the compensated crystals.

(2) The ratio of the inverse effective screening length kg, ., to Fermi wave number kg, gy,

at 0 K, Ryysp)(N*), defined in Eq. (7), is valid at any N*.
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(3) From Equations (20a, 21-30), for any given X, ra¢y and N (or T), with increasing T (or

2

decreasing N), one obtains: (i) for &, = |5 > 1.8138, while the numerical results of the

Seebeck coefficient Sgr[or] Present a same minimum (SET[OH }min. (2 —-1.563 x 107* ‘—ID those
of the figure of merit ZTgro; show a same maximum (ZTer(or))max. = 1, (i) for &,y =1,
the numerical results of Sgrar), ZTgr[or), the Mott figure of merit ZTgrigrmor the first Van-
Cong coefficient VC1gror), and the Thomson coefficient Tsgrory, present the same results:

—-1.322 % 10“‘% , 0.715, 3.290, 1.105 x 10“”—;, and 1.657 x 10““—;, respectively, and finally

z
(iii) for &) = ﬂ? >~ 1.8138, ZTer[omMort = 1, @S those given in our recent work.™M It seems

that these same results could represent a new law in the thermoelectric properties,

obtained in the degenerate case (&, = 0).

(4) Further, our electrical-and-thermoelectric relation is given in Eq. (31) by:

k as D Mrgg)xT) (V2 k 3IxL . .
?B X VC2g1io1] (N, Taga), %, T) = — il x wTom (Vra()xT) (E) == |=, according, in

dEnip) ugrpoT) (Nra()=T) q
this work, to:
_ Deqpory(NraxT) ZTeriomMott X[ 1~ ZTET(0T)Mott] .

vez N,r xT)=— X2 X

eror) (N, Taca, %, T) izt (NFatmT) TR — V), being

D . . . .
reduced to: @ , VClgrpor) and  VC2gror), determined respectively in Equations (24,
ET[OT]

27, 28). This can be a new result.

(5) Finally, for given [N, r4c,x, T], all the numerical results of [og (E), ko (E), £20(E), and
&g (E)], given in the O-EP, and those of [og(E), kg(E), 25(E), and g (E)], given in the
E-OP, being determined respectively from Equations (18, 19b-19d], for any E, could thus be
used to explain all their corresponding past-or-future experimental results. Therefore, one
observes that the optical conductivity oot has a same form with that of the electrical
conductivity, ogt, given in Eq. (20a), being used to determine the new laws, relations, and
coefficients, investigated for the optical, electrical, and thermoelectric properties, observed in
n*(p*) —p(n) — GaP{_, Te,- crystalline alloy, as those reported in Table 3 and also in
Equations (18, 19a-19d, 20a-20d, 21-31).
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