

## World Journal of Engineering Research and Technology

www.wjert.org

Impact Factor: 7.029 Coden USA: WJERA4



OPTICAL, ELECTRICAL AND THERMOELECTRIC LAWS IN n(p)-TYPE DEGENERATE "COMPENSATED" InAs(1-x) Sb(x)-CRYSTALLINE ALLOY, ENHACED BY: OPTICO-ELECTRICAL -AND-ELECTRO-OPTICAL PHENOMENA, AND OUR STATIC DIELECTRIC CONSTANT LAW, ACCURATE FERMI ENERGY AND CONDUCTIVITY MODELS. (VI)

Prof. Dr. Huynh Van Cong\*, Michel Cayrol, Vincent L'Henaff, Prof. Dr. Serge Dumont

Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (LAMPS), EA 4217, Département de Physique, 52, Avenue Paul Alduy, F-66 860 Perpignan, France.

Article Received on 19/10/2025

Article Revised on 08/11/2025

Article Published on 01/12/2025

#### \*Corresponding Author

#### Prof. Dr. Huynh Van Cong

Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (LAMPS), EA 4217, Département de Physique, 52, Avenue Paul Alduy, F-66 860 Perpignan, France.

https://doi.org/10.5281/zenodo.17750020



How to cite this Article: Prof. Dr. Huynh Van Cong\*, Michel Cayrol, Vincent L'Henaff, and Prof. Dr. Serge Dumont. (2025). Optical, Electrical and Thermoelectric Laws in n(p)-Type "Compensated" Degenerate inas(1-x)sb(x)-crystalline Alloy, Enhaced by: Optico-Electrical -and-Electro-Optical Phenomena, and our Static Dielectric Constant Law, Accurate Fermi Energy and Conductivity Models. (vi). World Journal of Engineering Research and Technology, 11(11), 74-114. This work is licensed under Creative

This work is licensed under Creative Commons Attribution 4.0 International license

#### ABSTRACT

In degenerate  $n^+ (p^+)-p(n)- X(x) \equiv InAs(1-x)Sb(x)- crystalline$ alloy,  $0 \le x \le 1$ , various optical, electrical and thermoelectric laws, relations, and coefficients, enhanced by: the opticoelectrical phenomenon (O-EP) and the electro-optical phenomenon (E-OP), and our static dielectric constant law given in Equations (1a, 1b), accurate Fermi energy expression in Eq. (11), and conductivity model in Eq. (18), are now investigated, by basing on the same physical model and mathematical treatment method, as those used in our recent works. [1-5] One notes that, for x=0, this crystalline alloy is reduced to the n(p)-type degenerate InAs -crystal. Some concluding remarks are given as follows. -By basing on our optical [electrical] conductivity models,  $\sigma_{O[E]}$ , given in Eq. (18), all the optical, electrical, thermoelectric coefficients have been determined, as those given in Equations (19a-19d, 20a-20d, 21-31). In particular, for the physical conditions, as those given in Eq. (15), one remarks that the optical conductivity,  $\sigma_0$ ,

obtained from the O-EP, has a same form with that of the electrical conductivity, given from the E-OP,  $\sigma_E$ , as those determined in Eq. (20a), but  $\sigma_O > \sigma_E$  since  $m_r(x) < m_{c(v)}(x)$ ,  $m_{c(v)}$  and  $m_r$ , being the unperturbed reduced effective electron (hole) mass in conduction (valence)

www.wjert.org ISO 9001: 2015 Certified Journal 74

bands and the relative carrier mass, respectively. -Finally, the numerical results of such optical, electrical and thermoelectric coefficients, calculated by using Equations (18, 19a-19d, 20a-20d, 21-31), are reported in Tables 3-11, suggesting the new ones.

**KEYWORDS**: Optical-and-electrical conductivity, Seebeck coefficient, Figure of merit), First Van-Cong coefficient, Second Van-Cong coefficient, Thomson coefficient, Peltier coefficient.

#### **INTRODUCTION**

In the  $n^+(p^+) - X(x) \equiv InAs(1-x)Sb(x)$  -crystalline alloy,  $0 \le x \le 1$ , x being the concentration, the optical, electrical and thermoelectric coefficients, enhanced by: (i) the optico-electrical phenomenon (O-EP) and the electro-optical phenomenon (E-OP), (ii) our static dielectric constant law,  $\epsilon(r_{d(a)},x)$ ,  $r_{d(a)}$  being the donor (acceptor) d(a)-radius, given in Equations (1a, 1b), (iii) our accurate reduced Fermi energy,  $\xi_{n(p)}$ , given in Eq. (11), accurate with a precision of the order of  $2.11 \times 10^{-4}$  [9], affecting all the expressions of optical, electrical and thermoelectric coefficients, and (iv) our optical-and-electrical conductivity models, given in Eq. (18, 20a), are now investigated by basing on our physical model and Fermi-Dirac distribution function, as those given in our recent works. [1-5] It should be noted here that for x=0, the present obtained numerical results are reduced to those given in the n(p)-type degenerate InAs-crystal. [1, 6-16]

Then, some important remarks can be reported as follows.

- (1) As observed in Equations (3, 5, 6a, 6b), the critical impurity density  $N_{CDn(CDp)}$ , defined by the generalized Mott criterium in the metal-insulator transition (MIT), is just the density of electrons (holes), localized in the exponential conduction (valence)-band tail (EBT),  $N_CDn(CDp)^EBT$ , being obtained with a precision of the order of  $2.91 \times 10^{-7}$ , as given in our recent work. Therefore, the effective electron (hole)-density can be defined as:  $N^*DN_CDn(CDp) \simeq N_CDn(CDp)^EBT$ , N being the total impurity density, as that observed in the compensated crystals.
- (2) The ratio of the inverse effective screening length  $k_{sn(sp)}$  to Fermi wave number  $k_{Fn(kp)}$  at 0 K,  $R_{sn(sp)}(N^*)$ , defined in Eq. (7), is valid at any  $N^*$ .

- (3) For given  $[N, r_{d(a)}, x, T]$ , the coefficients:  $\sigma_{O[E]}(E)$ ,  $\kappa_{O[E]}(E)$ ,  $\varepsilon_{O[E]}(E)$ , and  $\alpha_{O[E]}(E)$ , are determined in Equations (18, 19b-19d), as functions of the photon energy E, and then their numerical results are reported in Tables 3-8, being new ones.
- (4) Finally, for particular physical conditions, as those given in Eq. (15), one observes that the optical conductivity  $\sigma_0$  has a same form with that of the electrical conductivity,  $\sigma_E$ , as those given in Eq. (20a), but  $\sigma_0 > \sigma_E$  since  $m_r(x) < m_{c(v)}(x)$ ,  $m_{c(v)}$  and  $m_r$ , being the unperturbed reduced effective electron (hole) mass in conduction (valence) bands and the relative carrier mass, respectively. Then, by basing on those  $\sigma_{O[E]}$ -expressions, the thermoelectric laws, relations, and coefficients are determined in Equations (21-31), and their numerical results are reported in Tables 9 and 10, being new ones.

In the following, various Sections are presented in order to investigate the optical, electrical and thermoelectric coefficients, given in the degenerate  $n^+(p^+) - X(x)$ - crystalline alloy.

## OUR STATIC DIELECTRIC CONSTANT LAW AND GENERALIZED MOTT CRITERIUM IN THE METAL-INSULATOR TRANSITION

First of all, in the degenerate  $n^+(p^+) - X(x)$ - crystalline alloy, at T=0  $K^{[1-5]}$ , we denote: the donor (acceptor) d(a)-radius by  $r_{d(a)}$ , the corresponding intrinsic one by:  $r_{do(ao)} = r_{As(In)}$ , respectively, the effective averaged numbers of equivalent conduction (valence)-bands by:  $g_{c(v)}$ , the unperturbed reduced effective electron (hole) mass in conduction (valence) bands by  $m_{c(v)}(x)/m_o$ ,  $m_o$  being the free electron mass, the relative carrier mass by:  $m_r(x) \equiv \frac{m_c(x) \times m_v(x)}{m_c(x) + m_v(x)} < m_{c(v)}(x)$  for given x, the unperturbed static dielectric constant by:  $\epsilon_o(x)$ , and the intrinsic band gap by:  $E_{go}(x)$ , as those given in **Table 1, reported in Appendix 1**.

Here, the effective carrier mass  $m_{n(p)}^*(x)$  is equal to  $m_{c(v)}(x)$ . Therefore, we can define the effective donor (acceptor)-ionization energy in absolute values as

 $E_{do(ao)}(x) = \frac{_{13600\times[m_{c(v)}(x)/m_o]}}{[\epsilon_o(x)]^2} \text{ meV }, \text{ and then, the isothermal bulk modulus, by }:$ 

$$B_{do(ao)}(x) \equiv \frac{E_{do(ao)}(x)}{\left(\frac{4\pi}{3}\right) \times \left(r_{do(ao)}\right)^3}.$$

## Our Static Dielectric Constant Law $\left[m_{n(p)}^*(x) \equiv m_{c(v)}(x)\right]$

Here, the changes in all the energy-band-structure parameters, expressed in terms of the effective dielectric constant  $\varepsilon(r_{d(a)}, x)$ , are developed as follows.

At  $r_{d(a)} = r_{do(ao)}$ , the needed boundary conditions are found to be, for the impurity-atom volumes:  $V = (4\pi/3) \times (r_{d(a)})^3$  and  $V_{do(ao)} = (4\pi/3) \times (r_{do(ao)})^3$ , according to the pressures:  $p, p_o = 0$ , and to the deformation potential energies (or the strain energies):  $\alpha$ ,  $\alpha_o = 0$ . Further, the two important equations, used to determine the  $\alpha$ -variation,  $\Delta \alpha \equiv \alpha - \alpha_o = \alpha$ , are defined by:  $\frac{dp}{dV} - \frac{B_{do(ao)}(x)}{V}$  and  $p = -\frac{d\alpha}{dV}$ , giving rise to:  $\frac{d}{dV}(\frac{d\alpha}{dV}) = \frac{B_{do(ao)}(x)}{V}$ .

Then, by an integration, one gets

$$\begin{split} \left[\Delta\alpha(r_{d(a)},x)\right]_{n(p)} &= B_{do(ao)}(x) \times (V - V_{do(ao)}) \times \text{ ln } \left(\frac{V}{V_{do(ao)}}\right) = E_{do(ao)}(x) \times \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \\ &\ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 \geq 0. \end{split}$$

Furthermore, we also showed that, as  $r_{d(a)} > r_{do(ao)}$  (  $r_{d(a)} < r_{do(ao)}$ ), the compression (dilatation) gives rise to the increase (the decrease) in the energy gap  $E_{gn(gp)}(r_{d(a)},x)$ , and the effective donor (acceptor)-ionization energy  $E_{d(a)}(r_{d(a)},x)$  in absolute values, obtained in the effective Bohr model, which is represented respectively by :  $\pm \left[ \Delta \alpha(r_{d(a)},x) \right]_{n(p)}$ ,  $E_{gn(gp)}(r_{d(a)},x) - E_{go}(x) = E_{d(a)}(r_{d(a)},x) - E_{do(ao)}(x) = E_{do(ao)}(x) \times \left[ \left( \frac{\epsilon_o(x)}{\epsilon(r_{d(a)})} \right)^2 - 1 \right] = + \left[ \Delta \alpha(r_{d(a)},x) \right]_{n(p)}$ , for  $r_{d(a)} \ge r_{do(ao)}$ , and for  $r_{d(a)} \le r_{do(ao)}$ ,  $E_{gn(gp)}(r_{d(a)},x) - E_{go}(x) = E_{do(ao)}(x) \times \left[ \left( \frac{\epsilon_o(x)}{\epsilon(r_{d(a)})} \right)^2 - 1 \right] = - \left[ \Delta \alpha(r_{d(a)},x) \right]_{n(p)}$ .

There fore, one obtains the expressions for relative dielectric constant  $\epsilon(r_{d(a)}, x)$  and energy band gap  $E_{gn(gp)}(r_{d(a)}, x)$ , as

(i)-for 
$$r_{d(a)} \ge r_{do(ao)}$$
, since  $\epsilon(r_{d(a)}, x) = \frac{\epsilon_o(x)}{\sqrt{1 + \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \le \epsilon_o(x)$ , being a **new**

 $\varepsilon(\mathbf{r}_{d(a)}, \mathbf{x})$ -law,

$$\begin{split} &E_{gn(gp)}\big(r_{d(a)},x\big)-E_{go}(x)=E_{d(a)}\big(r_{d(a)},x\big)-E_{do(ao)}(x)=E_{do(ao)}(x)\times\left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3-1\right]\times\\ &\ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3\geq 0, \ (1\ a) \ \ \text{according to the increase in both } E_{gn(gp)}\big(r_{d(a)},x\big) \ \text{and } E_{d(a)}\big(r_{d(a)},x\big), \end{split}$$
 with increasing  $r_{d(a)}$  and for a given  $x$ , and

$$\begin{aligned} & \text{(ii)-for } \ r_{d(a)} \leq r_{do(ao)} \ , \ \ \text{since} \ \ \epsilon(r_{d(a)},x) = \frac{\epsilon_0(x)}{\sqrt{1 - \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \ \geq \ \epsilon_0(x) \ , \ \ \text{with a} \\ & \text{condition, given by:} \ \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 < 1 \ , \quad \text{being a new } \epsilon(r_{d(a)},x) \text{ -law,} \\ & E_{gn(gp)}\big(r_{d(a)},x\big) - E_{go}(x) = E_{d(a)}\big(r_{d(a)},x\big) - E_{do(ao)}(x) = -E_{do(ao)}(x) \times \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \\ & \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 \ \leq 0 \ , \quad \text{(1b) corresponding to the decrease in both } E_{gn(gp)}\big(r_{d(a)},x\big) \ \text{ and} \\ & E_{d(a)}\big(r_{d(a)},x\big), \text{ with decreasing } r_{d(a)} \ \text{ and for a given } x. \end{aligned}$$

It should be noted that, in the following, all the optical, electrical and thermoelectric properties strongly depend on this **new**  $\varepsilon(\mathbf{r}_{\mathbf{d}(\mathbf{a})}, \mathbf{x})$ -law.

Furthermore, the effective Bohr radius  $a_{Bn(Bp)}(r_{d(a)},x)$  is defined by

$$a_{Bn(Bp)}(r_{d(a)},x) \equiv \frac{\epsilon(r_{d(a)},x) \times \hbar^2}{m_{n(p)}^*(x) \times m_o \times q^2} = 0.53 \times 10^{-8} \text{ cm} \times \frac{\epsilon(r_{d(a)},x)}{m_{n(p)}^*(x)} \quad (2)$$

## Generalized Mott Criterium in the MIT $\left[m_{n(p)}^*(x) \equiv m_{c(v)}(x)\right]$

Now, it is interesting to remark that the critical total donor (acceptor)-density in the MIT at T=0 K,  $N_{CDn(NDp)}(r_{d(a)}, x)$ , was given by the Mott's criterium, with an empirical parameter,  $M_{n(p)}$ , as<sup>[3]</sup>

$$N_{CDn(CDp)}(r_{d(a)}, x)^{1/3} \times a_{Bn(Bp)}(r_{d(a)}, x) = M_{n(p)}, M_{n(p)} = 0.25,$$

(3) depending thus on our **new**  $\varepsilon(\mathbf{r}_{d(a)}, \mathbf{x})$ -law.

This excellent one can be explained from the definition of the reduced effective Wigner-Seitz (**WS**) radius  $r_{sn(sp),M}$ , in the Mott's criterium, being characteristic of interactions, by

$$r_{sn(sp),M}(N = N_{CDn(CDp)}(r_{d(a)}, x), r_{d(a)}, x) \equiv \left(\frac{3}{4\pi N_{CDn(CDp)}(r_{d(a)}, x)}\right)^{\frac{1}{3}} \times \frac{1}{a_{Bn(Bp)}(r_{d(a)}, x)} = 2.4813963, \tag{4}$$

for any  $(r_{d(a)}, x)$ -values. Then, from Eq. (4), one also has :

$$N_{CDn(CDp)}(r_{d(a)}, x)^{1/3} \times a_{Bn(Bp)}(r_{d(a)}, x) = \left(\frac{3}{4\pi}\right)^{\frac{1}{3}} \times \frac{1}{2.4813963} = 0.25 = M_{n(p)}$$
(5)

#### explaining thus the existence of the Mott's criterium.

Furthermore, by using  $M_{n(p)}=0.25$ , according to the empirical Heisenberg parameter  $\mathcal{H}_{n(p)}=0.47137$ , as those given in our previous work<sup>[3]</sup>, we have also showed that  $N_{CDn(CDp)}$  is just the density of electrons (holes) localized in the exponential conduction (valence)-band tail  $N_{CDn(CDp)}^{EBT}$ , with a precision of the order of  $2.91 \times 10^{-7}$ , respectively. [3] So, $N_{CDn(NDp)}(r_{d(a)},x) \cong N_{CDn(CDp)}^{EBT}(r_{d(a)},x)$ . (6a)

It shoud be noted that the values of  $M_{n(p)}$  and  $\mathcal{H}_{n(p)}$  could be chosen so that those of  $N_{CDn(CDp)}$  and  $N_{CDn(CDp)}^{EBT}$  are found to be in good agreement with their experimental results.

There fore, the effective density of electrons (holes) given in parabolic conduction (valence) bands, N\*, can be defined, as that given in compensated materials

$$N^*(N,r_{\mathrm{d(a)}},x) \equiv N - N_{\mathrm{CDn(NDp)}}(r_{\mathrm{d(a)}},x) \cong N - N_{\mathrm{CDn(CDp)}}^{\mathrm{EBT}}(r_{\mathrm{d(a)}},x). \label{eq:N*(bb)}$$

In summary, as observed in our previous paper<sup>[3]</sup>, for a given x and an increasing  $r_{d(a)}$ ,  $\epsilon(r_{d(a)},x)$  decreases, while  $E_{gno(gpo)}(r_{d(a)},x)$ ,  $N_{CDn(NDp)}(r_{d(a)},x)$  and  $N_{CDn(CDp)}^{EBT}(r_{d(a)},x)$  increase, affecting strongly all the optical, electrical, and thermoelectric coefficients, as those observed in following Sections.

#### PHYSICAL MODEL

In the degenerate  $n^+(p^+) - \mathbf{X}(\mathbf{x})$  -crystalline alloy, the reduced effective Wigner-Seitz (**WS**) radius  $r_{sn(sp)}$ , characteristic of interactions, being given in Eq. (4), in which N is replaced by N\*, is now defined by

$$\gamma \times r_{sn(sp)} \big( N^*, r_{d(a)}, x \big) \equiv \frac{k_{Fn(Fp)}^{-1}}{a_{Bn(Bp)}} < 1 \ , \ r_{sn(sp)} \big( N^*, r_{d(a)}, x \big) \equiv \left( \frac{3g_{c(v)}}{4\pi N^*} \right)^{1/3} \times \frac{1}{a_{Bn(Bp)}(r_{d(a)}, x)} \ ,$$

being proportional to  $N^{*-1/3}$ . Here,  $\gamma=(4/9\pi)^{1/3}$ ,  $k_{Fn(Fp)}(N^*)\equiv\left(\frac{3\pi^2N^*}{g_{c(v)}}\right)^{\frac{1}{3}}$  is the Fermi wave.

Then, the ratio of the inverse effective screening length  $k_{sn(sp)}$  to Fermi wave number  $k_{Fn(kp)}$  is defined by:

$$R_{sn(sp)}(N^*) \equiv \frac{k_{sn(sp)}}{k_{Fn(Fp)}} = \frac{k_{Fn(Fp)}^{-1}}{k_{sn(sp)}^{-1}} = R_{snWS(spWS)} + \left[R_{snTF(spTF)} - R_{snWS(spWS)}\right]e^{-r_{sn(sp)}} < 1,$$
(7)

#### Being valid at any N\*.

Here, these ratios, R<sub>snTF(spTF)</sub> and R<sub>snWS(spWS)</sub>, can be determined as follows.

First, for N  $\gg$  N<sub>CDn(NDp)</sub>( $r_{d(a)}$ , x), according to the **Thomas-Fermi** (**TF**)- **pproximation**, the

ratio 
$$R_{snTF(spTF)}(N^*)$$
 is reduced to  $R_{snTF(spTF)}(N^*) \equiv \frac{k_{snTF(spTF)}}{k_{Fn(Fp)}} = \frac{k_{Fn(Fp)}^{-1}}{k_{snTF(spTF)}^{-1}} = \sqrt{\frac{4\gamma r_{sn(sp)}}{\pi}} \ll 1$ , (8)

being proportional to  $N^{*-1/6}$ .

Secondly, for  $N \ll N_{CDn(NDp)}(r_{d(a)})$ , according to the Wigner-Seitz (WS)-approximation, the ratio  $R_{snWS(snWS)}$  is respectively reduced to

$$R_{sn(sp)WS}(N^*) \equiv \frac{k_{sn(sp)WS}}{k_{Fn}} = 0.5 \times \left(\frac{3}{2\pi} - \gamma \frac{d[r_{sn(sp)}^2 \times E_{CE}(N^*)]}{dr_{sn(sp)}}\right)$$
 (9a)

where E<sub>CE</sub>(N\*) is the majority-carrier correlation energy (CE), being determined by

$$E_{CE}(N^*) = \frac{_{-0.87553}}{_{0.0908+r_{sn(sp)}}} + \frac{\frac{_{0.87553}}{_{0.0908+r_{sn(sp)}}} + \left(\frac{_{2[1-\ln(2)]}}{\pi^2}\right) \times \ln(r_{sn(sp)}) - 0.093288}{_{1+0.03847728\times r_{sn(sp)}^{1.67378876}}} \,.$$

Furthermore, in the highly degenerate case, the physical conditions are found to be given by

$$\frac{k_{Fn(Fp)}^{-1}}{a_{Bn(Bp)}} < \frac{\eta_{n(p)}}{E_{Fno(Fpo)}} \equiv \frac{1}{A_{n(p)}} < \frac{k_{Fn(Fp)}^{-1}}{k_{sn(sp)}^{-1}} \equiv R_{sn(sp)} < 1 \ , \qquad \eta_{n(p)}(N^*) \equiv \frac{\sqrt{2\pi \times (\frac{N^*}{g_{c(v)}})}}{\epsilon(r_{d(a)})} \times q^2 k_{sn(sp)}^{-1/2} \ , \eqno(9b)$$

which gives: 
$$A_{n(p)}(N^*) = \frac{E_{Fno(Fpo)}(N^*)}{\eta_{n(p)}(N^*)} \,, \, E_{Fno(Fpo)}(N^*, r_{d(a)}, x) \equiv \frac{\hbar^2 \times k_{Fn(Fp)}^2(N^*)}{2 \times m_{n(p)}^*(x) \times m_o}.$$

#### **BAND GAP NARROWING (BGN)**

First, the BGN is found to be given by

$$\Delta E_{gn(gp)}(N^*, r_{d(a)}, x) \simeq$$

$$a_1 + \frac{\varepsilon_0(x)}{\varepsilon(r_{d(a)},x)} \times N_r^{\frac{1}{3}} + a_2 \times \frac{\varepsilon_0(x)}{\varepsilon(r_{d(a)},x)} \times N_r^{\frac{1}{3}} \times (2.503 \times [-E_{CE}(r_{sn(sp)})] \times r_{sn(sp)}) + a_3 \times (2.503 \times [-E_{CE}(r_{sn(sp)})] \times r_{sn(sp)}) + a_3 \times (2.503 \times [-E_{CE}(r_{sn(sp)})] \times r_{sn(sp)}) + a_3 \times (2.503 \times [-E_{CE}(r_{sn(sp)})] \times r_{sn(sp)})$$

$$\left[\frac{\epsilon_o(x)}{\epsilon(r_{d(a)},x)}\right]^{\frac{5}{4}}\times \sqrt{\frac{m_{v(c)}}{m_{n(p)}^*(x)}}\times N_r^{\frac{1}{4}} + 2a_4\times \left[\frac{\epsilon_o(x)}{\epsilon(r_{d(a)},x)}\right]^{\frac{1}{2}}\times N_r^{\frac{1}{2}} + 2a_5\times \left[\frac{\epsilon_o(x)}{\epsilon(r_{d(a)},x)}\right]^{\frac{3}{2}}\times N_r^{\frac{1}{6}},\ N_r = 0$$

$$\frac{N^*}{9.999 \times 10^{17} \text{ cm}^{-3}}$$
(10a)

Here, for  $\Delta E_{gn;N}(N^*,r_d,x)$ , one has:  $a_1=3.8\times 10^{-3}(eV)$ ,  $a_2=6.5\times 10^{-4}(eV)$ ,  $a_3=2.8\times 10^{-3}(eV)$ ,  $a_4=5.597\times 10^{-3}(eV)$ , and  $a_5=8.1\times 10^{-4}(eV)$ , and for  $\Delta E_{gp;N}(N^*,r_a,x)$ , one has:  $a_1=3.15\times 10^{-3}(eV)$ ,  $a_2=5.41\times 10^{-4}(eV)$ ,  $a_3=2.32\times 10^{-3}(eV)$ ,  $a_4=4.12\times 10^{-3}(eV)$ , and  $a_5=9.8\times 10^{-5}(eV)$ .

Therefore, at T=0 K and N\* = 0, and for any x and  $r_{d(a)}$ , one gets:  $\Delta E_{gn(gp)} = 0$ , according to the metal-insulator transition (MIT).

Secondly, one has:

$$\Delta E_{gn(gp)}(T,x) = 10^{-4} T^2 \times \left[ \frac{_{7.205 \times x}}{_{T+94}} + \frac{_{5.405 \times (1-x)}}{_{T+204}} \right] (eV).~(10b)$$

#### FERMI ENERGY AND FERMI-DIRAC DISTRIBUTION FUNCTION

#### Fermi Energy

Here, for a presentation simplicity, we change all the sign of various parameters, given in the degenerate  $p^+ - \mathbf{X}(\mathbf{x})$ -crystalline alloy, in order to obtain the same one, as given in the degenerate  $n^+ - \mathbf{X}(\mathbf{x})$  - crystalline alloy, according to the reduced Fermi energy  $E_{Fn(Fp)}$ ,  $\xi_{n(p)}(N^*, r_{d(a)}, x, T) \equiv \frac{E_{Fn(Fp)}(N^*, r_{d(a)}, x, T)}{k_B T} > 0 (< 0)$ , obtained respectively in the degenerate (non-degenerate) case.

For any  $(N^*, r_{d(a)}, x, T)$ , the reduced Fermi energy  $\xi_{n(p)}(N^*, r_{d(a)}, x, T)$  or the Fermi energy  $E_{Fn(Fp)}(N^*, r_{d(a)}, x, T)$ , obtained in our previous paper<sup>[9]</sup>, obtained with a precision of the order of  $2.11 \times 10^{-4}$ , is found to be given by

$$\xi_{n(p)}(u) \equiv \frac{E_{Fn(Fp)}(u)}{k_B T} = \frac{G(u) + A u^B F(u)}{1 + A u^B} \equiv \frac{V(u)}{W(u)}, A = 0.0005372 \text{ and } B = 4.82842262, (11)$$

where u is the reduced electron density, u(N\*, r<sub>d(a)</sub>, x, T)  $\equiv \frac{N^*}{N_{c(v)}(T,x)}$ ,  $N_{c(v)}(T,x) = 2g_{c(v)} \times 1$ 

$$\left(\frac{m_{n(p)}^*(x)\times m_0\times k_BT}{2\pi\hbar^2}\right)^{\frac{3}{2}} (cm^{-3}), \ F(u) = au^{\frac{2}{3}} \left(1 + bu^{-\frac{4}{3}} + cu^{-\frac{8}{3}}\right)^{-\frac{2}{3}}, \ a = \left[3\sqrt{\pi}/4\right]^{2/3}, \ b = \frac{1}{8} \left(\frac{\pi}{a}\right)^2 ,$$
 
$$, c = \frac{62.3739855}{1920} \left(\frac{\pi}{a}\right)^4, \ and \ G(u) \simeq Ln(u) + 2^{-\frac{3}{2}} \times u \times e^{-du}; \ d = 2^{3/2} \left[\frac{1}{\sqrt{27}} - \frac{3}{16}\right] > 0.$$

So, in the non-degenerate case (u  $\ll$  1), one has:  $E_{Fn(Fp)}(u) = k_BT \times G(u) \simeq k_BT \times Ln(u)$  as  $u \to 0$ , the limiting non-degenerate condition, and in the very degenerate case (u  $\gg$  1),

one gets:  $E_{Fn(Fp)}(u \gg 1) = k_B T \times F(u) = k_B T \times au^{\frac{2}{3}} \left(1 + bu^{-\frac{4}{3}} + cu^{-\frac{8}{3}}\right)^{-\frac{2}{3}} \simeq \frac{\hbar^2 \times k_{Fn(Fp)}^2(N^*)}{2 \times m_{n(p)}^*(x) \times m_0}$  as  $\mathbf{u} \to \infty$ , the limiting degenerate condition. In other words,  $\xi_{n(p)} \equiv \frac{E_{Fn(Fp)}}{k_B T}$  is accurate, and it also verifies the correct limiting conditions.

In particular, as  $T \to 0 \, K$ , since  $u^{-1} \to 0$ , Eq. (11) is reduced to:  $E_{Fno(Fpo)}(N^*) \equiv \frac{\hbar^2 \times k_{Fn(Fp)}^2(N^*)}{2 \times m_{n(p)}^*(x) \times m_o}$ , proportional to  $(N^*)^{2/3}$ , noting that, for a given  $N^*$ ,  $E_{Fno(Fpo)} \left( m_{n(p)}^*(x) = m_r(x) \right) > E_{Fno(Fpo)} \left( m_{n(p)}^*(x) = m_{c(v)}(x) \right)$  since  $m_r(x) < m_{c(v)}(x)$  for given x. Further, at  $T=0 \, K$  and  $N^*=0$ , being the physical conditions, given for the metal-insulator transition (MIT).

In the following, it should be noted that all the optical and electrical-and-thermoelectric properties strongly depend on such the accurate expression of  $\xi_{n(p)}(N^*, r_{d(a)}, x, T)$ .<sup>[9]</sup>

#### Fermi-Dirac Distribution Function (FDDF)

The Fermi-Dirac distribution function (FDDF) is given by:  $f(E) \equiv (1 + e^{\gamma})^{-1}$ ,  $\gamma \equiv (E - E_{Fn(Fp)})/(k_BT)$ .

So, the average of E<sup>p</sup>, calculated using the FDDF-method, as developed in our previous works<sup>[1,6]</sup> is found to be given by

$$\langle E^p \rangle_{FDDF} \equiv G_p(E_{Fn(Fp)}) \times E_{Fn(Fp)}^p \equiv \int_{-\infty}^{\infty} E^p \times \left( -\frac{\partial f}{\partial E} \right) dE, \quad -\frac{\partial f}{\partial E} = \frac{1}{k_B T} \times \frac{e^{\gamma}}{(1+e^{\gamma})^2}.$$

Further, one notes that, at 0 K,  $-\frac{\partial f}{\partial E} = \delta (E - E_{Fno(Fpo)})$ ,  $\delta (E - E_{Fno(Fpo)})$  being the Dirac delta ( $\delta$ )-function. Therefore,  $G_p(E_{Fno(Fpo)}) = 1$ .

Then, at low T, by a variable change  $\gamma \equiv (E - E_{Fn(Fp)})/(k_BT)$ , one has

$$\textstyle G_p\big(E_{Fn(Fp)}\big) \equiv 1 + E_{Fn(Fp)}^{-p} \times \int_{-\infty}^{\infty} \frac{e^{\gamma}}{(1+e^{\gamma})^2} \times \big(k_BT\gamma + E_{Fn(Fp)}\big)^p d\gamma = 1 + \sum_{\mu=1,2,\dots}^p C_p^{\beta} \times \frac{e^{\gamma}}{(1+e^{\gamma})^2} \times (e^{\gamma} + e^{\gamma})^p d\gamma = 1 + \sum_{\mu=1,2,\dots}^p C_p^{\beta} \times \frac{e^{\gamma}}{(1+e^{\gamma})^2} \times (e^{\gamma} + e^{\gamma})^p d\gamma = 1 + \sum_{\mu=1,2,\dots}^p C_p^{\beta} \times e^{\gamma}$$

 $(k_BT)^{\beta} \times E_{Fn(Fp)}^{-\beta} \times I_{\beta}$ , where  $C_p^{\beta} \equiv p(p-1) \dots (p-\beta+1)/\beta!$  and the integral  $I_{\beta}$  is given by:

$$\begin{split} I_{\beta} &= \int_{-\infty}^{\infty} \frac{\gamma^{\beta} \times e^{\gamma}}{(1+e^{\gamma})^{2}} d\gamma = \int_{-\infty}^{\infty} \frac{\gamma^{\beta}}{\left(e^{\gamma/2} + e^{-\gamma/2}\right)^{2}} d\gamma, \text{ vanishing for old values of } \beta. \text{ Then, for even} \\ \text{values of } \beta &= 2n, \text{ with } n = 1, 2, \dots, \text{ one obtains.} \end{split}$$

$$\begin{split} I_{2n} &= 2 \int_0^\infty \frac{\gamma^{2n} \times e^\gamma}{(1+e^\gamma)^2} d\gamma \;. \;\; \text{Now, using an identity } (1+e^\gamma)^{-2} \equiv \sum_{s=1}^\infty (-1)^{s+1} s \times e^{\gamma(s-1)} \;, \;\; \text{a} \\ \text{variable change: } s\gamma &= -t \text{, the Gamma function: } \int_0^\infty t^{2n} e^{-t} \; dt \equiv \Gamma(2n+1) = (2n)! \;, \; \text{and also} \\ \text{the definition of the Riemann's zeta function: } \zeta(2n) &\equiv 2^{2n-1} \pi^{2n} |B_{2n}|/(2n)! \;, \; B_{2n} \; \text{being the} \\ \text{Bernoulli numbers, one finally gets: } I_{2n} &= (2^{2n}-2) \times \pi^{2n} \times |B_{2n}| \;. \;\; \text{So, from above Eq. of} \\ \langle E^p \rangle_{FDDF} \;, \; \text{we get in the degenerate case the following ratio:} \end{split}$$

$$G_{p}(E_{Fn(Fp)}) \equiv \frac{\langle E^{p} \rangle_{FDDF}}{E_{Fn(Fp)}^{p}} = 1 + \sum_{n=1}^{p} \frac{p(p-1)...(p-2n+1)}{(2n)!} \times (2^{2n}-2) \times |B_{2n}| \times y^{2n} \equiv G_{p \ge 1}(y) ,$$
(12)

$$\text{where } y \equiv \frac{\pi}{\xi_{n(p)}(N^*, r_{d(a)}, x, T)} = \frac{\pi k_B T}{E_{Fn(Fp)}(N^*, r_{d(a)}, x, T)}, \ \text{noting that } G_{p=1}(y \equiv \frac{\pi k_B T}{E_{Fn(Fp)}} = \frac{\pi}{\xi_{n(p)}}) = 1 \ , \\ \text{and as } T \rightarrow 0 \ K, \ G_{p>1}(y \rightarrow 0) \rightarrow 1.$$

Then, some usual results of  $G_{p\geq 1}(y)$  are given in the **Table 2, reported in Appendix 1**, being needed to determine all the following optical, electrical and thermoelectric properties.

#### **OPTICAL-AND-ELECTRICAL PROPERTIES**

#### Optico-Electrical Phenomenon (O-EP) and Electro-Optical Phenomenon (E-OP)

In the degenerate  $n^+(p^+) - X(x)$ -crystalline alloy, one has

(i) in the **E-OP**, the reduced band gap is defined by

$$E_{gn2(gp2)} \equiv E_{gn(gp)} - \Delta E_{gn(gp)} \left( N^*, r_{d(a)}, x \right) - \Delta E_{gn(gp)} \left( T, x \right) \quad (13)$$

Where the intrinsic band gap  $E_{gn(gp)}$  is defined in Equations (1a, 1b),  $\Delta E_{gn(gp)}(N^*, r_{d(a)}, x)$  and  $\Delta E_{gn(gp)}(T, x)$  are respectively determined in Equations (10a, 10b), and

(ii) in the (**O-EP**), the photon energy is defined by:  $E \equiv \hbar \omega$ , and the optical band gap, as:  $E_{gn1(gp1)} \equiv E_{gn2(gp2)} + E_{Fn(Fp)}$ .

Therefore, for  $E \ge E_{gn1(gp1)}(E_{gn2(gp2)})$ , the effective photon energy  $E^*$  is found to be given by:

$$E^* \equiv E - E_{gn1(gp1)}(E_{gn2(gp2)}) \ge 0.$$

(14)

From above Equations, one notes that:  $E^* \equiv [E - E_{gn1(gp1)}] = E_{Fn(Fp)}$ , given in the O-EP, if  $E = [E_{gn1(gp1)} + E_{Fn(Fp)}] \equiv E_{gn(gp)0}$  and  $m^*_{n(p)}(x) = m_r(x)$ , and  $E^* \equiv E - E_{gn2(gp2)} = E_{Fn(Fp)}$ , given in the E-OP, if  $E = [E_{gn2(gp2)} + E_{Fn(Fp)}] \equiv E_{gn(gp)E}$  and  $m^*_{n(p)}(x) = E_{gn2(gp2)} = E_{gn2($ 

 $m_{c(v)}(x)$ , noting that  $E_{Fn(Fp)}(m_r(x)) > E_{Fn(Fp)}(m_{c(v)}(x))$ , since  $m_r(x) < m_{c(v)}(x)$ , for a given x. (15)

Eq. (15) thus shows that, in both O-EP and E-OP, the Fermi energy-level penetrations into conduction (valence)-bands, observed in the  $n^+(p^+)$  – type degenerate  $n^+(p^+)$  –  $\mathbf{X}(\mathbf{x})$  - crystalline alloy,  $E_{Fn(Fp)}$ , are well defined.

#### **Optical Coefficients**

The optical properties for any medium, defined in the O-EP and E-OP, respectively, according to:  $\left[m_{n(p)}^* \equiv m_r(x)[m_{c(v)}(x)]\right]$ , can be described by the complex refraction:  $\mathbb{N}_{O[E]} \equiv n_{O[E]} - \mathrm{i}\kappa_{O[E]}$ ,  $n_{O[E]}$  and  $\kappa_{O[E]}$  being the refraction index and the extinction coefficient, the complex dielectric function:  $\mathcal{E}_{O[E]} = \varepsilon_{1 \ O[E]} - \mathrm{i}\varepsilon_{2 \ O[E]}$ , where  $\mathrm{i}^2 = -1$ , and  $\mathcal{E}_{O[E]} = \mathbb{N}_{O[E]}^2$ . Further, if denoting the normal-incidence reflectance and the optical absorption by  $R_{O[E]}$  and  $\propto_{O[E]}$ , and the effective joint parabolic conduction (parabolic

valence)-band density of states by 
$$JDOS_{n(p)\ O[E]}(E, N^*, r_{d(a)}, x, T) \equiv \frac{1}{2\pi^2} \times \left(\frac{2m_{n(p)}^*(x)}{\hbar^2}\right)^{3/2} \times \left(\frac{2m_{n(p)}^*(x)}{\hbar^2}\right)^{3/2} \times \left(\frac{2m_{n($$

$$\sqrt{E_{Fno(Fpo)}(N^*)} \times \left[ \frac{E - E_{gn1(gp1)}(E_{gn2(gp2)})}{E - \left[E_{gn1(gp1)}(E_{gn2(gp2)}) + E_{Fn(Fp)} - E_{Fno(Fpo)}\right]} \right]^2 \,,$$

and 
$$F_{O[E]}(E) \equiv \frac{\hbar q^2 \times |v(E)|^2}{n_{O[E]}(E) \times cE \times \epsilon(r_{d(a)}, x) \times \epsilon_{free \, space}}$$
, one gets [2]:

$$\alpha_{O[E]}\left(E\right) = JDOS_{n(p)\,O[E]}(E) \times F_{O[E]}(E) = \frac{E \times \epsilon_{2\,O[E]}(E)}{\hbar c\,n_{O[E]}(E)} = \frac{2E \times \kappa_{O[E]}(E)}{\hbar c} = \frac{2E \times \kappa$$

$$\frac{4\pi\sigma_{O[E]}(E)}{cn_{O[E]}(E)\times\epsilon(r_{d(a)},x)\times\epsilon_{free\,space}},\quad \epsilon_{1\;O[E]}(E)\equiv n_{O[E]}^{\ \ 2}-\kappa_{O[E]}^{\ \ 2}-\kappa_{O[E]}^{\ \ 2}\;,\quad \epsilon_{2\;O[E]}(E)\equiv 2\kappa_{O[E]}n_{O[E]}\;,\quad \text{and}$$

$$R_{O[E]}(E) \equiv \frac{\left[n_{O[E]} - 1\right]^2 + \kappa_{O[E]}^2}{\left[n_{O[E]} + 1\right]^2 + \kappa_{O[E]}^2}. \quad (16a)$$

One notes here that, at the MIT-conditions:  $N^* = 0$ , both  $E_{gn1(gp1)}(E_{gn2(gp2)}) = E_{gn(gp)}$ , according to

$$\left[\frac{E-E_{gn1(gp1)}(E_{gn2(gp2)})}{E-\left[E_{gn1(gp1)}(E_{gn2(gp2)})+E_{Fn(Fp)}-E_{Fno(Fpo)}\right]}\right]^2 = \frac{0}{0} \ \, \text{for } E=E_{gn(gp)},$$

$$\left[\frac{E - E_{gn1(gp1)}(E_{gn2(gp2)})}{E - \left[E_{gn1(gp1)}(E_{gn2(gp2)}) + E_{Fn(Fp)} - E_{Fno(Fp0)}\right]}\right]^2 = 1 \ \, \text{for} \, E \gtrsim E_{gn(gp)}, \, \text{so that, in such the MIT,}$$

$$JDOS_{n(p)\;O[E]}\big(E,N^*,r_{d(a)},x,T\big) \equiv \frac{_1}{^2\pi^2} \times \left(\frac{^2m_{n(p)}^*(x)}{^{\hbar^2}}\right)^{\!\!\frac{3}{2}} \times \sqrt{E_{Fno(Fpo)}(N^*=0)} = 0, \;\; {\rm for} \;\; E \gtrsim \;\; , \label{eq:JDOS}$$

which is largely verified since  $N_{CDn(NDp)}(r_{d(a)}, x) \cong N_{CDn(CDp)}^{EBT}(r_{d(a)}, x)$  or

 $E_{gn2(gp2)}(N_{CDn(NDp)}, T=0K) \cong E_{gn2(gp2)}(N_{CDn(CDp)}^{EBT}, T=0K) \cong E_{gn(gp)}$ , as those given in Equations (6a, 6b). In other words, the critical photon energy can be defined by:  $E \cong E_{gn(gp)}$ .

Then, Eq. (6a) states that  $N_{CDn(CDp)}$ , given in parabolic conduction (parabolic valence)-band density of states, is just the density of electrons (holes) localized in the exponential conduction (valence)-band tail,  $N_{CDn(CDp)}^{EBT}$ , with a precision of the order of  $\mathbf{2.91} \times \mathbf{10^{-7}}$ , respectively. [3] Therefore, for  $E \cong E_{gn(gp)}$ , the exponential conduction (valence)-band tail states can be approximated with a same precision to:

$$JDOS_{n(p)O[E]}^{EBT}(E, N^*, r_{d(a)}, x, T) \equiv \frac{1}{2\pi^2} \times \left(\frac{2m_{n(p)}^*(x)}{\hbar^2}\right)^{\frac{3}{2}} \times \sqrt{E_{Fno(Fpo)}(N^* = N_{CDn(NDp)})}.$$
(16b)

Here,  $\epsilon_{free\,space} = 8.854187817 \times 10^{-12} \left(\frac{c^2}{N \times m^2}\right)$  is the permittivity of the free space, -q is the charge of the electron,  $\left| \ v_{0[E]}(E) \right|$  is the matrix elements of the velocity operator between valence (conduction)-and-conduction (valence) bands, and our approximate expression for the refraction index  $n_{0[E]}$  is found to be defined by

$$n_{O[E]}(E, N^*, r_{d(a)}, x, T) = n_{\infty}(r_{d(a)}, x) + \sum_{i=1}^{4} \frac{x_i(E_{gn1(gp1)}) \times E + Y_i(E_{gn1(gp1)})}{E^2 - B_i E + C_i}$$
 (17)

going to a constant as  $E\to\infty$ , since  $n(E\to\infty,r_{d(a)},x)\to n_\infty(r_{d(a)},x)=\sqrt{\epsilon(r_{d(a)},x)}\times\frac{\omega_T}{\omega_L}$ , given in the well-known Lyddane-Sachs-Teller relation, in which  $\omega_T\simeq 5.1\times 10^{13}~s^{-1}$  and  $\omega_L\simeq 8.9755\times 10^{13}~s^{-1}$  are the transverse (longitudinal) optical phonon frequencies, giving rise to:  $n_\infty(r_{d(a)},x)\simeq \sqrt{\epsilon(r_{d(a)},x)}\times 0.568$ .

Here, the other parameters are determined by:  $X_i(E_{gn1(gp1)}) = \frac{A_i}{Q_i} \times \left[ -\frac{B_i^2}{2} + E_{gn1(gp1)}B_i - \frac{A_i}{Q_i} \right]$ 

$$E_{gn1(gp1)}^2 + C_i \Big], Y_i \Big( E_{gn1(gp1)} \Big) = \frac{A_i}{Q_i} \times \Big[ \frac{B_i \times (E_{gn1(gp1)}^2 + C_i)}{2} - 2 E_{gn1(gp1)} C_i \Big], \ Q_i = \frac{\sqrt{4C_i - B_i^2}}{2}, \text{ where,}$$
 for i=(1, 2, 3, and 4),

 $A_i = 4.7314 \times 10^{-4}, \ 0.2313655, 0.1117995, 0.0116323 \quad , \quad B_i = 5.871, 6.154, 9.679$   $13.232, \ \text{and} \ C_i = 8.619, 9.784, 23.803, 44.119.$ 

Now, the optical [electrical] conductivity  $\sigma_{O[E]}$  can be defined and expressed in terms of the kinetic energy of the electron (hole),  $E_k \equiv \frac{\hbar^2 \times k^2}{2 \times m_{n(p)}^*(x) \times m_0}$ , k being the wave number, as

$$\sigma_{O[E]}(k) \equiv \frac{q^2 \times k}{\pi \times \hbar} \times \frac{k}{k_{sn(sp)}} \times \left[k \times a_{Bn(Bp)}\right] \times \left(\frac{E_k}{\eta_{n(p)}}\right)^{\frac{1}{2}} \; (\frac{1}{\Omega \times cm}) \,, \text{ which is thus proportional to } E_k^2,$$

where 
$$\frac{q^2}{\pi \times \hbar} = 7.7480735 \times 10^{-5} \text{ ohm}^{-1}$$
.

Then, we obtain: 
$$\langle E^2 \rangle_{FDDF} \equiv G_2(y = \frac{\pi k_B T}{E_{Fn(Fp)}}) \times E_{Fn(Fp)}^2$$
, and  $G_2(y) = \left(1 + \frac{y^2}{3}\right) \equiv G_2(N, r_{d(a)}, x, T)$ , with  $y \equiv \frac{\pi}{\xi_{n(p)}}$ ,  $\xi_{n(p)} = \xi_{n(p)}(N^*, r_{d(a)}, x, T)$  for a presentation simplicity.

Therefore, from above equations (16, 17), if denoting the function  $H(N, r_{d(a)}, x, T)$  by:

$$H(N^*, r_{d(a)}, x, T) =$$

$$\left[ \frac{k_{Fn(Fp)}(N^*)}{R_{sn(sp)}(N^*)} \times \left[ k_{Fn(Fp)}(N^*) \times a_{Bn(Bp)} \big( r_{d(a)}, x \big) \right] \times \sqrt{A_{n(p)}(N^*)} = \frac{E_{Fno(Fpo)}(N^*)}{\eta_{n(p)}(N^*)} \right] \ \times \left[ e^{-\frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) +$$

$$G_2\big(N^*, r_{d(a)}, x, T\big), \text{ where } R_{sn(sp)}(N^*) \equiv \frac{k_{sn(sp)}}{k_{Fn(Fp)}}, \text{ being proportional to } E^2_{Fno(Fpo)}.$$

Then, our optical [electrical] conductivity models, defined in the O-EP and E-OP, respectively, for a simply representation, can thus be assumed to be as:

$$\sigma_{O}(E, N^*, r_{d(a)}, x, T) =$$

$$\frac{q^2}{\pi \times \hbar} \times H(N^*, r_{d(a)}, x, T) \times \left[ \frac{E - E_{gn1(gp1)}}{E - \left[E_{gn1(gp1)} + E_{Fn(Fp)} - E_{Fno(Fpo)}\right]} \right]^2 \left( \frac{1}{\Omega \times cm} \right), \text{ and}$$

$$\sigma_E(E, N, r_{d(a)}, x, T) =$$

$$\frac{q^2}{\pi \times \hbar} \times H(N^*, r_{d(a)}, x, T) \times \left[ \frac{E - E_{gn2(gp2)}}{E - \left[ (E_{gn2(gp2)} + E_{Fn(Fp)} - E_{Fno(Fpo)} \right]} \right]^2 \left( \frac{1}{\Omega \times cm} \right). \tag{18}$$

It should be noted here that

(i) 
$$\sigma_{O[E]} \big( E = E_{gn1(gp1)}[E_{gn2(gp2)}] \big) = 0$$
, and  $\sigma_{O[E]}(E \to \infty) \to Constant$  for given  $\big( N, r_{d(a)}, x, T \big)$  -physical conditions, and

(ii) as 
$$T \rightarrow 0$$
 K and  $N^* = 0$  [or  $E_{Fno(Fpo)}(N^*) = 0$ ], according to:  $H(N^*, r_{d(a)}, x, T) = 0$ , and for a given E,  $\left[E - E_{gn1(gp1)}\right] = \left[E - E_{gn(gp)}\right]$ =Constant, then from Equations (16-18),  $n_{O[E]}(E)$ = Constant,  $\sigma_{O[E]}(E) = 0$ ,  $\kappa_{O-EP[E-OP]}(E) = 0$ ,  $\epsilon_{1 \, O[E]}(E) = (n_{\infty})^2$ = Constant,  $\epsilon_2(E) = 0$ , and  $\alpha_{O[E]}(E) = 0$ .

This result (18) should be new, in comparison with that, obtained from an improved Forouhi-Bloomer parameterization, as given in our previous work.<sup>[2]</sup>

Using Equations (16-18), one obtains all the analytically results as

$$\begin{split} &\frac{|v(E)|^2}{E} = \\ &\frac{8\pi^2\hbar}{(2m_r)^{\frac{3}{2}} \times \sqrt{\eta_{n(p)}}} \times \left[\frac{k_{Fn(Fp)}(N^*)}{R_{sn(sp)}(N^*)} \times \left[k_{Fn(Fp)}(N^*) \times a_{Bn(Bp)}(r_{d(a)}, x)\right]\right] \times G_2(N^*, r_{d(a)}, x, T), \end{split}$$
 19a)

$$\kappa_{O}(E) = \frac{2q^{2}}{n(E) \times \epsilon(r_{d(a)}, x) \times \epsilon_{free \, space} \times E} \times H(N^{*}, r_{d(a)}, x, T) \times$$

$$\left[\frac{E-E_{gn1(gp1)}}{E-\left[E_{gn1(gp1)}+E_{Fn(Fp)}-E_{Fno(Fpo)}\right]}\right]^{2} \qquad \text{and} \qquad \kappa_{E}(E) =$$

$$\frac{2q^2}{n(E)\times\epsilon(r_{d(a)},x)\times\epsilon_{free\,space}\times E}\times H\big(N^*,r_{d(a)},x,T\big)\times \left[\frac{E-E_{gn2(gp2)}}{E-\left[(E_{gn2(gp2)}+E_{Fn(Fp)}-E_{Fno(Fpo)}\right]}\right]^2,\,19b)$$

Which gives:  $\kappa_{O[E]}(E = E_{gn1(gp1)}[E_{gn2(gp2)}]) = 0$ , and  $\kappa_{O[E]}(E \to \infty) \to 0$ , as those given in Ref. [2],

$$\epsilon_{2\;0}(E) = \frac{^{4q^2}}{\epsilon(r_{d(a)},x) \times \epsilon_{free\;space} \times E} \times H\big(N^*,r_{d(a)},x,T\big) \times \left[\frac{E - E_{gn1(gp1)}}{E - \left[E_{gn1(gp1)} + E_{Fn(Fp)} - E_{Fno(Fpo)}\right]}\right]^2 \; \text{and} \; e^{-\frac{1}{2}} \left[\frac{1}{2} + \frac{1}{2} + \frac{1}{2$$

$$\varepsilon_{2 E}(E) = \frac{4q^2}{\varepsilon(r_{d(a)},x) \times \varepsilon_{\text{free space}} \times E} \times H(N^*, r_{d(a)}, x, T) \times \left[\frac{E - E_{gn2(gp2)}}{E - \left[(E_{gn2(gp2)} + E_{Fn(Fp)} - E_{Fno(Fpo)}\right]}\right]^2, \quad (19c)$$

Which gives:  $\varepsilon_{2O-EP[2E-OP]}(E=E_{gn1(gp1)}[E_{gn2(gp2)}])=0$ , and  $\varepsilon_{2O-EP[2E-OP]}(E\to\infty)\to 0$ , as those given in Ref. [2],

$$\propto_0 (E) =$$

$$\frac{4q^2}{\hbar cn(E) \times \epsilon(r_{d(a)},x) \times \epsilon_{free \, space}} \times \left. H\left(N^*,r_{d(a)},x,T\right) \times \left[\frac{E - E_{gn1(gp1)}}{E - \left[E_{gn1(gp1)} + E_{Fn(Fp)} - E_{Fno(Fpo)}\right]}\right]^2 \ \left(\frac{1}{cm}\right) \ \ and \ \ \frac{1}{2} \left[\frac{1}{2} + \frac{1}{2} +$$

$$\alpha_{\rm E}$$
 (E) =

$$\frac{4q^2}{\hbar cn(E) \times \epsilon(r_{d(a)}, x) \times \epsilon_{free \, space}} \times H(N^*, r_{d(a)}, x, T) \times$$

$$\left[\frac{E - E_{gn2(gp2)}}{E - \left[(E_{gn2(gp2)} + E_{Fn(Fp)} - E_{Fno(Fpo)}\right]}\right]^{2} \left(\frac{1}{cm}\right), \quad (19d)$$

which gives:  $\alpha_{O[E]} \left( E = E_{gn1(gp1)}[E_{gn2(gp2)}] \right) = 0$ , and  $\alpha_{O[E]} \left( E \to \infty \right) \to Constant$ , as those given in [2].

Furthermore, from Equations (16, 17, 19b), we can also determine  $\varepsilon_{1 \, O[E]}(E)$  and  $R_{O[E]}(E)$ . Now, from Equations (18, 19b, 19c, 19d), using Eq. (15) as  $E \equiv E_{gn(gp)O[E]}$ , one obtains respectively, as

$$\begin{split} &\sigma_O\big(N^*,r_{d(a)},x,T\big) = \frac{q^2}{\pi\times\hbar}\times H\big(N^*,r_{d(a)},x,T\big)\times \left(\frac{E_{Fn(Fp)}}{E_{Fno(Fpo)}}\right)^2 \, (\frac{_1}{_{\Omega\times cm}}), \quad \text{having the same form} \\ &\text{with that of } \sigma_E\big(N,r_{d(a)},x,T\big) \quad [1], \quad \text{as } \sigma_E\big(N^*,r_{d(a)},x,T\big) = \frac{q^2}{\pi\times\hbar}\times H\big(N^*,r_{d(a)},x,T\big)\times \\ &\left(\frac{E_{Fn(Fp)}}{E_{Fno(Fpo)}}\right)^2 \, \left(\frac{_1}{_{\Omega\times cm}}\right), \quad (20a) \end{split}$$

Noting here that for given  $(N^*, r_{d(a)}, x, T)$  -physical conditions we obtain:  $\sigma_0 > \sigma_E$  since  $m_r(x) < m_{c(v)}(x)$ ,

$$\kappa_{O}(N^*, r_{d(a)}, x, T) = \frac{2q^2}{n(E) \times \epsilon(r_{d(a)}, x) \times \epsilon_{free \, space} \times (E_{gn1(gp1)} + E_{Fn(Fp)})} \times H(N^*, r_{d(a)}, x, T) \times \left(E_{Fn(Fp)}\right)^2$$

$$\left(\frac{E_{Fn(Fp)}}{E_{Fno(Fpo)}}\right)^2$$
 and

$$\kappa_{E}\big(N^*, r_{d(a)}, x, T\big) = \frac{2q^2}{n(E) \times \epsilon(r_{d(a)}, x) \times \epsilon_{free \, space} \times (E_{gn2(gp2)} + E_{Fn(Fp)})} \times H\big(N^*, r_{d(a)}, x, T\big) \times \frac{2q^2}{n(E) \times \epsilon(r_{d(a)}, x) \times \epsilon_{free \, space} \times (E_{gn2(gp2)} + E_{Fn(Fp)})}$$

$$\left(\frac{E_{Fn(Fp)}}{E_{Fno(Fpo)}}\right)^2$$
, (20b)

$$\epsilon_{2 \text{ O}}\left(N^*, r_{\text{d(a)}}, x, T\right) = \frac{4q^2}{\epsilon(r_{\text{d(a)}}, x) \times \epsilon_{\text{free space}} \times (E_{\text{gn1}(\text{gp1})} + E_{\text{Fn}(\text{Fp})})} \times H\left(N^*, r_{\text{d(a)}}, x, T\right) \times \left(\frac{E_{\text{Fn}(\text{Fp})}}{E_{\text{Fno}(\text{Fpo})}}\right)^2$$

and

$$\epsilon_{2\;E}\big(N^*,r_{d(a)},x,T\big) = \frac{4q^2}{\epsilon(r_{d(a)},x)\times\epsilon_{free\;space}\times(E_{gn2(gp2)}+E_{Fn(Fp)})} \times H\big(N^*,r_{d(a)},x,T\big) \times \left(\frac{E_{Fn(Fp)}}{E_{Fno(Fpo)}}\right)^2\;, \eqno(20c)$$

$$\begin{split} & \propto_{O} \left( N^{*}, r_{d(a)}, x, T \right) = \\ & \frac{4q^{2}}{\hbar cn(E) \times \epsilon(r_{d(a)}, x) \times \epsilon_{free \, space}} \times H \Big( N^{*}, r_{d(a)}, x, T \Big) \times \left( \frac{E_{Fn(Fp)}}{E_{Fno(Fpo)}} \right)^{2} \left( \frac{1}{cm} \right) \quad \text{and} \\ & \propto_{E} \left( N^{*}, r_{d(a)}, x, T \right) = \frac{4q^{2}}{\hbar cn(E) \times \epsilon(r_{d(a)}, x) \times \epsilon_{free \, space}} \times H \Big( N^{*}, r_{d(a)}, x, T \Big) \times \left( \frac{E_{Fn(Fp)}}{E_{Fno(Fpo)}} \right)^{2} \left( \frac{1}{cm} \right). \end{aligned}$$

$$(20d)$$

Further, from Equations (16, 17, 20b), we can also determine  $\epsilon_{1 \ O[E]}(E)$  and  $R_{O[E]}(E)$ .

Then, the numerical results of various O[E]-coefficients,  $X_{O[E]}(E, N^*, r_{d(a)}, x, T)$ , as functions of E, obtained from Equations (18, 19b-19d, 20a-20d) for given  $(N^*, r_{d(a)}, x, T)$ -physical

conditions and  $E \ge (\text{or} \le) E_{gn1(gp1)}(E_{gn2(gp2)})$ , giving raise to the metal-insulator transition (MIT) and the non-MIT (N-MIT), are reported and discussed as follows.

First of all, one notes that from Equations (3, 6a, 6b) the MIT occurs as T=0 K and  $N^*(N,r_{d(a)},x)\equiv N-N_{CDn(NDp)}(r_{d(a)},x)\cong N-N_{CDn(CDp)}^{EBT}(r_{d(a)},x)=0$ , according, for  $E\geq E_{gn(gp)}$ , to:  $E_{Fno(Fpo)}(N^*=0)\equiv \frac{\hbar^2\times k_{Fn(Fp)}^2(N^*)}{2\times m_{n(p)}^*(x)\times m_o}=0$ , and  $\kappa_{O[E]}^{MIT}(E,N^*=0)=0$ ,  $\epsilon_{O[E]}^{MIT}(E,N^*=0)=0$ , and  $\epsilon_{O[E]}^{MIT}(E,N^*=0)=0$ , and  $\epsilon_{O[E]}^{MIT}(E,N^*=0)=0$ , since, for example,  $\epsilon_{O[E]}^{MIT}(E,N^*=0)=0$ , since, for example,  $\epsilon_{O[E]}^{MIT}(E,N^*=0)=0$ , or to  $\epsilon_{O[E]}^{MIT}(E,N^*=0)=0$ , since, for example,  $\epsilon_{O[E]}^{MIT}(E,N^*=0)=0$ , since,  $\epsilon_{O[E]}^{MIT}(E,N^*=0)=0$ , since,

Then, by using Eq. (16b), from Equations (18, 19b, 19c, 19d), for  $E \cong E_{gn(gp)}$ , one can determine the exponential conduction (valence)-band tail states, due to those coefficients:  $\sigma^{EBT}_{O[E]} \big( E \cong E_{gn(gp)}, N^* = N_{CDn(NDp)} \big) \;, \; \kappa^{EBT}_{O[E]} \big( E \cong E_{gn(gp)}, N^* = N_{CDn(NDp)} \big) \;, \; \epsilon^{EBT}_{2O[2E]} \big( E \cong E_{gn(gp)}, N^* = N_{CDn(NDp)} \big) \;, \; \text{and then their numerical results are given in Table 5, reported in Appendix 1.}$ 

Further, the numerical results of  $n_{O[E]}(E)$ ,  $\kappa_{O[E]}(E)$ ,  $\epsilon_{2O[2E]}(E)$  and  $\epsilon_{1O[E]}(E)$ , are obtained by using Equations (17, 19b, 19c and 16), expressed as functions of N for (E=3.2 eV and T=20 K)-conditions, and as functions of T for (E=3.2 eV and N =  $10^{20}$  cm<sup>-3</sup>)-conditions, as those given in **Tables 6n, 6p, 7n and 7p, being reported in Appendix 1**, respectively.

Finally, for T=20K and N =  $10^{20}$  cm<sup>-3</sup>, and for given x and  $r_d$ , the numerical results of  $\sigma_{O[E]}$  (E),  $\varepsilon_{2O[2E]}(E)$  and  $\propto_{O[E]}(E)$ , are obtained by using Equations (18, 19c, 19d), and given in

#### Tables 8n and 8p, being reported in Appendix 1.

In the following, we will determine the electrical-and-thermoelectric laws, by basing on our  $\sigma_{O[E]}$ -models, given in Eq. (20a).

# **OPTICAL** [ELECTRICAL]-AND-THERMOELECTRIC PROPERTIES $[m_{n(p)}^* \equiv m_r(x)[m_{c(v)}(x)]]$

Here, if denoting, for majority electrons (holes), the thermal conductivity by  $\sigma_{Th.\ O[E]}(N^*,r_{d(a)},x,T) \ \text{in} \ \frac{W}{cm\times K} \ , \ \text{and} \ \text{the Lorenz number} \ L \ \text{by:} \ L = \frac{\pi^2}{3}\times \left(\frac{k_B}{q}\right)^2 = 2.4429637 \left(\frac{W\times ohm}{K^2}\right) = 2.4429637\times 10^{-8} \ (V^2\times K^{-2}), \ \text{then the well-known Wiedemann-Frank law states that the ratio,} \ \frac{\sigma_{Th.O[E]}}{\sigma_{O[E]}}, \ \text{due to the O-EP [E-OP], is proportional to the temperature } T(K), \ \text{as:} \ \frac{\sigma_{Th.O[E]}(N^*,r_{d(a)},x,T)}{\sigma_{O[E]}(N^*,r_{d(a)},x,T)} = L\times T. \ \ 21)$ 

Further, the resistivity is found to be given by:  $\rho_{O[E]}(N^*, r_{d(a)}, x, T) \equiv 1/\sigma_{O[E]}(N^*, r_{d(a)}, x, T)$ , noting again that  $N^* \equiv N - N_{CDn(NDp)}(r_{d(a)}, x)$ .

In Eq. (20a), one notes that at T=0 K,  $\sigma_{O[E]}(N^*, r_{d(a)}, x, T)$  is proportional to  $E^2_{Fno(Fpo)}$ , or to  $(N^*)^{\frac{4}{3}}$ . Thus , from Eq. (21), one has:  $\sigma_{O[E]}(N^*=0, r_{d(a)}, x, T=0K)=0$  and also  $\sigma_{Th.\ O[E]}(N^*=0, r_{d(a)}, x, T=0K)=0$  at  $N^*=0$ , at which the MIT occurs.

#### **Optical [Electrical] Coefficients**

The relaxation time  $\tau_{O[E]}$  is related to  $\sigma_{O[E]}$  by [1]

 $\tau_{O[E]}(N^*,r_{d(a)},x,T)\equiv\sigma_{O[E]}(N^*,r_{d(a)},x,T)\times\frac{m_{n(p)}^*(x)\times m_o}{q^2\times (N^*/g_{c(v)})}\,. \label{eq:tau_operator}$  Therefore, the mobility  $\mu_{O[E]}$  is given by:

$$\mu_{O[E]]}\big(N^*, r_{d(a)}, x, T\big) = \frac{q \times \tau_{O[E]}(N^*, r_{d(a)}, x, T)}{m_{n(p)}^*(x) \times m_o} = \frac{\sigma_{O[E]}(N^*, r_{d(a)}, x, T)}{q \times (N^*/g_{c(v)})} \left(\frac{cm^2}{v \times s}\right) \quad (22)$$

Here, at T=0K,  $\mu_{O[E]}(N^*,r_{d(a)},x,T)$  is thus proportional to  $(N^*)^{1/3}$ , since  $\sigma_{O[E]}(N^*,r_{d(a)},x,T=0K)$  is proportional to  $(N^*)^{4/3}$ . Thus,  $\tau_{O[E]}(N^*=0,r_{d(a)},x,T=0K)=0$  and  $\mu_{O[E]}(N^*=0,r_{d(a)},x,T=0K)=0$  at  $N^*=0$ , at which the MIT occurs.

Then, the Hall factor is defined by

$$r_{HO[HE]}(N^*,r_{d(a)},x,T)\equiv\frac{\langle\tau_{O[E]}^2\rangle_{FDDF}}{\left[\langle\tau_{O[E]}\rangle_{FDDF}\right]^2}=\frac{G_4(y)}{[G_2(y)]^2}, y\equiv\frac{\pi}{\xi_{n(p)}(N^*,r_{d(a)},x,T)}=\frac{\pi k_BT}{E_{Fn(Fp)}(N^*,r_{d(a)},x,T)}, \text{ and therefore, the Hall mobility yields:}$$

 $\mu_{HO[HE]} \big( N^*, r_{d(a)}, x, T \big) \equiv \mu_{O[E]} \big( N^*, r_{d(a)}, x, T \big) \times r_{HO[HE]} \big( N^*, r_{d(a)}, x, T \big) \left( \frac{cm^2}{V \times s} \right)$  (23) noting that, at T=0K, since  $r_{HE[HO]} (N^*, r_{d(a)}, x, T) = 1$ , one therefore gets:  $\mu_{HO[HE]} (N^*, r_{d(a)}, x, T) \equiv \mu_{O[E]} (N^*, r_{d(a)}, x, T)$ .

#### **Our generalized Einstein relation**

Our generalized Einstein relation is found to be defined as [1]

$$\frac{\frac{D_{O[E]}(N^*, r_{d(a)}, x, T)}{\mu_{O[E]}(N^*, r_{d(a)}, x, T)}}{\frac{D_{O[E]}(N^*, r_{d(a)}, x, T)}{q}} \equiv \frac{N^*}{q} \times \frac{dE_{Fn(Fp)}}{dN^*} \equiv \frac{k_B \times T}{q} \times \left(u \frac{d\xi_{n(p)}(u)}{du}\right) = \sqrt{\frac{3 \times L}{\pi^2}} \times T \times \left(u \frac{d\xi_{n(p)}(u)}{du}\right), \qquad \frac{k_B}{q} = \sqrt{\frac{3 \times L}{\pi^2}}, \quad (24)$$

Where  $D_{E[0]}(N^*, r_{d(a)}, x, T)$  is the diffusion coefficient,  $\xi_{n(p)}(u)$  is defined in Eq. (11), and the mobility  $\mu_{O[E]}(N^*, r_{d(a)}, x, T)$  is determined in Eq. (22). Then, by differentiating this function  $\xi_{n(p)}(u)$  with respect to u, one thus obtains  $\frac{d\xi_{n(p)}(u)}{du}$ . Therefore, Eq. (17) can also be rewritten as:  $\frac{D_{O[E]}(N^*, r_{d(a)}, x, T)}{\mu_{O[E]}(N^*, r_{d(a)}, x, T)} = \frac{k_B \times T}{q} \times u \frac{V'(u) \times W(u) - V(u) \times W'(u)}{W^2(u)}$  where  $W'(u) = ABu^{B-1}$  and  $V'(u) = u^{-1} + 2^{-\frac{3}{2}}e^{-du}(1-du) + \frac{2}{3}Au^{B-1}F(u)\left[\left(1+\frac{3B}{2}\right) + \frac{4}{3}\times\frac{bu^{-\frac{4}{3}}+2cu^{-\frac{8}{3}}}{1+bu^{-\frac{4}{3}}+cu^{-\frac{8}{3}}}\right]$ . One remarks that: (i) as  $u \to 0$ , one has:  $W^2 \approx 1$  and  $u[V' \times W - V \times W'] \approx 1$ , and therefore:  $\frac{D_{O[E]}(u)}{\mu_{O[E]}} \approx \frac{k_B \times T}{q}$ , and (ii) as  $u \to \infty$ , one has:  $W^2 \approx A^2u^{2B}$  and  $u[V' \times W - V \times W'] \approx \frac{2}{3}au^{2/3}A^2u^{2B}$ , and therefore, in this **highly degenerate case** and at T=0K, the **above generalized Einstein relation** is reduced to the **usual Einstein one**:  $\frac{D_{O[E]}(N^*, r_{d(a)}, x, T=0K)}{\mu_{O[E]}(N^*, r_{d(a)}, x, T=0K)} \approx \frac{2}{3}E_{Fno(Fpo)}(N^*)/q$ . In other words, **Eq. (24) verifies the correct limiting conditions**.

Furthermore, in the present degenerate case ( $u \gg 1$ ), Eq. (24) gives:

$$\begin{split} &\frac{D_{O[E]}\left(N^*, r_{d(a)}, x, T=0K\right)}{\mu_{O[E]}\left(N^*, r_{d(a)}, x, T=0K\right)} \simeq \frac{2}{3} \times \frac{E_{Fno(Fpo)}(u)}{q} \times \left[1 + \frac{4}{3} \times \frac{\left(bu^{-\frac{4}{3}} + 2cu^{-\frac{8}{3}}\right)}{\left(1 + bu^{-\frac{4}{3}} + cu^{-\frac{8}{3}}\right)}\right], \\ &\text{where } a = \left[3\sqrt{\pi}/4\right]^{2/3}, \ b = \frac{1}{8}\left(\frac{\pi}{a}\right)^2 \ \text{and } c = \frac{62.3739855}{1920}\left(\frac{\pi}{a}\right)^4. \end{split}$$

Then, in **Tables 9n and 9p, reported in Appendix1**, the numerical results of  $\sigma_{O[E]}$ ,  $\mu_{O[E]}$  and  $D_{O[E]}$  for given

x and T=(4.2 K and 77 K), are obtained by using Equations (20a, 22 and 24), suggesting that, for a given N, they decrease [decrease], with increasing  $r_{d(a)}$ .

#### **Thermoelectric Coefficients**

Here, as noted above,  $E_{Fn(Fp)}\big(m_r(x)\big) > E_{Fn(Fp)}\big(m_{c(v)}(x)\big)$  or  $\xi_{n(p)}\big(m_r(x)\big) > \xi_{n(p)}\big(m_{c(v)}(x)\big)$  for a given T, since  $m_r(x) < m_{c(v)}(x)$  for given x, corresponding to:  $\sigma_0\big(m_r(x)\big) > \sigma_E\big(m_{c(v)}(x)\big)$ .

Then, from Eq. (20a), obtained for  $\sigma_{O[E]}(N^*, r_{d(a)}, x, T)$ , the well-known Mott definition for the thermoelectric power or for the Seebeck coefficient,  $S_{E[O]}$ , is found to be given by:

$$S_{O[E]}\big(N^*,r_{d(a)},x,T\big) \equiv \frac{-\pi^2}{3} \times \frac{k_B}{q>0} \times k_BT \times \frac{\partial \ln \sigma_{O[E]}}{\partial E}\Big]_{E=E_{Fn(En)}} = \frac{-\pi^2}{3} \times \frac{k_B}{q} \times \frac{\partial \ln \sigma_{O[E]}(\xi_{n(p)})}{\partial \xi_{n(p)}}.$$

Then, using Eq. (11), for the degenerate case,  $\xi_{n(p)} \ge 0$ , one gets, by putting

$$\begin{split} Y_{Sb\;O[E]}\big(N^*,r_{d(a)},x,T\big) &\equiv \left[1 - \frac{y^2}{_{3\times G_2}\!\!\left(y = \! \frac{\pi}{\xi_{n(p)}}\!\right)}\right], \qquad S_{O[E]}\!\!\left(N^*,r_{d(a)},x,T\right) \equiv \! \frac{-\pi^2}{_3} \times \! \frac{k_B}{_q} \times \\ &\frac{_{2Y_{Sb\;O[E]}}\!\!\left(N^*,\!r_{d(a)},\!x,T\right)}{\xi_{n(p)}} &= -\sqrt{\frac{_{3\times L}}{\pi^2}} \times \! \frac{_{2\times \xi_{n(p)}}}{\left(1 + \! \frac{_{3\times \xi_{n(p)}}^2}{\pi^2}\right)} = -2\sqrt{L} \times \! \frac{\sqrt{_{ZT_{O[E]Mott}}}}{_{1+ZT_{O[E]Mott}}}\!\!\left(\! \frac{v}{\kappa} \right) < \end{split}$$

0, 
$$ZT_{O[E]Mott} = \frac{\pi^2}{3 \times \xi_{n(p)}^2}$$
, (25)

According to

$$\frac{\partial \, S_{O[E]}}{\partial \xi_{n(p)}} = \sqrt{\frac{3 \times L}{\pi^2}} \times 2 \times \frac{\frac{3 \times \xi_{n(p)}^2}{\pi^2} - 1}{\left(1 + \frac{3 \times \xi_{n(p)}^2}{\pi^2}\right)^2} = \sqrt{\frac{3 \times L}{\pi^2}} \times 2 \times \frac{ZT_{O[E]Mott} \times \left[1 - ZT_{O[E]Mott}\right]}{\left[1 + ZT_{O[E]Mott}\right]^2}.$$

Here, one notes that: (i) as  $\xi_{n(p)} \to +\infty$  or  $\xi_{n(p)} \to +0$ , one has a same limiting value of  $S_{O[E]}\colon S_{O[E]} \to -0$ , (ii) at  $\xi_{n(p)} = \sqrt{\frac{\pi^2}{3}} \simeq 1.8138$ , since  $\frac{\partial \, S_{O[E]}}{\partial \xi_{n(p)}} = 0$ , one therefore gets: a minimum  $\left(\,S_{O[E]}\right)_{min.} = -\sqrt{L} \simeq -1.563 \times 10^{-4} \, \left(\frac{V}{K}\right)$ , and (iii) at  $\xi_{n(p)} = 1$  one obtains:  $S_{O[E]} \simeq -1.322 \times 10^{-4} \, \left(\frac{V}{K}\right)$ .

Further, the figure of merit is found to be defined by:

$$ZT_{O[E]}(N^*, r_{d(a)}, x, T) \equiv \frac{S^2 \times \sigma_{O[E]} \times T}{\kappa} = \frac{S^2}{L} = \frac{4 \times ZT_{O[E]Mott}}{\left[1 + ZT_{O[E]Mott}\right]^2}. \quad (26)$$

Here, one notes that: (i)  $\frac{\partial (\,ZT_{O[E]})}{\partial \xi_{n(p)}} = 2 \times \frac{S_{O[E]}}{L} \times \frac{\partial\,S_{O[E]}}{\partial \xi_{n(p)}}$ ,  $S_{E[O]} < 0$ , (ii) at  $\xi_{n(p)} = \sqrt{\frac{\pi^2}{3}} \simeq 1$ 

1.8138, since  $\frac{\partial (ZT_{O[E]})}{\partial \xi_{n(p)}} = 0$ , one gets: a maximum  $(ZT_{O[E]})_{max.} = 1$ ,  $ZT_{O[E]Mott} = 1$ , and

(iii) at  $\xi_{n(p)}=1$ , one obtains:  $ZT_{O[E]}\simeq 0.715$  and  $ZT_{O[E]Mott}=\frac{\pi^2}{3}\simeq 3.290$ .

Finally, the first Van-Cong coefficient can be defined by

$$VC1_{O[E]}(N^*, r_{d(a)}, x, T) \equiv -N^* \times \frac{d S_{O[E]}}{dN^*} \left(\frac{V}{K}\right) = N^* \times \frac{\partial S_{O[E]}}{\partial \xi_{n(p)}} \times -\frac{\partial \xi_{n(p)}}{\partial N^*}, \quad (27)$$

being equal to 0 for  $\xi_{n(p)}=\sqrt{\frac{\pi^2}{3}}$  ,

and the second Van-Cong coefficient as

$$VC2_{O[E]}(N^*, r_{d(a)}, x, T) \equiv T \times VC1_{O[E]}(V), (28)$$

the Thomson coefficient, Ts, by

$$Ts_{O[E]}\left(N^*, r_{d(a)}, x, T\right) \equiv T \times \frac{d \, S_{O[E]}}{dT} \left(\frac{V}{K}\right) = T \times \frac{\partial \, S_{O[E]}}{\partial \xi_{n(p)}} \times \frac{\partial \xi_{n(p)}}{\partial T}, \quad (29)$$

being equal to 0 for  $\xi_{n(p)}=\sqrt{\frac{\pi^2}{3}}$ , and the Peltier coefficient,  $Pt_{E[0]}$ , as:  $Pt_{O[E]}\big(N^*,r_{d(a)},x,T\big)\equiv T\times S_{O[E]}\left(V\right). \eqno(30)$ 

Then, in **Tables 10n and 10p, reported in Appendix 1**, the numerical results of various thermoelectric coefficients such as:  $\sigma_{Th.O[E]}$ ,  $S_{O[E]}$ ,  $VC1_{O[E]}$ ,  $VC2_{O[E]}$ ,  $Ts_{O[E]}$ ,  $Pt_{O[E]}$  and  $ZT_{O[E]}$ , for given x,  $r_{d(a)}$ , T=(3K and 80K) and N, are obtained by using Equations (21, 25, 27, 28, 29, 30 and 26), respectively.

In summary, in the O-EP [E-OP] and for given physical conditions: x,  $r_{d(a)}$ , N (or T), the same values of  $\xi_{n(p)}$  decrease, according to the increasing T (or to the decreasing N), since  $VC1_{O[E]}(N,r_{d(a)},x,T)$  and  $Ts_{O[E]}(N,r_{d(a)},x,T)$  are expressed in terms of  $\frac{-d\ S_{O[E]}}{dN^*}$  and  $\frac{d\ S_{O[E]}}{dT}$ , one has:  $[VC1_{O[E]},Ts_{O[E]}]<0$  for  $\xi_{n(p)}>\sqrt{\frac{\pi^2}{3}}$ ,  $[VC1_{O[E]},Ts_{O[E]}]=0$  for  $\xi_{n(p)}=\sqrt{\frac{\pi^2}{3}}$ , and

[ VC1<sub>O[E]</sub>, Ts<sub>O[E]</sub>] > 0 for  $\xi_{n(p)} < \sqrt{\frac{\pi^2}{3}}$ , stating that for  $\xi_{n(p)} = \sqrt{\frac{\pi^2}{3}} \simeq 1.8138$ : S<sub>O[E]</sub>, determined in Eq. (25), thus presents a same minimum S<sub>O[E] min.</sub> =  $-\sqrt{L} \simeq -1.563 \times 10^{-4} \left(\frac{V}{K}\right)$ , and ZT<sub>O[E]</sub>, determined in Eq. (26), therefore presents a same maximum: ZT<sub>O[E] max.</sub> = 1, and (ZT)<sub>Mott</sub> = 1. Furthermore, for  $\xi_{n(p)} = 1$ , the numerical results of S<sub>O[E]</sub>, ZT<sub>O[E]Mott</sub>, VC1<sub>E[O]</sub>, and Ts<sub>O[E]</sub>, present the same results:  $-1.322 \times 10^{-4} \frac{V}{K}$ , 0.715, 3.290,  $1.105 \times 10^{-4} \frac{V}{K}$ , and  $1.657 \times 10^{-4} \frac{V}{K}$ , respectively, as those observed in [4, 5], and those given in Table 11, reported in Appendix 1.

It seems that these same obtained results could represent a new law for the thermoelectric properties, obtained in the degenerate case  $(\xi_{n(p)} \ge 0)$ .

Furthermore, it is interesting to remark that the  $VC2_{O[E]}$ -coefficient is related to our generalized Einstein relation (24) by

$$\frac{k_B}{q} \times VC2_{O[E]} \left( N^*, r_{d(a)}, x, T \right) \equiv -\frac{\partial S_{O[E]}}{\partial \xi_{n(p)}} \times \frac{D_{O[E]} (N^*, r_{d(a)}, x, T)}{\mu_{O[E]} (N^*, r_{d(a)}, x, T)} \left( \frac{V^2}{K} \right), \quad \frac{k_B}{q} = \sqrt{\frac{3 \times L}{\pi^2}} \,, \eqno(31)$$

According, in this work, with the use of our Eq. (25), to:

$$VC2_{O[E]}(N, r_{d(a)}, x, T) \equiv -\frac{D_{O[E]}(N^*, r_{d(a)}, x, T)}{\mu_{O[E]}(N^*, r_{d(a)}, x, T)} \times 2 \times \frac{ZT_{O[E]Mott} \times [1 - ZT_{O[E]Mott}]}{[1 + ZT_{O[E]Mott}]^2} \quad (V).$$

Of course, our relation (31) is reduced to:  $\frac{D_{O[E]}}{\mu_{O[E]}}$ ,  $VC1_{O[E]}$  and  $VC2_{O[E]}$ , being determined respectively by Equations (24, 27, 28). This may be a new result.

#### CONCLUDING REMARKS

In the  $\mathbf{n}^+(\mathbf{p}^+) - \mathbf{X}(\mathbf{x})$ -crystalline alloy,  $0 \le x \le 1$ , x being the concentration, the optical, electrical and thermoelectric coefficients, enhanced by : (i) the optico-electrical phenomenon (O-EP) and the electro-optical phenomenon (E-OP), (ii) our static dielectric constant law,  $\epsilon(\mathbf{r}_{d(a)}, \mathbf{x})$ ,  $\mathbf{r}_{d(a)}$  being the donor (acceptor) d(a)-radius, given in Equations (1a, 1b), (iii) our accurate reduced Fermi energy,  $\xi_{n(p)}$ , given in Eq. (11), accurate with a precision of the order of  $2.11 \times 10^{-4}$ . [9], affecting all the expressions of optical, electrical and thermoelectric coefficients, and (iv) our optical-and-electrical conductivity models, given in Eq. (18, 20a), are now investigated by basing on our physical model and Fermi-Dirac distribution function, as those given in our recent works. [1-5]

Some important concluding remarks can be given and discussed as follows.

(I)-First of all, one notes that from Equations (3, 6a, 6b) the MIT occurs as T=0 K and  $N^*(N,r_{d(a)},x)\equiv N-N_{CDn(NDp)}(r_{d(a)},x)\cong N-N_{CDn(CDp)}^{EBT}(r_{d(a)},x)=0$ , according, for  $E\geq E_{gn(gp)}$ , to:  $E_{Fno(Fpo)}(N^*=0)\equiv \frac{\hbar^2\times k_{Fn(Fp)}^2(N^*)}{2\times m_{n(p)}^*(x)\times m_o}=0$ , and  $\kappa_{O[E]}^{MIT}(E,N^*=0)=0$ ,  $\epsilon_{O[E]}^{MIT}(E,N^*=0)=0$ , and  $\epsilon_{O[E]}^{MIT}(E,N^*=0)=0$ , since, for example,  $\epsilon_{O[E]}^{I}(E,N^*=0)=0$ , is proportional to  $\epsilon_{I}^2(E,N^*=0)=0$ , or to  $\epsilon_{I}^2(E,N^*=0)=0$ , since, for example, of  $\epsilon_{I}^2(E,N^*=0)=0$ , is proportional to  $\epsilon_{I}^2(E,N^*=0)=0$ , or to  $\epsilon_{I}^2(E,N^*=0)=0$ , since, for example, of  $\epsilon_{I}^2(E,N^*=0)=0$ , is proportional to  $\epsilon_{I}^2(E,N^*=0)=0$ , or to  $\epsilon_{I}^2(E,N^*=0)=0$ , since, for example, of  $\epsilon_{I}^2(E,N^*=0)=0$ , since,  $\epsilon_{I}^2(E,N^*=0)=0$ , since,

Then, by using Eq. (16b), from Equations (18, 19b, 19c, 19d), for  $E \cong E_{gn(gp)}$ , one can determine the exponential conduction (valence)-band tail states, due to those coefficients:  $\sigma^{EBT}_{O[E]} \big( E \cong E_{gn(gp)}, N^* = N_{CDn(NDp)} \big) \;, \; \kappa^{EBT}_{O[E]} \big( E \cong E_{gn(gp)}, N^* = N_{CDn(NDp)} \big) \;, \; \epsilon^{EBT}_{2O[2E]} \big( E \cong E_{gn(gp)}, N^* = N_{CDn(NDp)} \big) \;, \; \text{and then their numerical results are given in Table 5, reported in Appendix 1.}$ 

(II)-Further, the numerical results of  $n_{O[E]}(E)$ ,  $\kappa_{O[E]}(E)$ ,  $\epsilon_{2O[2E]}(E)$  and  $\epsilon_{1 O[E]}(E)$ , are obtained by using Equations (17, 19b, 19c and 16), expressed as functions of N for (E=3.2 eV and T=20 K)-conditions, and as functions of T for (E=3.2 eV and N =  $10^{20} \text{cm}^{-3}$ )-conditions, as those given in Tables 6n, 6p, 7n and 7p, being reported in Appendix 1, respectively.

Finally, for T=20K and N =  $10^{20}$  cm<sup>-3</sup>, and for given x and  $r_d$ , the numerical results of  $\sigma_{O[E]}$  (E),  $\epsilon_{2O[2E]}(E)$  and  $\propto_{O[E]}(E)$ , are obtained by using Equations (18, 19c, 19d), and given in Tables 8n and 8p, being reported in Appendix 1.

(III)-In Tables 9n and 9p, reported in Appendix1, the numerical results of  $\sigma_{O[E]}$ ,  $\mu_{O[E]}$  and  $D_{O[E]}$  for given x and T=(4.2 K and 77 K), are obtained by using Equations (20a, 22 and 24), suggesting that, for a given N, they decrease [decrease], with increasing

 $r_{d(a)}$ . Further, in Tables 10n and 10p, reported in Appendix 1, the numerical results of various thermoelectric coefficients such as:  $\sigma_{Th.O[E]}$ ,  $S_{O[E]}$ ,  $VC1_{O[E]}$ ,  $VC2_{O[E]}$ ,  $Ts_{O[E]}$ ,  $Pt_{O[E]}$  and  $ZT_{O[E]}$ , for given x,  $r_{d(a)}$ , T=(3K and 80K) and N, are obtained by using Equations (21, 25, 27, 28, 29, 30 and 26), respectively.

(IV)-Finally, from Equations (20a, 21-30), for any given x,  $r_{d(a)}$  and N (or T), with increasing T (or decreasing N), one obtains: (i) for  $\xi_{n(p)} = \sqrt{\frac{\pi^2}{3}} \approx 1.8138$ , while the numerical results of  $S_{O[E]}$  present a same minimum  $S_{O[E]\,\text{min.}}\left( \simeq -1.563 \times 10^{-4} \frac{\text{V}}{\text{K}} \right)$ , those of  $ZT_{O[E]}$  show a same maximum  $ZT_{ET[OT]\,\text{max.}} = 1$ , (ii) for  $\xi_{n(p)} = 1$ , the numerical results of  $S_{O[E]}$ ,  $ZT_{O[E]}$ ,  $ZT_{O[E]\,\text{Mott}}$ ,  $VC1_{O[E]}$ , and  $Ts_{O[E]}$ , present the same results:  $-1.322 \times 10^{-4} \frac{\text{V}}{\text{K}}$ , 0.715, 3.290,  $1.105 \times 10^{-4} \frac{\text{V}}{\text{K}}$ , and  $1.657 \times 10^{-4} \frac{\text{V}}{\text{K}}$ , respectively, and finally (iii) for  $\xi_{n(p)} = \sqrt{\frac{\pi^2}{3}} \simeq 1.8138$ ,  $ZT_{O[E]\,\text{Mott}} = 1$ , as those given in Table 11, reported in Appendix 1.

#### REFERENCES

- 1. Van Cong, H. Optical, Electrical and Thermoelectric Laws in n(p)-Type Degenerate "Compensated" InP(1-x)As(x)-Crystalline Alloy, Enhanced by: Optico-Electrical Phenomenon and Electro-Optical Phenomenon, and our Static Dielectric Constant Law, Accurate Fermi Energy and Conductivity Models (I). WJERT, 2025; 11(11): 16-58.
- 2. Van Cong, H. et al. Optical Coefficients in the n(p)-Type Degenerate InP(1-x) As(x) Crystalline Alloy, Due to the New Static Dielectric Constant-Law and the Generalized Mott Criterium in the Metal-Insulator Transition (20). WJERT, 2024; 10(12): 378-399.
- 3. Van Cong, H. Critical Impurity Density in Metal-Insulator Transition, obtained in Various n(p)-Type Degenerate Crystalline Alloys, being just That of Carriers Localized in Exponential Band Tails. (II). WJERT, 2024; 10(4): 65-96.
- 4. Van Cong H. Same maximum figure of merit ZT(=1), due to the effect of impurity size, obtained in the n(p)-type degenerate Ge -crystal ( $\xi_{n(p)} \ge 1$ ), at same reduced Fermi energy  $\xi_{n(p)} = \sqrt{\frac{\pi^2}{3}} \simeq 1.8138$ , same minimum Seebeck coefficient (S)<sub>min.</sub> ( $\simeq -1.563 \times 10^{-4} \frac{V}{K}$ ), same maximum (ZT)<sub>max.</sub> = 1, and same (ZT)<sub>Mott</sub> ( $= \frac{\pi^2}{3\xi_{n(p)}^2} = 1$ ), SCIREA Journal of Physics. 2023; 8(4): 407-430.

- 5. Van Cong, H. Same Maximal Figure of Merit ZT(=1), Due to the Effect of Impurity Size, Obtained in the n(p)-Type Degenerate GaAs-Crystal ( $\xi_{n(p)} \ge 1$ ), at Same Reduced Fermi Energy  $\xi_{n(p)}(=1.8138)$  and Same Minimum Seebeck Coefficient  $S\left(=-1.563\times 10^{-4} \frac{V}{K}\right)$ , at which Same (ZT)<sub>Mott</sub>  $\left(=\frac{\pi^2}{3\xi_{n(p)}^2}=1\right)$ . SCIREA Journal of Physics, 2023; 8(2): 133-157.
- 6. Van Cong, H. Effects of donor size and heavy doping on optical, electrical and thermoelectric properties of various degenerate donor-silicon systems at low temperatures. American Journal of Modern Physics, 2018; 7(4): 136-165.
- 7. Kim, H. S. et al. Characterization of Lorenz number with Seebeck coefficient measurement. APL Materials, 2015; 3(4): 041506.
- 8. Hyun, B. D. et al. Electrical-and-Thermoelectric Properties of 90%Bi<sub>2</sub>Te<sub>3</sub> 5%Sb<sub>2</sub>Te<sub>3</sub> 5%Sb<sub>2</sub>Se<sub>3</sub> Single Crystals Doped with SbI<sub>3</sub>. Scripta Materialia, 1998; 40(1): 49-56.
- 9. Van Cong, H. and Debiais, G. A simple accurate expression of the reduced Fermi energy for any reduced carrier density. J. Appl. Phys., 1993; 73: 1545-1546.
- 10. Van Cong, H. et al. Size effect on different impurity levels in semiconductors. Solid State Communications, 1984; 49: 697-699.
- 11. Van Cong, H. Diffusion coefficient in degenerate semiconductors. Phys. Stat. Sol. (b), 1984; 101: K27.
- 12. Van Cong, H. and Doan Khanh, B. Simple accurate general expression of the Fermi-Dirac integral  $F_i(a)$  and for j > -1. Solid-State Electron., 1992; 35(7): 949-951.
- 13. Van Cong, H. New series representation of Fermi-Dirac integral  $F_j(-\infty < a < \infty)$  for arbitrary j > -1, and its effect on  $F_j(a \ge 0_+)$  for integer  $j \ge 0$ . Solid-State Electron., 1991; 34(5): 489-492.
- 14. Van Cong, H. and G. Mesnard. Thermoelectric effects of heavily doped semiconductors at low temperatures. Phys. Stat. Sol. (b), 1972; 50(1): 53-58.
- 15. Van Cong, H. Fermi energy and band-tail parameters in heavily doped semiconductors. Journal of Physics and Chemistry of Solids, 1975; 36(11): 1237-1240.
- 16. Van Cong, H. Quantum efficiency and radiative lifetime in degerate n-type GaAs. Journal of Physics and Chemistry of Solids, 1981; 36(11): 95-99.

#### **APPENDIX 1**

**Table 1:** In the  $X(x) \equiv InAs_{1-x}Sb_x$ -crystalline alloy, the different values of energy-band-structure parameters, for a given x, are given in the following [3].

In the X(x)-crystalline alloy, in which  $r_{do(ao)} = r_{\textbf{As}(\textbf{In})} = 0.118$  nm (0.144 nm), we have [3]:  $g_{c(v)}(x) = 1 \times x + 1 \times (1-x) = 1$ ,  $m_{c(v)}(x)/m_o = 0.1$  (0.4)  $\times x + 0.09$  (0.3)  $\times$  (1 - x),  $\epsilon_o(x) = 16.8 \times x + 14.55 \times (1-x)$ ,  $E_{go}(x) = 0.23 \times x + 0.43 \times (1-x)$ .

**Table 2:** Expressions for  $G_{p>1}(y \equiv \frac{\pi}{\xi_{n(p)}})$ , due to the Fermi-Dirac distribution function, are used to determine the electrical-and-thermoelectric coefficients.

| $G_{3/2}(y)$                             | $G_2(y)$                       | $G_{5/2}(y)$                                         | $G_3(y)$             | $G_{7/2}(y)$                                            | $G_4(y)$                              | G <sub>9/2</sub> (y)                                    |
|------------------------------------------|--------------------------------|------------------------------------------------------|----------------------|---------------------------------------------------------|---------------------------------------|---------------------------------------------------------|
| $(1 + \frac{y^2}{8} + \frac{7y^4}{640})$ | $\left(1+\frac{y^2}{3}\right)$ | $\left(1 + \frac{5y^2}{8} - \frac{7y^4}{384}\right)$ | $\left(1+y^2\right)$ | $\left(1 + \frac{35y^2}{24} + \frac{49y^4}{384}\right)$ | $\left(1+2y^2+\frac{7y^4}{15}\right)$ | $\left(1 + \frac{21y^2}{8} + \frac{147y^4}{128}\right)$ |

**Table 3.** For T=0K and N=N<sub>CDn(CDp)</sub>( $r_{d(a)}$ , x), the numerical results of  $n_{O[E]}^{N-MIT}$ ,  $\varepsilon_{1 O[E]}^{N-MIT}$  and  $R_{O[E]}^{N-MIT}$  are obtained, using Equations (17, 16), suggesting that they decrease ( $\Sigma$ ) with increasing (Z)  $r_{d(a)}$  and  $r_{gn(gp)}$ , and further they are found to be the same, for given  $r_{d(a)}$  and  $r_{gn(gp)}$ , since  $r_{gn1(gp1)} = r_{gn2(gp2)} = r_{gn(gp)}$ .

| Donor                                               |        | P               | As                             | Sb                             | Sn                             |  |
|-----------------------------------------------------|--------|-----------------|--------------------------------|--------------------------------|--------------------------------|--|
| r <sub>d</sub> (nm) [4]                             | 7      | 0.110           | 0.118                          | 0.136                          | 0.140                          |  |
| At <b>x=0</b> ,                                     |        |                 |                                |                                |                                |  |
| $E_{gn}(meV)$                                       | 7      | 429.8 [429.8]   | 430.0 [430.0]                  | 431.3 [431.3]                  | 432.0 [432.0]                  |  |
| n <sub>O[E]</sub> <sup>N-MIT</sup>                  | 7      | 4.225 [4.225]   | 4.203 [4.203]                  | 4.094 [4.094]                  | 4.047 [4.047]                  |  |
| $\varepsilon_{1 \text{ O[E]}}^{\text{N-MIT}}$       | 7      | 17.85 [17.85]   | 17.66 [17.66]                  | 16.76 [16.76]                  | 16.38 [16.38]                  |  |
| R <sub>O[E]</sub> <sup>N-MIT</sup>                  | 7      | 0.381 [0.381]   | 0.379 [0.379]                  | 0.369 [0.369]                  | 0.364 [0.364]                  |  |
| At x=0.5,                                           |        |                 |                                |                                |                                |  |
| $E_{gn}(meV)$                                       | 7      | 329.8 [329.8]   | 330.0 [330.0]                  | 331.2 [331.2]                  | 331.8 [331.8]                  |  |
| $n_{O[E]}^{N-MIT}$                                  | 7      | 4.371 [4.371]   | 4.347 [4.347]                  | 4.235 [4.235]                  | 4.186 [4.186]                  |  |
| $\varepsilon_{1 \text{ O[E]}}^{\text{N-MIT}}$       | 7      | 19.10 [19.10]   | 18.90 [18.90]                  | 17.93 [17.93]                  | 17.52 [17.52]                  |  |
| $R_{O[E]}^{N-MIT}$                                  | 7      | 0.394 [0.394]   | 0.392 [0.392]                  | 0.382 [0.382]                  | 0.377 [0.377]                  |  |
| At x=1,                                             |        |                 |                                |                                |                                |  |
| E <sub>gn</sub> (meV)                               | 7      | 229.8 [229.8]   | 230.0 [230.0]                  | 231.09 [231.09]                | 231.66 [231.66]                |  |
| nOE                                                 | 7      | 4.513 [4.513]   | 4.489 [4.489]                  | 4.373 [4.373]                  | 4.322 [4.322]                  |  |
| $\varepsilon_{1 \text{ O[E]}}^{N-MIT}$              | 7      | 20.37 [20.37]   | 20.15 [20.15]                  | 19.12 [19.12]                  | 18.68 [18.68]                  |  |
| R <sub>O[E]</sub>                                   | 7      | 0.406 [0.406]   | 0.404 [0.404]                  | 0.394 [0.394]                  | 0.390 [0.390]                  |  |
| Acceptor                                            |        | Ga              | Mg                             | In                             | Cd                             |  |
| r <sub>a</sub> (nm)                                 | ,      | 0.126           | 0.140                          | 0.144                          | 0.148                          |  |
| At <b>x=0</b> ,                                     |        |                 |                                |                                |                                |  |
| $E_{gp}(meV)$                                       | 7      | 427.45 [427.45] | 429.87 [429.87]                | 430.0 [430.0]                  | 430.1 [430.1]                  |  |
| n <sub>O[E]</sub>                                   | 7      |                 | 4.207 [4.207]                  | 4.203 [4.203]                  | 4.199 [4.199]                  |  |
| εN-MIT<br>1 O[E]                                    | 7      |                 | 17.70 [17.70]                  | 17.66 [17.66]                  | 17.63 [17.63]                  |  |
| R <sub>O[E]</sub>                                   | 7      |                 | 0.379 [0.379]                  | 0.3789 [0.3789]                | 0.3786 [0.3786]                |  |
| <u> </u>                                            |        |                 |                                |                                |                                |  |
|                                                     | 7      | 327 4 [327 4]   | 329 9 [329 9]                  | 330 0 [330 0]                  | 330 1 [330 1]                  |  |
|                                                     |        |                 |                                |                                |                                |  |
| At $x=0.5$ ,<br>$E_{gp}(meV)$<br>$n_{O[E]}^{N-MIT}$ | 7<br>\ |                 | 329.9 [329.9]<br>4.351 [4.351] | 330.0 [330.0]<br>4.347 [4.347] | 330.1 [330.1]<br>4.343 [4.343] |  |

| Cong et al. | World Journal of Engineering Research and To | echnology |
|-------------|----------------------------------------------|-----------|
| 0           |                                              | 0.        |

| $\begin{array}{c} \epsilon_{1\ O[E]}^{N-MIT} \\ \epsilon_{1\ O[E]}^{N-MIT} \\ \epsilon_{1\ O[E]}^{N-MIT} \end{array}$ | <i>y</i> | 19.63 [19.63]<br>0.399 [0.399] | 18.93 [18.93]<br>0.392 [0.392] | 18.90 [18.90]<br>0.3919 [0.3919] | 18.86 [18.86]<br>0.3915 [0.3915] |  |
|-----------------------------------------------------------------------------------------------------------------------|----------|--------------------------------|--------------------------------|----------------------------------|----------------------------------|--|
| $\overline{\text{At } x=1}$ ,                                                                                         |          |                                |                                |                                  |                                  |  |
| $E_{gp}(meV)$                                                                                                         | 7        | 227.4 [227.4]                  | 229.9 [229.9]                  | 230.0 [230.0]                    | 230.1 [230.1]                    |  |
| $n_{O[E]}^{N-MIT}$                                                                                                    | 7        | 4.575 [4.575]                  | 4.493 [4.493]                  | 4.489 [4.489]                    | 4.485 [4.485]                    |  |
| $\epsilon_{1 \text{ O[E]}}^{N-MIT}$                                                                                   | 7        | 20.93 [20.93]                  | 20.19 [20.19]                  | 20.15 [20.15]                    | 20.11 [20.11]                    |  |
| $\epsilon_{1 \text{ O[E]}}^{N-MIT}$                                                                                   | 7        | 0.411 [0.411]                  | 0.4044 [0.4044]                | 0.404 [0.404]                    | 0.4037 [0.4037]                  |  |

**Table 4n.** For T=0K and N=N<sub>CDn</sub>( $r_d$ , x), and for given x and  $r_d$ , the numerical results of  $n_{O[E]}^{N-MIT}$ ,  $\epsilon_{1\ O[E]}^{N-MIT}$  and  $R_{O[E]}^{N-MIT}$  are obtained, using Equations (17, 16), suggesting that, for a given E, they are found to be the same, since  $E_{gn1}=E_{gn2}=E_{gn}$ .

| E in eV                                                                                        | $n_{O[E]}^{N-MIT}$                                                                                                                                                                                      | $\epsilon_{1 \ O[E]}^{N-MIT}$                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R <sub>O[E]</sub> <sup>N-MIT</sup>                                                                                                                                                      |  |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| At x=0, and in                                                                                 | the As-X(x)-system, in which                                                                                                                                                                            | $E_{\rm gn}(r_{\rm As}, x=0) = 0.43  {\rm e}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                    | V,                                                                                                                                                                                      |  |
| 0.43                                                                                           | 4.203 [4.203]                                                                                                                                                                                           | 17.66 [17.66]                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.379 [0.379]                                                                                                                                                                           |  |
| 2                                                                                              | 6.111 [6.111]                                                                                                                                                                                           | 37.34 [37.34]                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.516 [0.516]                                                                                                                                                                           |  |
| 2.5                                                                                            | 7.498 [7.498]                                                                                                                                                                                           | 56.22 [56.22]                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.585 [0.585]                                                                                                                                                                           |  |
| 3                                                                                              | 6.290 [6.290]                                                                                                                                                                                           | 39.56 [39.56]                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.526 [0.526]                                                                                                                                                                           |  |
| 3.5                                                                                            | 3.725 [3.725]                                                                                                                                                                                           | 13.87 [13.87]                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.332 [0.332]                                                                                                                                                                           |  |
| 4                                                                                              | 4.022 [4.022]                                                                                                                                                                                           | 16.18 [16.18]                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.362[0.362]                                                                                                                                                                            |  |
| 4.5                                                                                            | 4.666 [4.666]                                                                                                                                                                                           | 21.77 [21.77]                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.419 [0.419]                                                                                                                                                                           |  |
| 5                                                                                              | 1.561 [1.561]                                                                                                                                                                                           | 2.437 [2.437]                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.048 [0.048]                                                                                                                                                                           |  |
| 5.5                                                                                            | -0.287 [-0.287]                                                                                                                                                                                         | 0.082 [0.082]                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.254 [3.254]                                                                                                                                                                           |  |
| 5                                                                                              | 0.103 [0.103]                                                                                                                                                                                           | 0.011 [0.011]                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.661 [0.661]                                                                                                                                                                           |  |
| <br>10 <sup>22</sup>                                                                           | 2.167 [2.167]                                                                                                                                                                                           | 4.694 [4.694]                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.136 [0.136]                                                                                                                                                                           |  |
|                                                                                                | n the As-X(x)-system, in whi                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                         |  |
| ). 330                                                                                         | 4.347 [4.347]                                                                                                                                                                                           | $\frac{18.90 [18.90]}{18.90}$                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.392 [0.392]                                                                                                                                                                           |  |
| 2                                                                                              | 6.440 [6.440]                                                                                                                                                                                           | 41.47 [41.47]                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.534 [0.535]                                                                                                                                                                           |  |
| 2.5                                                                                            | 7.903 [7.903]                                                                                                                                                                                           | 62.46 [62.46]                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.601 [0.601]                                                                                                                                                                           |  |
| 3                                                                                              | 6.535 [6.535]                                                                                                                                                                                           | 42.71 [42.71]                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.539 [0.539]                                                                                                                                                                           |  |
| 3.5                                                                                            | 3.773 [3.773]                                                                                                                                                                                           | 14.24 [14.24]                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.337 [0.337]                                                                                                                                                                           |  |
| 1                                                                                              | 4.092 [4.092]                                                                                                                                                                                           | 16.75 [16.75]                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.369 [0.369]                                                                                                                                                                           |  |
| 1.5                                                                                            |                                                                                                                                                                                                         | 22.75 [22.75]                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                         |  |
| i.J                                                                                            | 4.770 [4.770]                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.427 [0.427]                                                                                                                                                                           |  |
|                                                                                                | 1.525 [1.525]                                                                                                                                                                                           | 2.325 [2.325]                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.043 [0.043]                                                                                                                                                                           |  |
| 5.5<br>5                                                                                       | -0.385 [-0.385]                                                                                                                                                                                         | 0.148 [0.148]                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.062 [5.062]                                                                                                                                                                           |  |
|                                                                                                | 0.036 [0.036]                                                                                                                                                                                           | 0.001 [0.001]                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.867 [0.867]                                                                                                                                                                           |  |
| $0^{22}$                                                                                       | 2.249 [2.249]                                                                                                                                                                                           | 5.057 [5.057]                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.148 [0.148]                                                                                                                                                                           |  |
|                                                                                                |                                                                                                                                                                                                         | E (= -1) 0.22 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V.                                                                                                                                                                                      |  |
| At x=1, and in                                                                                 | the As-X(x)-system, in which                                                                                                                                                                            | $(\Gamma_{\Delta c}, X = 1) = 0.23 e^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                         |  |
|                                                                                                | the As-X(x)-system, in which                                                                                                                                                                            | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                         |  |
| 0.230                                                                                          | 4.489 [4.489]                                                                                                                                                                                           | 20.15 [20.15]                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.404 [0.404]                                                                                                                                                                           |  |
| <b>0. 230</b><br>2                                                                             | <b>4.489 [4.489]</b> 6.773 [6.773]                                                                                                                                                                      | <b>20.15 [20.15]</b> 45.88 [45.88]                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>0.404 [0.404]</b> 0.552 [0.552]                                                                                                                                                      |  |
| <b>0. 230</b><br>2<br>2.5                                                                      | <b>4.489 [4.489]</b> 6.773 [6.773] 8.315 [8.315]                                                                                                                                                        | <b>20.15 [20.15]</b> 45.88 [45.88] 69.13 [69.13]                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>0.404 [0.404]</b><br>0.552 [0.552]<br>0.617 [0.617]                                                                                                                                  |  |
| <b>0.230</b><br>2<br>2.5<br>3                                                                  | <b>4.489 [4.489]</b> 6.773 [6.773] 8.315 [8.315] 6.779 [6.779]                                                                                                                                          | <b>20.15</b> [20.15]<br>45.88 [45.88]<br>69.13 [69.13]<br>45.95 [45.95]                                                                                                                                                                                                                                                                                                                                                                                                               | <b>0.404 [0.404]</b><br>0.552 [0.552]<br>0.617 [0.617]<br>0.552 [0.552]                                                                                                                 |  |
| 0.230<br>2<br>2.5<br>3<br>3.5                                                                  | <b>4.489 [4.489]</b> 6.773 [6.773] 8.315 [8.315] 6.779 [6.779] 3.814 [3.814]                                                                                                                            | 20.15 [20.15]<br>45.88 [45.88]<br>69.13 [69.13]<br>45.95 [45.95]<br>14.55 [14.55]                                                                                                                                                                                                                                                                                                                                                                                                     | 0.404 [0.404]<br>0.552 [0.552]<br>0.617 [0.617]<br>0.552 [0.552]<br>0.342 [0.342]                                                                                                       |  |
| <b>0.230</b> 2 2.5 3 3.5                                                                       | <b>4.489 [4.489]</b> 6.773 [6.773] 8.315 [8.315] 6.779 [6.779] 3.814 [3.814] 4.156 [4.156]                                                                                                              | 20.15 [20.15]<br>45.88 [45.88]<br>69.13 [69.13]<br>45.95 [45.95]<br>14.55 [14.55]<br>17.27 [17.27]                                                                                                                                                                                                                                                                                                                                                                                    | 0.404 [0.404]<br>0.552 [0.552]<br>0.617 [0.617]<br>0.552 [0.552]<br>0.342 [0.342]<br>0.375 [0.375]                                                                                      |  |
| <b>0.230</b> 2 2.5 3 3.5 4 4.5                                                                 | 4.489 [4.489]<br>6.773 [6.773]<br>8.315 [8.315]<br>6.779 [6.779]<br>3.814 [3.814]<br>4.156 [4.156]<br>4.868 [4.868]                                                                                     | 20.15 [20.15]<br>45.88 [45.88]<br>69.13 [69.13]<br>45.95 [45.95]<br>14.55 [14.55]<br>17.27 [17.27]<br>23.70 [23.70]                                                                                                                                                                                                                                                                                                                                                                   | 0.404 [0.404]<br>0.552 [0.552]<br>0.617 [0.617]<br>0.552 [0.552]<br>0.342 [0.342]<br>0.375 [0.375]<br>0.434 [0.434]                                                                     |  |
| 0.230<br>2<br>2.5<br>3<br>3.5<br>4<br>4.5                                                      | 4.489 [4.489]<br>6.773 [6.773]<br>8.315 [8.315]<br>6.779 [6.779]<br>3.814 [3.814]<br>4.156 [4.156]<br>4.868 [4.868]<br>1.481 [1.481]                                                                    | 20.15 [20.15]<br>45.88 [45.88]<br>69.13 [69.13]<br>45.95 [45.95]<br>14.55 [14.55]<br>17.27 [17.27]<br>23.70 [23.70]<br>2.192 [2.192]                                                                                                                                                                                                                                                                                                                                                  | 0.404 [0.404]<br>0.552 [0.552]<br>0.617 [0.617]<br>0.552 [0.552]<br>0.342 [0.342]<br>0.375 [0.375]<br>0.434 [0.434]<br>0.037 [0.037]                                                    |  |
| 0.230<br>2.2.5<br>3.3.5<br>4.4.5<br>5.5                                                        | 4.489 [4.489]<br>6.773 [6.773]<br>8.315 [8.315]<br>6.779 [6.779]<br>3.814 [3.814]<br>4.156 [4.156]<br>4.868 [4.868]<br>1.481 [1.481]<br>-0.491 [-0.491]                                                 | 20.15 [20.15]<br>45.88 [45.88]<br>69.13 [69.13]<br>45.95 [45.95]<br>14.55 [14.55]<br>17.27 [17.27]<br>23.70 [23.70]<br>2.192 [2.192]<br>0.241 [0.241]                                                                                                                                                                                                                                                                                                                                 | 0.404 [0.404]<br>0.552 [0.552]<br>0.617 [0.617]<br>0.552 [0.552]<br>0.342 [0.342]<br>0.375 [0.375]<br>0.434 [0.434]<br>0.037 [0.037]<br>8.596 [8.596]                                   |  |
| 0.230<br>2<br>2.5<br>3<br>3.5<br>4<br>4.5<br>5                                                 | 4.489 [4.489]<br>6.773 [6.773]<br>8.315 [8.315]<br>6.779 [6.779]<br>3.814 [3.814]<br>4.156 [4.156]<br>4.868 [4.868]<br>1.481 [1.481]                                                                    | 20.15 [20.15]<br>45.88 [45.88]<br>69.13 [69.13]<br>45.95 [45.95]<br>14.55 [14.55]<br>17.27 [17.27]<br>23.70 [23.70]<br>2.192 [2.192]                                                                                                                                                                                                                                                                                                                                                  | 0.404 [0.404]<br>0.552 [0.552]<br>0.617 [0.617]<br>0.552 [0.552]<br>0.342 [0.342]<br>0.375 [0.375]<br>0.434 [0.434]<br>0.037 [0.037]                                                    |  |
| 0.230<br>2<br>2.5<br>3<br>3.5<br>4<br>4.5<br>5<br>5.5<br>6                                     | 4.489 [4.489]<br>6.773 [6.773]<br>8.315 [8.315]<br>6.779 [6.779]<br>3.814 [3.814]<br>4.156 [4.156]<br>4.868 [4.868]<br>1.481 [1.481]<br>-0.491 [-0.491]                                                 | 20.15 [20.15]<br>45.88 [45.88]<br>69.13 [69.13]<br>45.95 [45.95]<br>14.55 [14.55]<br>17.27 [17.27]<br>23.70 [23.70]<br>2.192 [2.192]<br>0.241 [0.241]                                                                                                                                                                                                                                                                                                                                 | 0.404 [0.404]<br>0.552 [0.552]<br>0.617 [0.617]<br>0.552 [0.552]<br>0.342 [0.342]<br>0.375 [0.375]<br>0.434 [0.434]<br>0.037 [0.037]<br>8.596 [8.596]                                   |  |
| 0.230<br>2<br>2.5<br>3<br>3.5<br>4<br>4.5<br>5<br>5.5<br>6<br>                                 | 4.489 [4.489]<br>6.773 [6.773]<br>8.315 [8.315]<br>6.779 [6.779]<br>3.814 [3.814]<br>4.156 [4.156]<br>4.868 [4.868]<br>1.481 [1.481]<br>-0.491 [-0.491]<br>-0.040 [-0.040]                              | 20.15 [20.15]<br>45.88 [45.88]<br>69.13 [69.13]<br>45.95 [45.95]<br>14.55 [14.55]<br>17.27 [17.27]<br>23.70 [23.70]<br>2.192 [2.192]<br>0.241 [0.241]<br>0.002 [0.002]                                                                                                                                                                                                                                                                                                                | 0.404 [0.404]<br>0.552 [0.552]<br>0.617 [0.617]<br>0.552 [0.552]<br>0.342 [0.342]<br>0.375 [0.375]<br>0.434 [0.434]<br>0.037 [0.037]<br>8.596 [8.596]<br>1.172 [1.172]                  |  |
| 0. 230<br>2<br>2.5<br>3<br>3.5<br>4<br>4.5<br>5<br>5.5<br>6<br><br>10 <sup>22</sup>            | 4.489 [4.489]<br>6.773 [6.773]<br>8.315 [8.315]<br>6.779 [6.779]<br>3.814 [3.814]<br>4.156 [4.156]<br>4.868 [4.868]<br>1.481 [1.481]<br>-0.491 [-0.491]<br>-0.040 [-0.040]<br>2.328 [2.328]             | 20.15 [20.15] 45.88 [45.88] 69.13 [69.13] 45.95 [45.95] 14.55 [14.55] 17.27 [17.27] 23.70 [23.70] 2.192 [2.192] 0.241 [0.241] 0.002 [0.002]  5.420 [5.420]                                                                                                                                                                                                                                                                                                                            | 0.404 [0.404]<br>0.552 [0.552]<br>0.617 [0.617]<br>0.552 [0.552]<br>0.342 [0.342]<br>0.375 [0.375]<br>0.434 [0.434]<br>0.037 [0.037]<br>8.596 [8.596]<br>1.172 [1.172]<br>0.159 [0.159] |  |
| 0. 230<br>2<br>2.5<br>3<br>3.5<br>4<br>4.5<br>5<br>5.5<br>6<br><br>10 <sup>22</sup>            | 4.489 [4.489] 6.773 [6.773] 8.315 [8.315] 6.779 [6.779] 3.814 [3.814] 4.156 [4.156] 4.868 [4.868] 1.481 [1.481] -0.491 [-0.491] -0.040 [-0.040]  2.328 [2.328]  nMIT O[E]  the Sb-X(x)-system, in which | $\begin{array}{c} \textbf{20.15} \   \textbf{20.15}   \\ 45.88 \   45.88   \\ 69.13 \   69.13   \\ 45.95 \   45.95   \\ 14.55 \   14.55   \\ 17.27 \   17.27   \\ 23.70 \   23.70   \\ 2.192 \   2.192   \\ 0.241 \   0.241   \\ 0.002 \   0.002   \\ \hline \textbf{5.420} \   \textbf{5.420}   \\ \hline \boldsymbol{\epsilon}_{\text{In}}^{\text{MIT}} \\ \boldsymbol{\epsilon}_{\text{In}} (\boldsymbol{r}_{\text{Sb}}, \boldsymbol{x} = \boldsymbol{0}) = 0.4313 \\ \end{array}$ | 0.404 [0.404]<br>0.552 [0.552]<br>0.617 [0.617]<br>0.552 [0.552]<br>0.342 [0.342]<br>0.375 [0.375]<br>0.434 [0.434]<br>0.037 [0.037]<br>8.596 [8.596]<br>1.172 [1.172]<br>0.159 [0.159] |  |
| 0. 230<br>2<br>2.5<br>3<br>3.5<br>4<br>4.5<br>5<br>5.5<br>6<br><br>10 <sup>22</sup><br>E in eV | 4.489 [4.489] 6.773 [6.773] 8.315 [8.315] 6.779 [6.779] 3.814 [3.814] 4.156 [4.156] 4.868 [4.868] 1.481 [1.481] -0.491 [-0.491] -0.040 [-0.040]  2.328 [2.328]                                          | 20.15 [20.15] 45.88 [45.88] 69.13 [69.13] 45.95 [45.95] 14.55 [14.55] 17.27 [17.27] 23.70 [23.70] 2.192 [2.192] 0.241 [0.241] 0.002 [0.002]  5.420 [5.420]                                                                                                                                                                                                                                                                                                                            | 0.404 [0.404]<br>0.552 [0.552]<br>0.617 [0.617]<br>0.552 [0.552]<br>0.342 [0.342]<br>0.375 [0.375]<br>0.434 [0.434]<br>0.037 [0.037]<br>8.596 [8.596]<br>1.172 [1.172]<br>0.159 [0.159] |  |

| 3                | 6.180 [6.180]                | 38.19 [38.19]                                      | 0.520 [0.520] |  |
|------------------|------------------------------|----------------------------------------------------|---------------|--|
| 3.5              | 3.618 [3.618]                | 13.09 [13.09]                                      | 0.321 [0.321] |  |
| 4                | 3.915 [3.915]                | 15.32 [15.32]                                      | 0.352 [0.352] |  |
| 4.5              | 4.558 [4.558]                | 20.78 [20.78]                                      | 0.410 [0.410] |  |
| 5                | 1.455 [1.455]                | 2.116 [2.116]                                      | 0.034 [0.034] |  |
| 5.5              | -0.392 [-0.392]              | 0.154 [0.154]                                      | 5.243 [5.243] |  |
| 6                | -0.002 [-0.002]              | 0.000007 [0.000007]                                | 1.011 [1.011] |  |
| 10 <sup>22</sup> | 2.059 [2.059]                | 4.239 [4.239]                                      | 0.120 [0.120] |  |
| At x=0.5, and    | in the Sb-X(x)-system, in wh | nich $E_{gn}(r_{Sb}, x = 0.5) = 0.33$              | 12 eV,        |  |
| 0.3312           | 4.235 [4.235]                | 17.93 [17.93]                                      | 0.382 [0.382] |  |
| 2                | 6.325 [6.325]                | 40.00 [40.00]                                      | 0.528 [0.528] |  |
| 2.5              | 7.787 [7.787]                | 60.64 [60.64]                                      | 0.597 [0.597] |  |
| 3                | 6.421 [6.421]                | 41.23 [41.23]                                      | 0.534 [0.534] |  |
| 3.5              | 3.662 [3.662]                | 13.41 [13.41]                                      | 0.326 [0.326] |  |
| 4                | 3.981 [3.981]                | 15.85 [15.85]                                      | 0.358 [0.358] |  |
| 4.5              | 4.658[4.658]                 | 21.69 [21.69]                                      | 0.418 [0.418] |  |
| 5                | 1.415 [1.415]                | 2.001 [2.001]                                      | 0.029 [0.029] |  |
| 5.5              | -0.494 [-0.494]              | 0.244 [0.244]                                      | 8.726 [8.726] |  |
| 6                | -0.074 [-0.074]              | 0.005 [0.005]                                      | 1.347 [1.347] |  |
| 10 <sup>22</sup> | 2.137[2.137]                 | 34.567 [4.567]                                     | 0.131 [0.131] |  |
| At x=1, and in   | the Sb-X(x)-system, in which | $E_{\rm gn}(r_{\rm Sb}, x = 1) = 0.2311  \epsilon$ | eV,           |  |
| 0.2311           | 4.373 [4.373]                | 19.12 [19.12]                                      | 0.394 [0.394] |  |
| 2                | 6.655 [6.655]                | 44.29 [44.29]                                      | 0.546 [0.546] |  |
| 2.5              | 8.195 [8.195]                | 67.16 [67.16]                                      | 0.612 [0.612] |  |
| 3                | 6.661 [6.661]                | 44.37 [44.37]                                      | 0.546 [0.546] |  |
| 3.5              | 3.699 [3.699]                | 13.68 [13.68]                                      | 0.330 [0.330] |  |
| 4                | 4.040 [4.040]                | 16.33 [16.33]                                      | 0.364 [0.364] |  |
| 4.5              | 4.752 [4.752]                | 22.58 [22.58]                                      | 0.425 [0.425] |  |
| 5                | 1.366 [1.366]                | 1.867 [1.867]                                      | 0.024 [0.024] |  |
| 5.5              | -0.605 [-0.605]              | 0.366 [0.366]                                      | 16.51 [16.51] |  |
| 6                | -0.154 [-0.154]              | 0.023 [0.023]                                      | 1.858 [1.858] |  |
|                  |                              |                                                    |               |  |

**Table 4p.** For T=0K and N=N<sub>CDp</sub>( $r_a$ , x), and for given x and  $r_d$ , the numerical results of  $n_{O[E]}^{N-MIT}$ ,  $\epsilon_{1\,O[E]}^{N-MIT}$  and  $R_{O[E]}^{N-MIT}$  are obtained, using Equations (17, 16), suggesting that, for a given E, they are found to be the same, since  $E_{gp1} = E_{gp2} = E_{gp}$ .

| E in eV          | $n_{O[E]}^{N-MIT}$          | $\epsilon_{1 \ O[E]}^{N-MIT}$     | $R_{O[E]}^{N-MIT}$ |  |
|------------------|-----------------------------|-----------------------------------|--------------------|--|
| At x=0, and in t | he Mg-X(x)-system, in which | $h E_{gp}(r_{Mg}, x = 0) = 0.429$ | 99 eV,             |  |
| 0.4299           | 4.207 [4.207]               | 17.70 [17.70]                     | 0.3794 [0.379]     |  |
| 2                | 6.115 [6.115]               | 37.39 [37.39]                     | 0.517 [0.5172]     |  |
| 2.5              | 7.502 [7.502]               | 56.28 [56.28]                     | 0.585 [0.585]      |  |
| 3                | 6.294 [6.294]               | 39.61 [39.61]                     | 0.527 [0.527]      |  |
| 3.5              | 3.728 [3.728]               | 13.90 [13.90]                     | 0.333 [0.333]      |  |
| 4                | 4.026 [4.026]               | 16.21 [16.21]                     | 0.362 [0.362]      |  |
| 4.5              | 4.670 [4.670]               | 21.81 [21.81]                     | 0.419 [0.419]      |  |
| 5                | 1.564 [1.564]               | 2.448 [2.448]                     | 0.048 [0.048]      |  |
| 5.5              | -0.283 [-0.283]             | 0.080[0.080]                      | 3.205 [3.205]      |  |
| 6                | 0.106 [0.106]               | 0.011 [0.011]                     | 0.652 [0.652]      |  |
| 10 <sup>22</sup> | 2.170 [2.170]               | 4.710 [4.710]                     | 0.136 [0.136]      |  |
| At x=0.5, and in | the Mg-X(x)-system, in wh   | ich $E_{gp}(r_{Mg}, x = 0.5) = 0$ | .3299 eV,          |  |
| 0.3299           | 4.351 [4.351]               | 18.93 [18.93]                     | 0.392 [0.392]      |  |
| 2                | 6.444 [6.444]               | 24.23 [24.23]                     | 0.439 [0.439]      |  |
| 2.5              | 7.907 [7.907]               | 35.49 [35.49]                     | 0.508 [0.508]      |  |
| 3                | 6.539 [6.539]               | 42.76 [42.76]                     | 0.540 [0.540]      |  |
| 3.5              | 3.777 [3.777]               | 14.27 [14.27]                     | 0.338 [0.338]      |  |

| Cong et al. | <b>World Journal of Engineering Research and</b> | <b>Technology</b> |
|-------------|--------------------------------------------------|-------------------|
|             |                                                  |                   |

| 4                    | 4.096 [4.096]                            | 16.78 [16.78]                      | 0.369 [0.369]           |  |
|----------------------|------------------------------------------|------------------------------------|-------------------------|--|
| 4.5                  | 4.774 [4.774]                            | 22.79 [22.79]                      | 0.427 [0.427]           |  |
| 5                    | 1.529 [1.529]                            | 2.337 [2.337]                      | 0.044 [0.044]           |  |
| 5.5                  | -0.381 [-0.381]                          | 0.145 [0.145]                      | 4.977 [4.977]           |  |
| 6                    | 0.039 [0.039]                            | 0.001 [0.001]                      | 0.854 [0.854]           |  |
|                      | []                                       | []                                 | []                      |  |
| $10^{22}$            | 2.253 [2.253]                            | 5.074 [5.074]                      | 0.148 [0.148]           |  |
| A. 1 1: .1           | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | F ( 1) 0.220                       | 20. 17                  |  |
|                      | he Mg-X(x)-system, in which              |                                    |                         |  |
| 0.2299               | 4.493 [4.493]                            | 20.19 [20.19]                      | 0.404 [0.404]           |  |
| 2.5                  | 8.319 [8.319]                            | 69.21 [69.21]                      | 0.617 [0.617]           |  |
| 3                    | 6.783 [6.783]                            | 46.01 [46.01]                      | 0.552 [0.552]           |  |
| 3.5                  | 3.818 [3.818]                            | 14.58 [14.58]                      | 0.342 [0.342]           |  |
| 4                    | 4.160 [4.160]                            | 17.30 [17.30]                      | 0.375 [0.375]           |  |
| 4.5                  | 4.872 [4.872]                            | 23.74 [23.74]                      | 0.435 [0.435]           |  |
| 5                    | 1.484 [1.484]                            | 2.204 [2.204]                      | 0.038 [0.038]           |  |
| 5.5                  | -0.487 [-0.487]                          | 0.238 [0.238]                      | 8.428 [8.428]           |  |
| 6                    | -0.036 [-0.036]                          | 0.001 [0.001]                      | 1.154 [1.154]           |  |
| 10 <sup>22</sup>     | 2.332 [2.332]                            | 5.439 [5.439]                      | 0.160 [0.160]           |  |
| E in eV              | n                                        | e                                  | P                       |  |
|                      | n <sub>O-EP[E-OP]</sub>                  | ε <sub>10-ΕΡ[Ε-ΟΡ]</sub>           | R <sub>O-EP[E-OP]</sub> |  |
|                      | he In-X(x)-system, in which              | 01                                 |                         |  |
| 0.4300               | 4.203 [4.203]                            | 17.66 [17.66]                      | 0.379 [0.379]           |  |
| 2                    | 6.111 [6.111]                            | 37.34 [37.34]                      | 0.516 [0.516]           |  |
| 2.5                  | 7.498 [7.498]                            | 56.22 [56.22]                      | 0.585 [0.585]           |  |
| 3                    | 6.290 [6.290]                            | 39.56 [39.56]                      | 0.526 [0.526]           |  |
| 3.5                  | 3.725 [3.725]                            | 13.87 [13.87]                      | 0.332 [0.332]           |  |
| 4                    | 4.022 [4.022]                            | 16.18 [16.18]                      | 0.362 [0.362]           |  |
| 4.5                  | 4.666 [4.666]                            | 21.77 [21.77]                      | 0.419 [0.419]           |  |
| 5                    | 1.561 [1.561]                            | 2.437 [2.437]                      | 0.048 [0.048]           |  |
| 5.5                  | -0.287 [-0.287]                          | 0.082 [0.082]                      | 3.254 [3.254]           |  |
| 6                    | 0.103 [0.103]                            | 0.011 [0.011]                      | 0.661 [0.661]           |  |
| 10 <sup>22</sup>     | 2.167 [2.167]                            | 4.694 [4.694]                      | 0.136 [0.136]           |  |
| At x=0.5, and in     | the In-X(x)-system, in whic              | $h E_{gp}(r_{In}, x = 0.5) = 0.33$ | 3 eV,                   |  |
| 0.330                | 4.347 [4.347]                            | 18.90 [18.90]                      | 0.392 [0.392]           |  |
| 2                    | 6.440 [6.440]                            | 41.47 [41.47]                      | 0.535 [0.535]           |  |
| 2.5                  | 7.903 [7.903]                            | 62.46 [62.46]                      | 0.601 [0.601]           |  |
| 3                    | 6.535 [6.535]                            | 42.71 [42.71]                      | 0.539 [0.539]           |  |
| 3.5                  | 3.773 [3.773]                            | 14.24 [14.24]                      | 0.337 [0.337]           |  |
| 4                    | 4.092 [4.092]                            | 16.75 [16.75]                      | 0.369 [0.369]           |  |
| 4.5                  | 4.770 [4.770]                            | 22.75 [22.75]                      | 0.427 [0.427]           |  |
| 5                    | 1.525 [1.525]                            | 2.325 [2.325]                      | 0.043 [0.043]           |  |
| 5.5                  | -0.385 [-0.385]                          | 0.148 [0.148]                      | 5.062 [5.062]           |  |
| 6                    | 0.036 [0.036]                            | 0.001 [0.001]                      | 0.867 [0.867]           |  |
| •••                  | 0.050 [0.050]                            | 0.001 [0.001]                      | 0.007 [0.007]           |  |
| 10 <sup>22</sup>     | 2.249 [2.249]                            | 5.057 [5.057]                      | 0.148 [0.148]           |  |
|                      |                                          |                                    |                         |  |
|                      | he In-X(x)-system, in which              | 8                                  | V,                      |  |
| 0.230                | 4.489 [4.489]                            | 20.15 [20.15]                      | 0.404 [0.404]           |  |
| 2                    | 6.773 [6.773]                            | 45.88 [45.88]                      | 0.552 [0.552]           |  |
| 2.5                  | 8.315 [8.315]                            | 69.13 [69.13]                      | 0.617 [0.617]           |  |
| 3                    | 6.779 [6.779]                            | 45.95 [45.95]                      | 0.552 [0.552]           |  |
| 3.5                  | 3.814 [3.814]                            | 14.55 [14.55]                      | 0.342 [0.342]           |  |
| 4                    | 4.156 [4.156]                            | 17.27 [17.27]                      | 0.375 [0.375]           |  |
| 4.5                  | 4.868 [4.868]                            | 23.70 [23.70]                      | 0.434 [0.434]           |  |
| 5                    | 1.481 [1.481]                            | 2.192 [2.192]                      | 0.037 [0.037]           |  |
| 5.5                  | -0.491 [-0.491]                          | 0.241 [0.241]                      | 8.596 [8.596]           |  |
| 6                    | -0.040 [-0.040]                          | 0.001 [0.001]                      | 1.172 [1.172]           |  |
|                      |                                          | 0.001 [0.001]                      |                         |  |
|                      | []                                       |                                    |                         |  |
| <br>10 <sup>22</sup> | 2.328 [2.328]                            | 5.420 [5.420]                      | 0.159 [0.159]           |  |

**Table 5.** For T=0K, E  $\cong$  E<sub>gn(gp)</sub> and N\* = N<sub>CDn(NDp)</sub>, and from Eq. (16b), the numerical results of  $\sigma_{O[E]}^{EBT}$ ,  $\kappa_{O[E]}^{EBT}$ ,  $\epsilon_{2O[2E]}^{EBT}$  and  $\propto_{O[E]}^{EBT}$  are obtained, using Equations (18, 19b, 19c, 19d), suggesting that they increase ( $\nearrow$ ) with increasing ( $\nearrow$ )  $r_{d(a)}$ .

| Donor                                                                                                                                                 | P                              | As                             | Sb                             | Sn                             | <del></del> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------|
| r <sub>d</sub> (nm) [4] /                                                                                                                             | 0.110                          | 0.118                          | 0.136                          | 0.140                          |             |
| At <b>x=0</b> ,                                                                                                                                       |                                |                                |                                |                                |             |
| $\sigma_{O[E]}^{EBT} \left( \frac{10^2}{\Omega \times cm} \right) \nearrow$                                                                           | 1.349 [0.961]                  | 1.377 [0.981]                  | 1.525 [1.086]                  | 1.596 [1.137]                  |             |
| $\kappa_{O[E]}^{EBT} \times 10^3$ 7                                                                                                                   | 2.326 [1.655]                  | 2.434 [1.732]                  | 3.053 [2.172]                  | 3.378 [2.403]                  |             |
| $\varepsilon_{20[2E]}^{EBT} \times 10^2$ /                                                                                                            | 1.975 [1.407]                  | 2.056 [1.465]                  | 2.514 [1.791]                  | 2.750 [1.960]                  |             |
| $ \propto_{O[E]}^{EBT} \left(\frac{10^2}{cm}\right) \qquad \nearrow $                                                                                 | 1.013 [0.721]                  | 1.060 [0.755]                  | 1.334 [0.949]                  | 1.479 [1.052]                  |             |
| At <b>x=0.5</b> ,                                                                                                                                     |                                |                                |                                |                                |             |
| $\sigma_{O[E]}^{EBT} \left( \frac{10^2}{\Omega \times cm} \right) \nearrow$                                                                           | 1.285 [0.942]                  | 1.311 [0.961]                  | 1.452 [1.065]                  | 1.520 [1.114]                  |             |
| $\kappa_{O[E]}^{EBT} \times 10^3$ /                                                                                                                   | 2.589 [1.897]                  | 2.709 [1.985]                  | 3.396 [2.488]                  | 3.757 [2.752]                  |             |
| $\varepsilon_{20[2E]}^{EBT} \times 10^2$ /                                                                                                            | 2.275 [1.668]                  | 2.368 [1.736]                  | 2.893 [2.122]                  | 3.164 [2.321]                  |             |
|                                                                                                                                                       | 0.865 [0.634]                  | 0.906 [0.664]                  | 1.140 [0.835]                  | 1.263 [0.925]                  |             |
| At <b>x=1</b> ,                                                                                                                                       |                                |                                |                                |                                |             |
| $\sigma^{\mathrm{EBT}}_{\mathrm{O[E]}}\left(\frac{10^2}{\Omega \times cm}\right)$ /                                                                   | 1.234 [0.925]                  | 1.260 [0.944]                  | 1.395 [1.046]                  | 1.460 [1.095]                  |             |
| $\kappa_{O[E]}^{EBT} \times 10^{3}$ / $\epsilon_{2O[2E]}^{EBT} \times 10^{2}$ /                                                                       | 3.225 [2.416]                  | 3.374 [2.528]                  | 4.226 [3.165]                  | 4.672 [3.498]                  |             |
| $\varepsilon_{20[2E]}^{EB1} \times 10^2$ /                                                                                                            | 2.926 [2.194]                  | 3.046 [2.283]                  | 3.717 [2.786]                  | 4.063 [3.046]                  |             |
| $\propto_{O[E]}^{EBT} \left(\frac{10^2}{cm}\right) $                                                                                                  | 0.751 [0.563]                  | 0.787 [0.589]                  | 0.990 [0.741]                  | 1.097 [0.821]                  |             |
| Acceptor                                                                                                                                              | Ga                             | Mg                             | In                             | Cd                             |             |
| r <sub>a</sub> (nm) /                                                                                                                                 | 0.126                          | 0.140                          | 0.144                          | 0.148                          |             |
|                                                                                                                                                       |                                |                                |                                |                                |             |
| At $\mathbf{x} = 0$ ,<br>$\sigma_{O[E]}^{EBT} \left( \frac{10^3}{\Omega \times cm} \right) \nearrow$                                                  | 2.451 [0.305]                  | 2.622 [0.326]                  | 2.631 [0.327]                  | 2.640 [0.328]                  |             |
| $\kappa_{\text{O[F]}}^{\text{EBT}} \times 10^2$ /                                                                                                     | 4.038 [0.497]                  | 4.687 [0.576]                  | 4.723 [0.581]                  | 4.759 [0.585]                  |             |
| $\kappa_{O[E]}^{EBT} \times 10^{2}$ / $\epsilon_{2O[2E]}^{EBT} \times 10^{1}$ /                                                                       | 3.429 [0.426]                  | 3.902 [0.485]                  | 3.928 [0.488]                  | 3.955 [0.492]                  |             |
| $\propto_{O[E]}^{EBT} \left(\frac{10^3}{cm}\right) $                                                                                                  | 1.395 [0.172]                  | 1.523 [0.187]                  | 1.529 [0.188]                  | 2.488 [0.306]                  |             |
| ○O[E] ( cm) /                                                                                                                                         | 1.393 [0.172]                  | 1.323 [0.107]                  | 1.329 [0.100]                  | 2.488 [0.300]                  |             |
| At <b>x=0.5</b> ,                                                                                                                                     |                                |                                |                                |                                |             |
| $\sigma^{\mathrm{EBT}}_{\mathrm{O[E]}}\left(\frac{10^3}{\Omega \times cm}\right)$ >                                                                   | 3.012 [0.330]                  | 3.223 [0.353]                  | 3.234 [0.354]                  | 3.245 [0.355]                  |             |
| $\kappa_{O[E]}^{EBT} \times 10^2$ /                                                                                                                   | 5.819 [0.629]                  | 6.743 [0.728]                  | 6.794 [0.733]                  | 6.846 [0.739]                  |             |
| $\varepsilon_{20[2E]}^{EBT} \times 10^1 \ \nearrow$                                                                                                   | 5.107 [0.559]                  | 5.802 [0.636]                  | 5.840 [0.640]                  | 5.879 [0.644]                  |             |
| $\propto_{O[E]}^{EBT} \left(\frac{10^3}{cm}\right) $                                                                                                  |                                |                                |                                |                                |             |
|                                                                                                                                                       | 1.540 [0.166]                  | 1.681 [0.181]                  | 1.688 [0.182]                  | 2.746 [0.296]                  |             |
| At x=1,                                                                                                                                               |                                |                                | 1.688 [0.182]                  | 2.746 [0.296]                  |             |
| At $x=1$ , $\sigma_{O[E]}^{EBT} \left(\frac{10^3}{O \times cm}\right) \nearrow$                                                                       |                                |                                | 1.688 [0.182]<br>3.838 [0.378] | 2.746 [0.296]<br>3.851 [0.379] |             |
| $\begin{array}{c} \sigma^{EBT}_{O[E]} \left( \frac{10^3}{\Omega \times cm} \right) \nearrow \\ \kappa^{EBT}_{O[E]} \times 10^2  \nearrow \end{array}$ | 1.540 [0.166]                  | 1.681 [0.181]                  |                                |                                |             |
|                                                                                                                                                       | 1.540 [0.166]<br>3.575 [0.352] | 1.681 [0.181]<br>3.825 [0.376] | 3.838 [0.378]                  | 3.851 [0.379]                  |             |

**Table 6n.** In the X(x)-system, at E=3.2 eV and T=20 K, for given  $r_d$  and x, the numerical results of  $n_{O[E]}(E)$ ,  $\kappa_{O[E]}(E)$ ,  $\epsilon_{1O[E]}(E)$  and  $\epsilon_{2O[E]}(E)$ , are obtained, as functions of N, by using Equations (17, 19b, 19c and 16), respectively, noting that, with increasing N,  $\eta_{o[E]}$  increases [increases], and  $E_{gn1\ O[E]}$  increases [decreases], respectively.

| $N (10^{18} \text{ cm}^{-3}) /$                      | 15            | 26             | 60             | 100                    |  |
|------------------------------------------------------|---------------|----------------|----------------|------------------------|--|
| At x=0                                               |               |                |                |                        |  |
| For $\mathbf{r_d}=\mathbf{r_{As}},$                  |               |                |                |                        |  |
| $\eta_{o[E]} \gg 1$                                  | 185.6 [142.8] | 267.9 [206.1]  | 468.1 [360.1]  | 658.1 [506.2]          |  |
| E <sub>gn1 O[E]</sub> in eV                          | 0.41 [0.09]   | 0.45 [-0.004]  | 0.59 [-0.21]   | 0.74 [-0.39]           |  |
| n <sub>O[E]</sub>                                    | 5.24 [5.47]   | 5.21 [5.53]    | 5.11 [5.67]    | 4.99 [5.77]            |  |
| $\kappa_{O[E]}$                                      | 0.06 [0.04]   | 0.10 [0.06]    | 0.23 [0.13]    | 0.39 [0.21]            |  |
| ε <sub>10[E]</sub>                                   | 27.49 [29.89] | 27.14 [30.61]  | 26.03 [32.09]  | 24.73 [33.27]          |  |
| ε <sub>20[E]</sub>                                   | 0.65 [0.41]   | 1.09 [0.68]    | 2.39 [1.49]    | 3.87 [2.40]            |  |
| <br>For <b>r</b> — <b>r</b>                          |               |                |                |                        |  |
| For $\mathbf{r_d} = \mathbf{r_{Sb}}$ ,               | 185.5 [142.7] | 267.9 [206.1]  | 468.1 [360.0]  | 658.1 [506.2]          |  |
| $ \eta_{o[E]} \gg 1 $ $ E_{gn1 O[E]} \text{ in eV} $ | 0.44 [0.12]   | 0.49 [0.03]    | 0.64 [-0.16]   | 0.81 [-0.32]           |  |
| 0 1 1                                                |               |                |                |                        |  |
| n <sub>O[E]</sub>                                    | 5.12 [5.37]   | 5.08 [5.40]    | 4.96 [5.52]    | 4.83 [5.62]            |  |
| $\kappa_{O[E]}$                                      | 0.06 [0.03]   | 0.10 [0.06]    | 0.22 [0.12]    | 0.37 [0.19]            |  |
| ε <sub>10[E]</sub>                                   | 26.17 [28.53] | 25.77 [29.18]  | 24.55 [30.51]  | 23.16 [31.59]          |  |
| ε <sub>20[E]</sub>                                   | 0.60 [0.38]   | 1.01 [0.63]    | 2.20 [1.37]    | 3.55 [2.21]            |  |
| At x=0.5                                             |               |                |                |                        |  |
| For $\mathbf{r_d} = \mathbf{r_{As}}$ ,               | 1=0 0 515 5 5 |                | 100 = 55 11 15 | 600 0 F4 <b>7</b> 0 67 |  |
| $\eta_{o[E]} \gg 1$                                  | 172.0 [135.3] | 248.35 [195.3] | 433.7 [341.1]  | 609.8 [479.6]          |  |
| E <sub>gn1 O[E]</sub> in eV                          | 0.27 [-0.02]  | 0.30 [-0.12]   | 0.41 [-0.33]   | 0.53 [-0.51]           |  |
| $n_{O[E]}$                                           | 5.42 [5.62]   | 5.40 [5.69]    | 5.32 [5.82]    | 5.23 [5.93]            |  |
| $\kappa_{\mathrm{O[E]}}$                             | 0.05 [0.03]   | 0.09 [0.06]    | 0.21 [0.12]    | 0.34 [0.19]            |  |
| ε <sub>10[E]</sub>                                   | 29.41 [31.63] | 29.17 [32.37]  | 28.32 [33.89]  | 27.28 [35.10]          |  |
| <sup>€</sup> 20[E]                                   | 0.61 [0.40]   | 1.01 [0.66]    | 2.21 [1.43]    | 3.58 [2.31]            |  |
| For $\mathbf{r_d}=\mathbf{r_{Sb}},$                  |               |                |                |                        |  |
| $\eta_{o[E]} \gg 1$                                  | 171.9 [135.2] | 248.2 [195.2]  | 433.7 [341.1]  | 609.7 [479.6]          |  |
| E <sub>gn1 O[E]</sub> in eV                          | 0.30 [0.009]  | 0.34 [-0.08]   | 0.46 [-0.28]   | 0.60 [-0.44]           |  |
| n <sub>O[E]</sub>                                    | 5.29 [5.49]   | 5.26 [5.55]    | 5.17 [5.68]    | 5.07 [5.78]            |  |
| $\kappa_{O[E]}$                                      | 0.05 [0.03]   | 0.09 [0.05]    | 0.20 [0.12]    | 0.32 [0.18]            |  |
| ε <sub>10[E]</sub>                                   | 28.01 [30.19] | 27.71 [30.85]  | 26.73 [32.23]  | 25.59 [33.33]          |  |
| ε <sub>20[E]</sub>                                   | 0.56 [0.37]   | 0.93 [0.61]    | 2.03 [1.32]    | 3.29 [2.13]            |  |
| At x=1                                               |               |                |                |                        |  |
| For $\mathbf{r_d} = \mathbf{r_{As}}$ ,               |               |                |                |                        |  |
| $\eta_{o[E]} \gg 1$                                  | 160.6 [128.5] | 231.9 [185.5]  | 405.1 [324.1]  | 569.5 [455.6]          |  |
| E <sub>gn1 O[E]</sub> in eV                          | 0.14 [-0.13]  | 0.16 [-0.23]   | 0.24 [-0.45]   | 0.34 [-0.64]           |  |
| n <sub>O[E]</sub>                                    | 5.59 [5.77]   | 5.58 [5.84]    | 5.53 [5.97]    | 5.46 [6.08]            |  |
| κ <sub>0[E]</sub>                                    | 0.05 [0.03]   | 0.08 [0.05]    | 0.19 [0.11]    | 0.31 [0.18]            |  |
| ε <sub>10[E]</sub>                                   | 31.29 [33.35] | 31.14 [34.11]  | 30.51 [35.66]  | 29.68 [36.89]          |  |
| ε <sub>20[E]</sub>                                   | 0.57 [0.38]   | 0.94 [0.63]    | 2.07 [1.38]    | 3.35 [2.23]            |  |
|                                                      | _<br>         |                |                |                        |  |
| For $\mathbf{r_d} = \mathbf{r_{Sb}}$ ,               | 160.6 [128.5] | 231.8 [185.5]  | 405.1 [324.0]  | 569.5 [455.6]          |  |
| $\eta_{o[E]} \gg 1$                                  |               |                |                |                        |  |
| E <sub>gn1 O[E]</sub> in eV                          | 0.17 [-0.10]  | 0.20 [-0.20]   | 0.29 [-0.40]   | 0.41 [-0.57]           |  |
| n <sub>O[E]</sub>                                    | 5.46 [5.64]   | 5.44 [5.70]    | 5.37 [5.82]    | 5.29 [5.92]            |  |
| $\kappa_{O[E]}$                                      | 0.05 [0.03]   | 0.08 [0.05]    | 0.18 [0.11]    | 0.29 [0.17]            |  |
| ε <sub>10[E]</sub>                                   | 29.80 [31.83] | 29.59 [32.51]  | 28.83 [33.91]  | 27.89 [35.03]          |  |
|                                                      |               |                |                |                        |  |

| Cong | et  | al. |
|------|-----|-----|
| Cong | ei. | uı. |

#### World Journal of Engineering Research and Technology

| ε <sub>20[E]</sub>                         | 0.52 [0.35] | 0.87 [0.59] | 1.90 [1.27] | 3.07 [2.05] |  |
|--------------------------------------------|-------------|-------------|-------------|-------------|--|
| N ( $10^{18}  \text{cm}^{-3}$ ) $\nearrow$ | 15          | 26          | 60          | 100         |  |

**Table 6p.** In the X(x)-system, at E=3.2 eV and T=20 K, for given  $r_a$  and x, the numerical results of  $n_{O[E]}(E)$ ,  $\kappa_{O[E]}(E)$ ,  $\epsilon_{1O[E]}(E)$  and  $\epsilon_{2O[E]}(E)$ , are obtained, as functions of N, by using Equations (17, 19b, 19c and 16), respectively, noting that, with increasing N,  $\eta_{O[E]}$  increases [increases], and  $E_{gp1\ O[E]}$  increases [decreases], respectively.

| N ( $10^{18} \text{ cm}^{-3}$ ) $\nearrow$ | 15            | 26            | 60            | 100           |          |
|--------------------------------------------|---------------|---------------|---------------|---------------|----------|
| At x=0                                     |               |               |               |               |          |
| For $\mathbf{r_d} = \mathbf{r_{Mg}}$ ,     |               |               |               |               |          |
| $\eta_{o[E]} \gg 1$                        | 178.2 [41.11] | 261.8 [60.41] | 463.5 [106.9] | 654.2 [151.0] |          |
| E <sub>gp1 O[E]</sub> in eV                | 0.69 [0.38]   | 0.82 [0.37]   | 1.14 [0.34]   | 1.45 [0.32]   |          |
| n <sub>O[E]</sub>                          | 5.03 [5.26]   | 4.93 [5.27]   | 4.66 [5.29]   | 4.38 [5.31]   |          |
| $\kappa_{O[E]}$                            | 0.06 [0.005]  | 0.11 [0.008]  | 0.25 [0.017]  | 0.44 [0.028]  |          |
| $\epsilon_{10[E]}$                         | 25.33 [27.7]  | 24.28 [27.8]  | 21.65 [28.0]  | 19.03 [28.2]  |          |
| ε <sub>20[E]</sub>                         | 0.62 [0.05]   | 1.06 [0.09]   | 2.36 [0.18]   | 3.85 [0.29]   |          |
| For $\mathbf{r_d} = \mathbf{r_{In}}$ ,     |               |               |               |               |          |
| $\eta_{o[E]} \gg 1$                        | 178.1 [41.09] | 261.8 [60.39] | 463.4 [106.9] | 654.2 [150.9] |          |
| $E_{gp1\ O[E]}$ in eV                      | 0.69 [0.38]   | 0.82 [0.37]   | 1.14 [0.35]   | 1.45 [0.32]   |          |
| n <sub>O[E]</sub>                          | 5.03 [5.26]   | 4.92 [5.27]   | 4.65 [5.29]   | 4.38 [5.31]   | <u>-</u> |
| $\kappa_{O[E]}$                            | 0.06 [0.005]  | 0.11 [0.008]  | 0.25 [0.018]  | 0.44 [0.027]  |          |
| $\epsilon_{10[E]}$                         | 25.29 [27.7]  | 24.24 [27.8]  | 21.61 [28.0]  | 19.00 [28.1]  |          |
| $\epsilon_{20[E]}$                         | 0.62 [0.05]   | 1.06 [0.09]   | 2.36 [0.19]   | 3.84 [0.29]   |          |
| At x=0.5                                   |               |               |               |               |          |
|                                            |               |               |               |               |          |
| For $\mathbf{r_d} = \mathbf{r_{Mg}}$ ,     | 162 2 524 63  | 041.0.551.443 | 420.2.501.413 | (07.1.5100.13 |          |
| $\eta_{o[E]} \gg 1$                        | 163.2 [34.8]  | 241.0 [51.44] | 428.2 [91.41] | 605.1 [129.1] |          |
| E <sub>gp1 O[E]</sub> in eV                | 0.57 [0.29]   | 0.69 [0.28]   | 0.99 [0.25]   | 1.27 [0.23]   |          |
| $n_{O[E]}$                                 | 5.21 [5.42]   | 5.11 [5.42]   | 4.87 [5.44]   | 4.62 [5.45]   |          |
| $\kappa_{O[E]}$                            | 0.05 [0.004]  | 0.09 [0.007]  | 0.22 [0.01]   | 0.38 [0.02]   |          |
| $\varepsilon_{10[E]}$                      | 27.14 [29.34] | 26.16 [29.43] | 23.69 [29.62] | 21.25 [29.77] |          |
| ε <sub>20[E]</sub>                         | 0.56 [0.04]   | 0.97 [0.07]   | 2.18 [0.15]   | 3.55 [0.24]   |          |
| For $\mathbf{r_d} = \mathbf{r_{In}}$ ,     |               |               |               |               |          |
| $\eta_{o[E]} \gg 1$                        | 163.1 [34.8]  | 241.0 [51.42] | 428.2 [91.40] | 605.1 [129.2] |          |
| $E_{gp1 \ O[E]}$ in eV                     | 0.57 [0.29]   | 0.69 [0.27]   | 0.99 [0.25]   | 1.27 [0.23]   |          |
|                                            | 5.21 [5.41]   | 5.11 [5.42]   | 4.87 [5.44]   | 4.62 [5.45]   |          |
| n <sub>O[E]</sub>                          | 0.05 [0.004]  | 0.09 [0.007]  | 0.22 [0.01]   | 0.38 [0.02]   |          |
| κ <sub>O[E]</sub>                          | 27.10 [29.30] | 26.12 [29.39] | 23.65 [29.57] | 21.21 [29.72] |          |
| $\epsilon_{10[E]}$ $\epsilon_{20[E]}$      | 0.56 [0.04]   | 0.97 [0.07]   | 2.17 [0.15]   | 3.54 [0.24]   |          |
| At x=1                                     |               |               |               |               |          |
|                                            |               |               |               |               |          |
| For $\mathbf{r_d} = \mathbf{r_{Mg}}$ ,     |               |               |               |               |          |
| $\eta_{o[E]} \gg 1$                        | 150.6 [30.1]  | 223.6 [44.7]  | 398.9 [79.76] | 564.3 [112.8] |          |
| $E_{gp1 O[E]}$ in eV                       | 0.45 [0.19]   | 0.56 [0.18]   | 0.84 [0.16]   | 1.11 [0.14]   |          |
| n <sub>O[E]</sub>                          | 5.38 [5.56]   | 5.29 [5.57]   | 5.07 [5.59]   | 4.85 [5.60]   |          |
| K <sub>O[E]</sub>                          | 0.05 [0.003]  | 0.08 [0.005]  | 0.20 [0.01]   | 0.34 [0.02]   |          |
|                                            | 28.93 [30.97] | 28.01 [31.05] | 25.68 [31.22] | 23.39 [31.36] |          |
| $\varepsilon_{10[E]}$                      | 20.75 [30.77] | 20.01 [31.03] | 23.00 [31.22] | 23.37 [31.30] |          |

| Cong | et | al. |
|------|----|-----|
|------|----|-----|

#### World Journal of Engineering Research and Technology

| $\epsilon_{20[E]}$                         | 0.52 [0.04]   | 0.90 [0.06]   | 2.03 [0.13]   | 3.31 [0.20]   |  |
|--------------------------------------------|---------------|---------------|---------------|---------------|--|
| For $\mathbf{r_d} = \mathbf{r_{In}}$ ,     |               |               |               |               |  |
| $\eta_{o[E]} \gg 1$                        | 150.5 [30.1]  | 223.5 [44.69] | 398.8 [79.75] | 564.2 [112.8] |  |
| E <sub>gp1 O[E]</sub> in eV                | 0.45 [0.19]   | 0.56 [0.18]   | 0.84 [0.16]   | 1.11 [0.14]   |  |
| n <sub>O[E]</sub>                          | 5.37 [5.56]   | 5.29 [5.57]   | 5.07 [5.58]   | 4.84 [5.59]   |  |
| $\kappa_{O[E]}$                            | 0.05 [0.003]  | 0.08 [0.005]  | 0.20 [0.01]   | 0.34 [0.02]   |  |
| ε <sub>10[E]</sub>                         | 28.89 [30.92] | 27.96 [31.00] | 25.64 [31.17] | 23.35 [31.31] |  |
| $\epsilon_{2O[E]}$                         | 0.52 [0.04]   | 0.90 [0.06]   | 2.02 [0.13]   | 3.30 [0.20]   |  |
| N ( $10^{18} \text{ cm}^{-3}$ ) $\nearrow$ | 15            | 26            | 60            | 100           |  |
| 1 (10 cm ) /                               | 13            | 20            | 00            | 100           |  |

**Table 7n.** In the X(x)-system, at E=3.2 eV and N =  $10^{20}$  cm<sup>-3</sup>, for given  $r_d$  and x, the numerical results of  $n_{O[E]}(E)$ ,  $\kappa_{O[E]}(E)$ ,  $\epsilon_{1O[E]}(E)$  and  $\epsilon_{2O[E]}(E)$ , are obtained, as functions of T, by using Equations (17, 19b, 19c and 16), respectively, noting that  $\eta_{o[E]}$  and  $E_{gn1\ O[E]}$  both decrease with increasing T, respectively.

| Т /                                  | 20 K          | 50 K                 | 100 K              | 300 K              |  |
|--------------------------------------|---------------|----------------------|--------------------|--------------------|--|
| At x=0                               |               |                      |                    |                    |  |
| For $\mathbf{r_d} = \mathbf{r_A}$    |               |                      |                    |                    |  |
| $\eta_{o[E]}\gg 1$                   | 658.1 [50     |                      | 131.6 [101]        | 43.85 [34]         |  |
| E <sub>gn1 O[E]</sub> in 6           |               |                      |                    | 0.646 [-0.48]      |  |
| $n_{O[E]}$                           | 4.99 [5.7     | _                    |                    |                    |  |
| $\kappa_{O[E]}$                      | 0.39 [0.2     |                      |                    | 5] 0.3825 [0.2063] |  |
| ε <sub>10[E]</sub>                   | 24.73 [33     |                      |                    |                    |  |
| ε <sub>20[E]</sub>                   | 3.8689 [2.3   | 989] 3.8690 [2.399]  | 1] 3.8694 [2.3996] | ] 3.874 [2.405]    |  |
| For $\mathbf{r_d} = \mathbf{r_{SI}}$ | ),            |                      |                    |                    |  |
| $\eta_{o[E]} \gg 1$                  | 658.1 [50     | 6] 263.2 [202]       | 131.6 [101]        | 43.85 [34]         |  |
| E <sub>gn1 O[E]</sub> in 6           | eV 0.81 [-0   | 31] 0.805 [-0.32]    | 0.793 [-0.33]      | 0.713 [-0.41]      |  |
| n <sub>O[E]</sub>                    | 4.82 [5.0     | 524] 4.830 [5.627]   | 4.840 [5.634]      | 4.90 [5.681]       |  |
| $\kappa_{O[E]}$                      | 0.3683 [0.1   | 964] 0.3680 [0.1963  | ] 0.3673 [0.1961]  | 0.3630 [0.1949]    |  |
| ε <sub>10[Ε]</sub>                   | 23.16 [31     | .59] 23.19 [31.62]   | 23.29 [31.71]      | 23.91 [32.23]      |  |
| ε <sub>20[E]</sub>                   | 3.5555 [2.2   | 208] 3.5557 [2.209]  | 3.5561 [2.210]     | 3.560 [2.214]      |  |
| At x=0.5                             |               |                      |                    |                    |  |
| For $\mathbf{r_d} = \mathbf{r_A}$    | s,            |                      |                    |                    |  |
| $\eta_{o[E]} \gg 1$                  | 609.8 [47     | 9] 243.9 [191]       | 121.9 [96]         | 40.63 [31.95]      |  |
| Egn1 O[E] in 6                       | eV 0.53 [-0.5 | 0.52 [-0.52]         | 0.51 [-0.53]       | 0.40 [-0.64]       |  |
| n <sub>O[E]</sub>                    | 5.23 [5.9     | 5.24 [5.932]         | 5.25 [5.94]        | 5.33 [6.00]        |  |
| $\kappa_{O[E]}$                      | 0.342 [0.19   | 0.341 [0.1948]       | 0.340 [0.1945]     | 0.336 [0.1931]     |  |
| ε <sub>10[E]</sub>                   | 27.28 [35.    | 10] 27.33 [35.15]    | 27.48 [35.27]      | 28.30 [35.96]      |  |
| ε <sub>20[E]</sub>                   | 3.579 [2.3    | 108] 3.5796 [2.3109] | 3.5801 [2.3114]    | 3.585 [2.3174]     |  |
| For $\mathbf{r_d} = \mathbf{r_{Sl}}$ | ),            |                      |                    |                    |  |
| $\eta_{o[E]} \gg 1$                  | 609.7 [47     | 9] 243.9 [192]       | 121.9 [95.9]       | 40.63 [31.94]      |  |
| E <sub>gn1 O[E]</sub> in 6           | eV 0.60 [-0   | 44] 0.59 [-0.45]     | 0.57 [-0.47]       | 0.47 [-0.57]       |  |
| n <sub>O[E]</sub>                    | 5.07 [5.7     | 77] 5.075 [5.78]     | 5.089 [5.79]       | 5.168 [5.85]       |  |
| $\kappa_{O[E]}$                      | 0.3245 [0.13  | 0.3241 [0.1840]      | 0.3232 [0.1837]    | 0.3188 [0.1823]    |  |
| ε <sub>10[E]</sub>                   | 25.59 [33.    | 33] 25.65 [33.38]    | 25.79 [33.50]      | 26.60 [34.18]      |  |
| ε <sub>20[E]</sub>                   | 3.2897 [2.12  |                      | 3.2902 [2.1280]    | 3.2950 [2.1335]    |  |
| At x=1                               |               |                      |                    |                    |  |
|                                      |               |                      |                    |                    |  |
| For $\mathbf{r_d} = \mathbf{r_A}$    | ς,            |                      |                    |                    |  |

| $\eta_{o[E]} \gg 1$                                        | 569.5 [456]     | 227.8 [182]     | 113.9 [91]      | 37.95 [30]      |  |
|------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|--|
| E <sub>gn1 O[E]</sub> in eV                                | 0.34 [-0.64]    | 0.33 [-0.65]    | 0.30 [-0.67]    | 0.18 [-0.80]    |  |
| n <sub>O[E]</sub>                                          | 5.46 [6.07]     | 5.47 [6.08]     | 5.48 [6.09]     | 5.57 [6.16]     |  |
| $\kappa_{O[E]}$                                            | 0.306 [0.1833]  | 0.306 [0.1831]  | 0.305 [0.1828]  | 0.301 [0.1813]  |  |
| ε <sub>10[E]</sub>                                         | 29.68 [36.89]   | 29.76 [36.95]   | 29.95 [37.12]   | 30.96 [37.94]   |  |
| $\epsilon_{20[E]}$                                         | 3.3461 [2.2277] | 3.3463 [2.2279] | 3.3468 [2.2285] | 3.352 [2.2349]  |  |
|                                                            |                 |                 |                 |                 |  |
| For $\mathbf{r_d} = \mathbf{r_{Sb}}$ , $\eta_{o[E]} \gg 1$ | 569.5 [455]     | 227.8 [182]     | 113.9 [91]      | 37.94 [30]      |  |
| $E_{gn1 O[E]}$ in eV                                       | 0.41 [-0.566]   | 0.40 [-0576]    | 0.37 [-0.60]    | 0.25 [-0.73]    |  |
| n <sub>O[E]</sub>                                          | 5.29 [5.92]     | 5.30 [5.93]     | 5.31 [5.94]     | 5.41 [6.01]     |  |
| $\kappa_{O[E]}$                                            | 0.2901 [0.1731] | 0.290 [0.1730]  | 0.289 [0.1726]  | 0.285 [0.1711]  |  |
| ε <sub>10[E]</sub>                                         | 27.89 [35.03]   | 27.97 [35.10]   | 28.16 [35.26]   | 29.15 [36.09]   |  |
| ε <sub>20[E]</sub>                                         | 3.0752 [2.0507] | 3.0754 [2.0508] | 3.0758 [2.0514] | 3.0811 [2.0572] |  |
| T /                                                        | 20 K            | 50 K            | 100 K           | 300 K           |  |

**Table 7p**. In the X(x)-system, at E=3.2 eV and N =  $10^{20}$  cm<sup>-3</sup>, for given  $r_a$  and x, the numerical results of  $n_{O[E]}(E)$ ,  $\kappa_{O[E]}(E)$ ,  $\epsilon_{1O[E]}(E)$  and  $\epsilon_{2O[E]}(E)$ , are obtained, as functions of T, by using Equations (17, 19b, 19c and 16), respectively, noting that  $\eta_{o[E]}$  and  $E_{gp1\ O[E]}$  both decrease with increasing T, respectively.

| T /                                              | 20 K           | 50 K            | 100 K           | 300 K                                                        |  |
|--------------------------------------------------|----------------|-----------------|-----------------|--------------------------------------------------------------|--|
| At x=0                                           |                |                 |                 |                                                              |  |
|                                                  |                |                 |                 |                                                              |  |
| For $\mathbf{r_d} = \mathbf{r_{Mg}}$ ,           |                |                 |                 |                                                              |  |
| $\eta_{o[E]} \gg 1$                              | 654.2 [151.0]  | 261.7 [60.37]   | 130.8 [30.17]   | 43.59 [9.98]                                                 |  |
| E <sub>gn1 O[E]</sub> in eV                      | 1.45 [0.323]   | 1.442 [0.319]   | 1.43 [0.306]    | 1.35 [0.228]                                                 |  |
| n <sub>O[E]</sub>                                | 4.38 [5.310]   | 4.39 [5.313]    | 4.40 [5.322]    | 4.47 [5.378]                                                 |  |
| $\kappa_{O[E]}$                                  | 0.44 [0.027]   | 0.44 [0.027]    | 0.44 [0.0276]   | 0.43 [0.028]                                                 |  |
| ε <sub>10[E]</sub>                               | 19.03 [28.20]  | 19.07 [28.23]   | 19.17 [28.33]   | 19.82 [28.92]                                                |  |
| ε <sub>20[E]</sub>                               | 3.85 [0.293]   | 3.85 [0.2933]   | 3.85 [0.2941]   | 3.85 [0.302]                                                 |  |
| $\overline{For \mathbf{r_d}} = \mathbf{r_{In}},$ |                |                 |                 | · · · · · <del>-</del> · · · · · · · · · · · · · · · · · · · |  |
| $\eta_{o[E]} \gg 1$                              | 654.2 [150.9]  | 261.7 [60.37]   | 130.8 [30.16]   | 43.59 [9.98]                                                 |  |
| $E_{gn1 \ O[E]}$ in eV                           | 1.45 [0.324]   | 1.443 [0.319]   | 1.43 [0.307]    | 1.35 [0.228]                                                 |  |
| n <sub>O[E]</sub>                                | 4.38 [5.306]   | 4.38 [5.309]    | 4.39 [5.318]    | 4.47 [5.374]                                                 |  |
| $\kappa_{O[E]}$                                  | 0.44 [0.027]   | 0.44 [0.027]    | 0.43 [0.027]    | 0.43 [0.028]                                                 |  |
| ε <sub>10[E]</sub>                               | 19.00 [28.15]  | 19.04 [28.19]   | 19.14 [28.28]   | 19.79 [28.88]                                                |  |
| ε <sub>20[E]</sub>                               | 3.84 [0.292]   | 3.84 [0.293]    | 3.84 [0.293]    | 3.84 [0.301]                                                 |  |
| At x=0.5                                         |                |                 |                 |                                                              |  |
| For $\mathbf{r_d} = \mathbf{r_{Mg}}$ ,           |                |                 |                 |                                                              |  |
| $\eta_{o[E]} \gg 1$                              | 605.1 [129.2]  | 242.0 [51.66]   | 121.0 [25.81]   | 40.32 [8.51]                                                 |  |
| $E_{gn1\ O[E]}$ in eV                            | 1.27 [0.234]   | 1.26 [0.227]    | 1.247 [0.208]   | 1.144 [0.105]                                                |  |
| n <sub>O[E]</sub>                                | 4.62 [5.456]   | 4.63 [5.461]    | 4.648 [5.474]   | 4.740 [5.545]                                                |  |
| $\kappa_{O[E]}$                                  | 0.3839 [0.022] | 0.3834 [0.0218] | 0.3821 [0.0219] | 0.3753 [0.0224]                                              |  |
| $\epsilon_{10[E]}$                               | 21.25 [29.77]  | 21.308 [29.826] | 21.463 [29.968] | 22.32 [30.753]                                               |  |
| ε <sub>20[E]</sub>                               | 3.55 [0.238]   | 3.552 [0.2387]  | 3.5525 [0.2395] | 3.5573 [0.2485]                                              |  |
| For $\mathbf{r_d} = \mathbf{r_{In}}$ ,           |                |                 |                 | ·                                                            |  |
| $\eta_{o[E]} \gg 1$                              | 605.1 [129.2]  | 242.0 [51.65]   | 121.0 [25.80]   | 40.32 [8.51]                                                 |  |
| $E_{gn1\ O[E]}$ in eV                            | 1.27 [0.234]   | 1.266 [0.227]   | 1.247 [0.208]   | 1.144 [0.105]                                                |  |
| n <sub>O[E]</sub>                                | 4.62 [5.452]   | 4.628 [5.457]   | 4.644 [5.470]   | 4.735 [5.541]                                                |  |
| $\kappa_{O[E]}$                                  | 0.3831 [0.022] | 0.3826 [0.0218] | 0.3813 [0.0218] | 0.374 [0.0224]                                               |  |
|                                                  |                |                 |                 |                                                              |  |

| $\epsilon_{10[E]}$                     | 21.21 [29.72]    | 21.27 [29.781]   | 21.425 [29.923]  | 22.28 [30.707]  |  |
|----------------------------------------|------------------|------------------|------------------|-----------------|--|
| $\varepsilon_{2O[E]}$                  | 3.54 [0.238]     | 3.541 [0.2381]   | 3.5420 [0.2389]  | 3.547 [0.2480]  |  |
| At x=1                                 |                  |                  |                  |                 |  |
| For $\mathbf{r_d} = \mathbf{r_{Mg}}$ , |                  |                  |                  |                 |  |
| $\eta_{o[E]} \gg 1$                    | 564.3 [112.8]    | 225.7 [45.12]    | 112.8 [22.53]    | 37.60 [7.41]    |  |
| E <sub>gn1 O[E]</sub> in eV            | 1.11 [0.141]     | 1.10 [0.131]     | 1.07 [0.107]     | 0.947 [-0.021]  |  |
| n <sub>O[E]</sub>                      | 4.85 [5.600]     | 4.857 [5.607]    | 4.878 [5.624]    | 4.986 [5.709]   |  |
| $\kappa_{O[E]}$                        | 0.3416 [0.01786] | 0.3410 [0.01787] | 0.3395 [0.0179]  | 0.3327 [0.0185] |  |
| ε <sub>10[E]</sub>                     | 23.39 [31.36]    | 23.472 [31.43]   | 23.680 [31.63]   | 24.75 [32.59]   |  |
| $\epsilon_{2O[E]}$                     | 3.31 [0.200]     | 3.312 [0.2004]   | 3.3131 [0.2013]  | 3.3185 [0.2113] |  |
| For $\mathbf{r_d} = \mathbf{r_{In}}$ , |                  |                  |                  |                 |  |
| $\eta_{o[E]} \gg 1$                    | 564.2 [112.8]    | 225.7 [45.12]    | 112.8 [22.53]    | 37.59 [7.41]    |  |
| E <sub>gn1 O[E]</sub> in eV            | 1.11 [0.142]     | 1.10 [0.132]     | 1.076 [0.107]    | 0.948 [-0.020]  |  |
| n <sub>O[E]</sub>                      | 4.84 [5.596]     | 4.852 [5.603]    | 4.874 [5.619]    | 4.982 [5.705]   |  |
| $\kappa_{O[E]}$                        | 0.3409 [0.0178]  | 0.3403 [0.01784] | 0.3389 [0.01787] | 0.332 [0.0185]  |  |
| $\epsilon_{10[E]}$                     | 23.35 [31.31]    | 23.43 [31.39]    | 23.64 [31.57]    | 24.71 [32.546]  |  |
| $\varepsilon_{20[E]}$                  | 3.30 [0.1997]    | 3.303 [0.1999]   | 3.3032 [0.2009]  | 3.309 [0.2108]  |  |
| T /                                    | 20 K             | 50 K             | 100 K            | 300 K           |  |

**Table 8n.** For T=20K and N =  $10^{20} \text{cm}^{-3}$ , and for given x and  $r_d$ , the numerical results of  $\sigma_{O[E]}$  (E),  $\epsilon_{2O[2E]}(E)$  and  $\propto_{O[E]}(E)$ , are obtained by using Equations (18, 19c, 19d), noting that, as given in Eq. (15),  $E_{gnE} \equiv E_{gn2} + E_{Fn}$  and  $E_{gnO} \equiv E_{gn1} + E_{Fn}$ .

| E in eV                                | $\sigma_{O[E]} \left( \frac{10^5}{\Omega \times cm} \right)$ | ε <sub>20[2E]</sub>    | $\propto_{O[E]} \left(\frac{10^5}{cm}\right)$ |  |
|----------------------------------------|--------------------------------------------------------------|------------------------|-----------------------------------------------|--|
| At $x=0$ and $r_d = r$                 | As,                                                          |                        |                                               |  |
| $-0.3864 = E_{gn2}$                    | [0]                                                          | [0]                    | [0]                                           |  |
| $0.4861 = E_{gnE}$                     | [1.1952]                                                     | [15.78]                | [0.7191]                                      |  |
| $0.7424 = \mathbf{E}_{gn1}$            | <b>0</b> [1.1953]                                            | <b>0</b> [10.34]       | <b>0</b> [0.6831]                             |  |
| $1.8767 = E_{gnO}$                     | <b>1.9278</b> [1.1955]                                       | <b>6.5953</b> [4.0902] | <b>1.21298</b> [0.4902]                       |  |
| 3                                      | 1.9282 [1.1956]                                              | 4.127 [2.5588]         | 1.084 [0.5075]                                |  |
| 3.5                                    | 1.9283 [1.1956]                                              | 3.537 [2.1933]         | 1.652 [1.1783]                                |  |
| 4                                      | 1.9283 [1.1956]                                              | 3.095 [1.9192]         | 1.555 [1.0200]                                |  |
| 4.5                                    | 1.9284 [1.1956]                                              | 2.751 [1.7059]         | 1.369 [0.8158]                                |  |
| 5                                      | 1.9284 [1.1957]                                              | 2.476 [1.5354]         | 3.308 [8.8048]                                |  |
| 5.5                                    | 1.9284 [1.1957]                                              | 2.251 [1.3958]         | 26.42 [-2.015]                                |  |
| 6                                      | 1.9285 [1.1957]                                              | 2.064 [1.2795]         | 11.64 [-3.084]                                |  |
| 10 <sup>22</sup>                       | 1.9287 [1.1958]                                              | 0 [0]                  | 2.8963 [1.7957]                               |  |
| A. 0 1                                 |                                                              |                        |                                               |  |
| At $x=0$ and $r_d = r$                 |                                                              | 101                    | 101                                           |  |
| $-0.3188 = E_{gn2}$                    |                                                              | [0]                    | [0]                                           |  |
| $0.5537 = E_{gnE}$                     | [0.9939]                                                     | [12.761]               | [0.680]                                       |  |
| $0.8096 = E_{gn1}$                     | <b>0</b> [0.9940]                                            | <b>0</b> [8.7287]      | <b>0</b> [0.6453]                             |  |
| $1.9439 = E_{gnO}$                     | <b>1.59996</b> [0.9942]                                      | <b>5.8517</b> [3.6360] | <b>1.1444</b> [0.4564]                        |  |
| 2.5                                    | 1.6002 [0.9942]                                              | 4.551 [2.8273]         | 0.922 [0.3569]                                |  |
| 3.5                                    | 1.6004 [0.9942]                                              | 3.251 [2.0196]         | 1.559 [1.1049]                                |  |
| 4                                      | 1.6004 [0.9942]                                              | 2.845 [1.7672]         | 1.469 [0.9595]                                |  |
| 4.5                                    | 1.6005 [0.9942]                                              | 2.529 [1.5708]         | 1.295 [0.7689]                                |  |
| 5                                      | 1.6005 [0.9943]                                              | 2.276 [1.4138]         | 3.109 [8.1379]                                |  |
| 5.5                                    | 1.6005 [0.9943]                                              | 2.069 [1.2852]         | 24.53 [-1.898]                                |  |
| 6                                      | 1.6005 [0.9943]                                              | 1.896 [1.1781]         | 11.11 [-2.880]                                |  |
| 10 <sup>22</sup>                       | 1.6007 [0.9943]                                              | 0 [0]                  | 2.8010 [1.7399]                               |  |
| At x=0.5 and $r_d = -0.5133 = E_{gn2}$ | r <sub>As</sub> , [0]                                        | [0]                    | [0]                                           |  |

| $0.3133 = E_{gnE}$                                                                               | [1.2403]                                                                                                                     | [23.59]                                                                                         | [0.6789]                                                                                                            |  |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
| $0.5323 = E_{gn1}$                                                                               | <b>0</b> [1.2404]                                                                                                            | <b>0</b> [13.89]                                                                                | <b>0</b> [0.652]                                                                                                    |  |
| $1.5833 = E_{gnO}$                                                                               | <b>1.9214</b> [1.2406]                                                                                                       | <b>7.2323</b> [4.6699]                                                                          | <b>1.1126</b> [0.4977]                                                                                              |  |
| 3.5                                                                                              | 1.9220 [1.2407]                                                                                                              | 3.273 [2.1127]                                                                                  | 1.513 [1.1398]                                                                                                      |  |
| 4                                                                                                | 1.9220 [1.2407]                                                                                                              | 2.864 [1.8486]                                                                                  | 1.411 [0.9755]                                                                                                      |  |
| 4.5                                                                                              | 1.9220 [1.2408]                                                                                                              | 2.545 [1.6433]                                                                                  | 1.229 [0.7724]                                                                                                      |  |
| 5                                                                                                | 1.9221 [1.2408]                                                                                                              | 2.291 [1.4789]                                                                                  | 3.301 [11.76]                                                                                                       |  |
| 5.5                                                                                              | 1.9221 [1.2408]                                                                                                              | 2.083 [1.3445]                                                                                  | -219.6 [-1.7511]                                                                                                    |  |
| 6                                                                                                | 1.9221 [1.2408]                                                                                                              | 1.909 [1.2325]                                                                                  | 17.41 [-2.6379]                                                                                                     |  |
| 10 <sup>22</sup>                                                                                 | 1.9223 [1.24087]                                                                                                             | 0 [0]                                                                                           | 2.5816 [1.6665]                                                                                                     |  |
| At $x=0.5$ and $r_d$                                                                             | $= r_{Sb},$                                                                                                                  |                                                                                                 |                                                                                                                     |  |
| $-0.4438 = E_{gn}$                                                                               | [0]                                                                                                                          | [0]                                                                                             | [0]                                                                                                                 |  |
| $0.3828 = E_{gnE}$                                                                               | [1.0312]                                                                                                                     | [17.778]                                                                                        | [0.6027]                                                                                                            |  |
| $0.6015 = E_{gn1}$                                                                               | <b>0</b> [1.0313]                                                                                                            | <b>0</b> [11.315]                                                                               | <b>0</b> [0.6163]                                                                                                   |  |
| $1.6524 = E_{gnO}$                                                                               | <b>1.5947</b> [1.0315]                                                                                                       | <b>6.3689</b> [4.1195]                                                                          | <b>1.0515</b> [0.4650]                                                                                              |  |
| 3                                                                                                | 1.5951 [1.0315]                                                                                                              | 3.509 [2.2692]                                                                                  | 0.891 [0.4460]                                                                                                      |  |
| 3.5                                                                                              | 1.5952 [1.0316]                                                                                                              | 3.008 [1.9451]                                                                                  | 1.426 [1.0682]                                                                                                      |  |
| 4                                                                                                | 1.5952 [1.0316]                                                                                                              | 2.632 [1.7019]                                                                                  | 1.332 [0.9174]                                                                                                      |  |
| 4.5                                                                                              | 1.5952 [1.0316]                                                                                                              | 2.339 [1.5128]                                                                                  | 1.161 [0.7278]                                                                                                      |  |
| 5                                                                                                | 1.5953 [1.0316]                                                                                                              | 2.105 [1.3616]                                                                                  | 3.098 [10.767]                                                                                                      |  |
| 5.5                                                                                              | 1.5953 [1.0316]                                                                                                              | 1.914 [1.2378]                                                                                  | -250.1 [-1.6498]                                                                                                    |  |
| 6                                                                                                | 1.5953 [1.0316]                                                                                                              | 1.755 [1.1347]                                                                                  | 16.74 [-2.4657]                                                                                                     |  |
| 10 <sup>22</sup>                                                                                 | 1.5954 [1.031681]                                                                                                            | 0 [0]                                                                                           | 2.4967 [1.6144]                                                                                                     |  |
| At x=1 and and r                                                                                 | $r_{\rm d} = r_{\rm As},$                                                                                                    |                                                                                                 |                                                                                                                     |  |
| $-0.6377 = E_{gn}$                                                                               | [0]                                                                                                                          | [0]                                                                                             | [0]                                                                                                                 |  |
| $0.1476 = E_{gnE}$                                                                               | [1.2815]                                                                                                                     | [48.291]                                                                                        | [0.6437]                                                                                                            |  |
| $0.3386 = E_{gn1}$                                                                               | <b>0</b> [1.2816]                                                                                                            | <b>0</b> [21.048]                                                                               | <b>0</b> [0.6205]                                                                                                   |  |
| $1.3202 = E_{gnO}$                                                                               | <b>1.9250</b> [1.2819]                                                                                                       | <b>8.1078</b> [5.3993]                                                                          | <b>1.0242</b> [0.4951]                                                                                              |  |
| 3.5                                                                                              | 1.9256 [1.2820]                                                                                                              | 3.059 [2.0368]                                                                                  | 1.407 [1.1066]                                                                                                      |  |
| 4                                                                                                | 1.9257 [1.2820]                                                                                                              | 2.677 [1.7822]                                                                                  | 1.300 [0.9357]                                                                                                      |  |
| 4.5                                                                                              | 1.9257 [1.2820]                                                                                                              | 2.379 [1.5842]                                                                                  | 1.119 [0.7331]                                                                                                      |  |
| 5                                                                                                | 1.9257 [1.2820]                                                                                                              | 2.142 [1.4258]                                                                                  | 3.361 [19.191]                                                                                                      |  |
| 5.5                                                                                              | 1.9257 [1.2821]                                                                                                              | 1.947 [1.2962]                                                                                  | -18.74 [-1.5337]                                                                                                    |  |
| 6                                                                                                | 1.9258 [1.2821]                                                                                                              | 1.785 [1.1882]                                                                                  | 42.40 [-2.2785]                                                                                                     |  |
| 10 <sup>22</sup>                                                                                 | 1.9259 [1.282138]                                                                                                            | 0 [0]                                                                                           | 2.3311 [1.5518]                                                                                                     |  |
|                                                                                                  | ro                                                                                                                           |                                                                                                 |                                                                                                                     |  |
| At $x=1$ and $r_d =$                                                                             |                                                                                                                              |                                                                                                 |                                                                                                                     |  |
| At x=1 and $r_d = -0.5665 = E_{gn}$                                                              |                                                                                                                              | [0]                                                                                             | [0]                                                                                                                 |  |
|                                                                                                  |                                                                                                                              | [0]<br>[29,989]                                                                                 | [0]<br>[0.6074]                                                                                                     |  |
| $-0.5665 = E_{gn}$                                                                               | [0]                                                                                                                          |                                                                                                 |                                                                                                                     |  |
| $-0.5665 = E_{gn}$<br>$0.2187 = E_{gnE}$                                                         | [0]<br>[1.0653]                                                                                                              | [29.989]                                                                                        | [0.6074]                                                                                                            |  |
| $-0.5665 = E_{gn}$<br>$0.2187 = E_{gnE}$<br>$0.4095 = E_{gn1}$<br>$1.3911=E_{gnO}$               | [0]<br>[1.0653]<br>0 [1.0654]                                                                                                | [29.989]<br>0 [16.020]                                                                          | [0.6074]<br>0 [0.5869]                                                                                              |  |
| $-0.5665 = E_{gn}$<br>$0.2187 = E_{gnE}$<br>$0.4095 = E_{gn1}$<br>$1.3911 = E_{gnO}$<br>4<br>4.5 | [0]<br>[1.0653]<br>0 [1.0654]<br>1.5977 [1.0656]<br>1.5982 [1.0657]<br>1.5983 [1.0657]                                       | [29.989] 0 [16.020] 7.0720 [4.7168] 2.460 [1.6406] 2.187 [1.4582]                               | <b>[0.6074]</b><br><b>0 [</b> 0.5869 <b>]</b><br><b>0.9691 [</b> 0.4639 <b>]</b>                                    |  |
| $-0.5665 = E_{gn}$ $0.2187 = E_{gnE}$ $0.4095 = E_{gn1}$ $1.3911=E_{gnO}$ $4$ $4.5$ $5$          | [0]<br>[1.0653]<br>0 [1.0654]<br>1.5977 [1.0656]<br>1.5982 [1.0657]<br>1.5983 [1.0657]<br>1.5983 [1.0658]                    | [29.989] 0 [16.020] 7.0720 [4.7168] 2.460 [1.6406] 2.187 [1.4582] 1.968 [1.3125]                | [0.6074]<br>0 [0.5869]<br>0.9691 [0.4639]<br>1.226 [0.8798]<br>1.057 [0.6907]<br>3.150 [17.183]                     |  |
| $-0.5665 = E_{gn}$ $0.2187 = E_{gnE}$ $0.4095 = E_{gn1}$ $1.3911=E_{gnO}$ $4$ $4.5$ $5$ $5.5$    | [0]<br>[1.0653]<br>0 [1.0654]<br>1.5977 [1.0656]<br>1.5982 [1.0657]<br>1.5983 [1.0657]<br>1.5983 [1.0658]<br>1.5983 [1.0658] | [29.989] 0 [16.020] 7.0720 [4.7168] 2.460 [1.6406] 2.187 [1.4582] 1.968 [1.3125] 1.789 [1.1932] | [0.6074]<br>0 [0.5869]<br>0.9691 [0.4639]<br>1.226 [0.8798]<br>1.057 [0.6907]<br>3.150 [17.183]<br>-17.98 [-1.4450] |  |
| $-0.5665 = E_{gn}$ $0.2187 = E_{gnE}$ $0.4095 = E_{gn1}$ $1.3911=E_{gnO}$ $4$ $4.5$ $5$          | [0]<br>[1.0653]<br>0 [1.0654]<br>1.5977 [1.0656]<br>1.5982 [1.0657]<br>1.5983 [1.0657]<br>1.5983 [1.0658]                    | [29.989] 0 [16.020] 7.0720 [4.7168] 2.460 [1.6406] 2.187 [1.4582] 1.968 [1.3125]                | [0.6074]<br>0 [0.5869]<br>0.9691 [0.4639]<br>1.226 [0.8798]<br>1.057 [0.6907]<br>3.150 [17.183]                     |  |

**Table 8p.** For T=20K and N =  $10^{20} \text{cm}^{-3}$ , and for given x and  $r_d$ , the numerical results of  $\sigma_{O[E]}$  (E),  $\epsilon_{2O[2E]}(E)$  and  $\propto_{O[E]}(E)$ , are obtained by using Equations (18, 19c, 19d), noting that, as given in Eq. (15),  $E_{gpE} \equiv E_{gp2} + E_{Fp}$  and  $E_{gp0} \equiv E_{gp1} + E_{Fp}$ .

| E in eV                  | $\sigma_{O[E]}\left(\frac{10^5}{\Omega \times cm}\right)$ | ε <sub>20[2Ε]</sub>    | $\propto_{O[E]} \left(\frac{10^5}{cm}\right)$ |  |
|--------------------------|-----------------------------------------------------------|------------------------|-----------------------------------------------|--|
| At $x=0$ and $r_a = r_M$ | Ig,                                                       |                        |                                               |  |
| $0.3233 = E_{gp2}$       | [0]                                                       | [0]                    | [0]                                           |  |
| $0.5835 = E_{gpE}$       | [0.1466]                                                  | [1.6075]               | [0.0796]                                      |  |
| 1. $4468 = E_{gp1}$      | <b>0</b> [0.1466]                                         | <b>0</b> [0.6483]      | <b>0</b> [0.0664]                             |  |
| $2.5744 = E_{gpO}$       | <b>1.9246</b> [0.1466]                                    | <b>4.7834</b> [0.3643] | <b>0.9541</b> [0.0439]                        |  |

| 3                                              | 1.9246 [0.1466]                                                                                                | 4.105 [0.3127]                                                                                         | 0.986 [0.0548]                                                                                              |  |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
| 3.5                                            | 1.9246 [0.1466]                                                                                                | 3.518 [0.2842]                                                                                         | 1.230 [0.0772]                                                                                              |  |
| 4                                              | 1.9246 [0.1466]                                                                                                | 3.079 [0.2345]                                                                                         | 1.183 [0.0883]                                                                                              |  |
| 4.5                                            | 1.9246 [0.1466]                                                                                                | 2.736 [0.2084]                                                                                         | 1.080 [0.0755]                                                                                              |  |
| 5                                              | 1.9246 [0.1466]                                                                                                | 2.463 [0.1876]                                                                                         | 1.885 [0.2464]                                                                                              |  |
| 5.5                                            | 1.9246 [0.1466]                                                                                                | 2.239 [0.1705]                                                                                         | 3.845 [-0.7456]                                                                                             |  |
| 6                                              | 1.9246 [0.1466]                                                                                                | 2.052 [0.1563]                                                                                         | 3.443 [-6.6788]                                                                                             |  |
|                                                |                                                                                                                |                                                                                                        |                                                                                                             |  |
| $10^{22}$                                      | 1.9246 [0.1466]                                                                                                | 0 [0]                                                                                                  | 2.1440 [0.1633]                                                                                             |  |
| At $x=0$ and $r_a = r$                         | ln,                                                                                                            |                                                                                                        |                                                                                                             |  |
| $0.3237 = \mathbf{E}_{gp2}^{d}$                | [0]                                                                                                            | [0]                                                                                                    | [0]                                                                                                         |  |
| $0.5839 = E_{gpE}^{sp2}$                       | [0.1457]                                                                                                       | [1.6027]                                                                                               | [0.0793]                                                                                                    |  |
| $1.4471 = E_{gp1}$                             | <b>0</b> [0.1458]                                                                                              | <b>0</b> [0.6467]                                                                                      | <b>0</b> [0.0661]                                                                                           |  |
| $2.5747 = E_{gpO}$                             | <b>1.9124</b> [0.1458]                                                                                         | <b>4.7689</b> [0.3066]                                                                                 | <b>0.9488</b> [0.0332]                                                                                      |  |
| 3.5                                            | 1.9124 [0.1458]                                                                                                | 3.508 [0.2674]                                                                                         | 1.223 [0.0955]                                                                                              |  |
| 4                                              | 1.9124 [0.1458]                                                                                                | 3.070 [0.2340]                                                                                         | 1.176 [0.0879]                                                                                              |  |
| 4.5                                            | 1.9124 [0.1458]                                                                                                | 2.728 [0.2080]                                                                                         | 1.074 [0.0752]                                                                                              |  |
| 5                                              | 1.9124 [0.1458]                                                                                                | 2.456 [0.1872]                                                                                         | 1.875 [0.2456]                                                                                              |  |
| 5.5                                            | 1.9124 [0.1458]                                                                                                | 2.232 [0.1702]                                                                                         | 3.831 [-0.7368]                                                                                             |  |
| 6                                              | 1.9124 [0.1458]                                                                                                | 2.046 [0.1560]                                                                                         | 3.430 [-6.2761]                                                                                             |  |
|                                                | 1.512.[0.1.00]                                                                                                 | 2.0.0 [0.1000]                                                                                         | 5.150 [ 0.2701]                                                                                             |  |
| 10 <sup>22</sup>                               | 1.9124 [0.1458]                                                                                                | 0 [0]                                                                                                  | 2.1340 [0.1626]                                                                                             |  |
| At $x=0.5$ and $r_a =$                         |                                                                                                                | * [*]                                                                                                  |                                                                                                             |  |
| $At x=0.3 \text{ and } T_a = 0.2339 = E_{gp2}$ | 0                                                                                                              | IUI                                                                                                    | IU1                                                                                                         |  |
|                                                | [0]                                                                                                            | [0]                                                                                                    | [0]                                                                                                         |  |
| $0.4565 = E_{gpE}$                             | [0.1284]                                                                                                       | [1.6710]                                                                                               | [0.0632]                                                                                                    |  |
| $1.2730 = E_{gp1}$                             | <b>0</b> [0.1284]                                                                                              | 0 [0.5993]                                                                                             | <b>0</b> [0.0539]                                                                                           |  |
| $2.3160 = E_{gpO}$                             | <b>1.9137</b> [0.1284]                                                                                         | <b>4.9076</b> [0.3294]                                                                                 | <b>0.8779</b> [0.0379]                                                                                      |  |
| 3.5                                            | 1.9137 [0.1284]                                                                                                | 3.247 [0.2180]                                                                                         | 1.103 [0.0781]                                                                                              |  |
| 4                                              | 1.9137 [0.1284]                                                                                                | 2.841 [0.1907]                                                                                         | 1.071 [0.0534]                                                                                              |  |
| 4.5                                            | 1.9137 [0.1284]                                                                                                | 2.526 [0.1695]                                                                                         | 0.960 [0.0602]                                                                                              |  |
| 5                                              | 1.9137 [0.1284]                                                                                                | 2.273 [0.1526]                                                                                         | 1.764 [0.2044]                                                                                              |  |
| 5.5                                            | 1.9137 [0.1284]                                                                                                | 2.066 [0.1387]                                                                                         | 3.973 [-05153]                                                                                              |  |
| 6                                              | 1.9137 [0.1284]                                                                                                | 1.894 [0.1272]                                                                                         | 3.417 [-2.6458]                                                                                             |  |
| 10 <sup>22</sup>                               | 1.9137 [0.1284]                                                                                                | 0 [0]                                                                                                  | 1.9065 [0.1280]                                                                                             |  |
| 10                                             | 1.5107 [0.1201]                                                                                                | 0 [0]                                                                                                  | 11,5000 [0.1200]                                                                                            |  |
| At $x=0.5$ and $r_a =$                         | : r <sub>r</sub>                                                                                               |                                                                                                        |                                                                                                             |  |
| $0.2343 = E_{gp2}$                             | [0]                                                                                                            | [0]                                                                                                    | [0]                                                                                                         |  |
|                                                |                                                                                                                |                                                                                                        |                                                                                                             |  |
| $0.4569 = E_{gpE}$                             | [0.1277]                                                                                                       | [1.6659]                                                                                               | [0.0629]                                                                                                    |  |
| $1.2733 = E_{gp1}$                             | 0 [0.1277]                                                                                                     | 0 [0.5979]                                                                                             | <b>0</b> [0.0536]                                                                                           |  |
| $2.3163 = E_{gpO}$                             | <b>1.9015</b> [0.1277]                                                                                         | <b>4.8926</b> [0.3287]                                                                                 | <b>0.8730</b> [0.0377]                                                                                      |  |
| 3.5                                            | 1.9015 [0.1277]                                                                                                | 3.238 [0.2175]                                                                                         | 1.097 [0.0767]                                                                                              |  |
| 4                                              | 1.9015 [0.1277]                                                                                                | 2.833 [0.1903]                                                                                         | 1.052 [0.0703]                                                                                              |  |
| 4.5                                            | 1.9015 [0.1277]                                                                                                | 2.518 [0.1692]                                                                                         | 0.955 [0.0599]                                                                                              |  |
| 5<br>5.5                                       | 1.9015 [0.1277]                                                                                                | 2.266 [0.1522]                                                                                         | 1.755 [0.2038]                                                                                              |  |
| 5.5<br>6                                       | 1.9015 [0.1277]<br>1.9015 [0.1277]                                                                             | 2.060 [0.1384]<br>1.889 [0.1269]                                                                       | 3.961 [-0.5096]<br>3.405 [-2.5545]                                                                          |  |
|                                                | 1.7013 [0.14//]                                                                                                | 1.009 [0.1209]                                                                                         | J.70J [-2.JJ4J]                                                                                             |  |
| 10 <sup>22</sup>                               | 1.9015 [0.1277]                                                                                                | 0 [0]                                                                                                  | 1.8976 [0.1275]                                                                                             |  |
|                                                |                                                                                                                | ο [ο]                                                                                                  | 1.07/0 [0.12/3]                                                                                             |  |
| At $x=1$ and $r_a = r$                         | 0                                                                                                              | 101                                                                                                    | 101                                                                                                         |  |
| $0.1414 = E_{gp2}$                             | [0]                                                                                                            | [0]                                                                                                    | [0]                                                                                                         |  |
| $0.3359 = E_{gpE}$                             | [0.1155]                                                                                                       | [1.9066]                                                                                               | [0.0517]                                                                                                    |  |
| $1.1101 = E_{gp1}$                             | <b>0</b> [0.1156]                                                                                              | <b>0</b> [0.5769]                                                                                      | <b>0</b> [0.0449]                                                                                           |  |
| $2.0827 = E_{gpO}$                             | 1.0130 [0.1157]                                                                                                | <b>5.0894</b> [0.3075]                                                                                 | <b>0.8136</b> [0.0334]                                                                                      |  |
| 2.002/ EgpO                                    | <b>1.9128</b> [0.1156]                                                                                         | 3.0674 [0.3073]                                                                                        |                                                                                                             |  |
| 4                                              | 1.9128 [0.1156]                                                                                                | 2.650 [0.1601]                                                                                         | 0.960 [0.0584]                                                                                              |  |
| 4<br>4.5                                       | 1.9128 [0.1156]<br>1.9128 [0.1156]                                                                             | 2.650 [0.1601]<br>2.355 [0.1423]                                                                       | 0.960 [0.0584]<br>0.867 [0.0495]                                                                            |  |
| 4<br>4.5<br>5                                  | 1.9128 [0.1156]<br>1.9128 [0.1156]<br>1.9128 [0.1156]                                                          | 2.650 [0.1601]<br>2.355 [0.1423]<br>2.120 [0.1281]                                                     | 0.960 [0.0584]<br>0.867 [0.0495]<br>1.675 [0.1765]                                                          |  |
| 4<br>4.5<br>5<br>5.5                           | 1.9128 [0.1156]<br>1.9128 [0.1156]<br>1.9128 [0.1156]<br>1.9128 [0.1156]                                       | 2.650 [0.1601]<br>2.355 [0.1423]<br>2.120 [0.1281]<br>1.927 [0.1164]                                   | 0.960 [0.0584]<br>0.867 [0.0495]<br>1.675 [0.1765]<br>4.235 [-0.3682]                                       |  |
| 4<br>4.5<br>5                                  | 1.9128 [0.1156]<br>1.9128 [0.1156]<br>1.9128 [0.1156]                                                          | 2.650 [0.1601]<br>2.355 [0.1423]<br>2.120 [0.1281]                                                     | 0.960 [0.0584]<br>0.867 [0.0495]<br>1.675 [0.1765]                                                          |  |
| 4<br>4.5<br>5<br>5.5<br>6                      | 1.9128 [0.1156]<br>1.9128 [0.1156]<br>1.9128 [0.1156]<br>1.9128 [0.1156]<br>1.9128 [0.1156]                    | 2.650 [0.1601]<br>2.355 [0.1423]<br>2.120 [0.1281]<br>1.927 [0.1164]<br>1.767 [0.1067]                 | 0.960 [0.0584]<br>0.867 [0.0495]<br>1.675 [0.1765]<br>4.235 [-0.3682]<br>3.462 [-1.3699]                    |  |
| 4.5<br>5.5<br>6<br>10 <sup>22</sup>            | 1.9128 [0.1156]<br>1.9128 [0.1156]<br>1.9128 [0.1156]<br>1.9128 [0.1156]<br>1.9128 [0.1156]<br>1.9128 [0.1156] | 2.650 [0.1601]<br>2.355 [0.1423]<br>2.120 [0.1281]<br>1.927 [0.1164]                                   | 0.960 [0.0584]<br>0.867 [0.0495]<br>1.675 [0.1765]<br>4.235 [-0.3682]                                       |  |
| 4 4.5 5 5.5 6 $10^{22}$ At x=1 and $r_a = r$   | 1.9128 [0.1156]<br>1.9128 [0.1156]<br>1.9128 [0.1156]<br>1.9128 [0.1156]<br>1.9128 [0.1156]<br>1.9128 [0.1156] | 2.650 [0.1601]<br>2.355 [0.1423]<br>2.120 [0.1281]<br>1.927 [0.1164]<br>1.767 [0.1067]<br><b>0</b> [0] | 0.960 [0.0584]<br>0.867 [0.0495]<br>1.675 [0.1765]<br>4.235 [-0.3682]<br>3.462 [-1.3699]<br>1.7174 [0.1038] |  |
| 4.5<br>5.5<br>6<br>10 <sup>22</sup>            | 1.9128 [0.1156]<br>1.9128 [0.1156]<br>1.9128 [0.1156]<br>1.9128 [0.1156]<br>1.9128 [0.1156]<br>1.9128 [0.1156] | 2.650 [0.1601]<br>2.355 [0.1423]<br>2.120 [0.1281]<br>1.927 [0.1164]<br>1.767 [0.1067]                 | 0.960 [0.0584]<br>0.867 [0.0495]<br>1.675 [0.1765]<br>4.235 [-0.3682]<br>3.462 [-1.3699]                    |  |

| $0.3362 = E_{gpE}$  | [0.1149]               | [1.9004]               | [0.0515]               |  |
|---------------------|------------------------|------------------------|------------------------|--|
| 1. $1104 = E_{gp1}$ | <b>0</b> [0.1149]      | <b>0</b> [0.5755]      | <b>0</b> [0.0447]      |  |
| $2.0829 = E_{gpO}$  | <b>1.9005</b> [0.1149] | <b>5.0738</b> [0.3068] | <b>0.8091</b> [0.0332] |  |
| 4                   | 1.9005 [0.1149]        | 2.642 [0.1598]         | 0.955 [0.0581]         |  |
| 4.5                 | 1.9005 [0.1149]        | 2.348 [0.1420]         | 0.862 [0.0493]         |  |
| 5                   | 1.9005 [0.1149]        | 2.114 [0.1278]         | 1.667 [0.1760]         |  |
| 5.5                 | 1.9005 [0.1149]        | 1.921 [0.1162]         | 4.224 [-0.3643]        |  |
| 6                   | 1.9005 [0.1149]        | 1.761 [0.1065]         | 3.451 [-1.3364]        |  |
|                     |                        |                        |                        |  |
| 10 <sup>22</sup>    | 1.9005 [0.1149]        | 0 [0]                  | 1.7094 [0.1034]        |  |

**Table 9n:** For given x,  $r_d$ , and T=(4.2 K and 77 K), the numerical results of  $\sigma_{O[E]}$ ,  $\mu_{O[E]}$  and  $D_{O[E]}$ , expressed respectively in  $\left(\frac{10^4}{\text{ohm} \times \text{cm}}, \frac{10^3 \times \text{cm}^2}{\text{V} \times \text{s}}, \frac{10^3 \times \text{cm}^2}{\text{s}}\right)$ , and as functions of N, are obtained by using Equations (20a, 22 and 1) they decrease [decrease] with increasing  $r_4$ . 24), suggesting that, for a given N, they decrease [decrease], with increasing r<sub>d</sub>.

| Donor                                |             | As                                          | Sb                                          |
|--------------------------------------|-------------|---------------------------------------------|---------------------------------------------|
| r <sub>d</sub> (nm)                  | <i>7</i>    | 0.118                                       | 0.140                                       |
| For x=0 and a                        | nt T=4.2 K  |                                             |                                             |
| $N (10^{19} \text{ cm}^{-3})$        | 3)          |                                             |                                             |
| 3                                    | ,           | 6.221 [3.891], 12.95 [8.102], 4.388 [2.111] | 5.178 [3.248], 10.78 [6.766], 3.653 [1.763] |
| 7                                    |             | 13.77 [8.559], 12.28 [7.634], 7.324 [3.501] | 11.44 [7.124], 10.20 [6.355], 6.083 [2.914] |
| 10                                   |             | 19.28 [11.95], 12.03 [7.462], 9.101 [4.340] | 16.00 [9.939], 9.990 [6.205], 7.554 [3.609] |
| For x=0.5 and                        |             | K                                           |                                             |
| N (10 <sup>19</sup> cm <sup>-3</sup> | 3)          |                                             |                                             |
| 3                                    |             | 6.201 [4.035], 12.91 [8.401], 4.053 [2.074] | 5.162 [3.368], 10.75 [7.014], 3.374 [1.731] |
| 7                                    |             | 13.73 [8.880], 12.24 [7.920], 6.763 [3.441] | 11.40 [7.390], 10.17 [6.592], 5.618 [2.864] |
| 10                                   |             | 19.21 [12.40], 11.99 [7.743], 8.405 [4.267] | 15.95 [10.31], 9.957 [6.438], 6.976 [3.548] |
| For x=1 and a                        |             |                                             |                                             |
| N (10 <sup>19</sup> cm <sup>-3</sup> | 3)          |                                             |                                             |
| 3                                    |             | 6.212 [4.166], 12.93 [8.675], 3.792 [2.034] | 5.172 [3.477], 10.77 [7.240], 3.157 [1.698] |
| 7                                    |             | 13.75 [9.174], 12.27 [8.182], 6.329 [3.377] | 11.42 [7.634], 10.19 [6.809], 5.257 [2.810] |
| 10                                   |             | 19.25 [12.81], 12.02 [8.000], 7.865 [4.188] | 15.98 [10.65], 9.975 [6.651], 6.528 [3.482] |
| For x=0 and a                        |             |                                             |                                             |
| $N (10^{19} \text{ cm}^{-3})$        | 3)          | C C C C L L C C L C C C C C C C C C C C     |                                             |
| 3                                    |             | 6.663 [4.231], 13.87 [8.809], 4.699 [2.295] | 5.546 [3.532], 11.55 [7.357], 3.912 [1.916] |
| 7                                    |             | 14.09 [8.800], 12.57 [7.849], 7.491 [3.599] | 11.70 [7.325], 10.44 [6.534], 6.222 [2.996] |
| 10                                   |             | 19.55 [12.16], 12.21 [7.592], 9.230 [4.416] | 16.23 [10.11], 10.13 [6.314], 7.661 [3.672] |
| For x=0.5 and                        | d at T=77 k | ζ                                           |                                             |
| N (10 <sup>19</sup> cm <sup>-3</sup> | 3)          |                                             |                                             |
| 3                                    |             | 6.642 [4.387], 13.83 [9.135], 4.339 [2.254] | 5.529 [3.662], 11.51 [7.627], 3.613 [1.882] |
| 7                                    |             | 14.04 [9.130], 12.52 [8.144], 6.918 [3.537] | 11.66 [7.599], 10.40 [6.778], 5.746 [2.944] |
| 10                                   |             | 19.49 [12.62], 12.17 [7.879], 8.524 [4.341] | 16.17 [10.49], 10.10 [6.551], 7.075 [3.610] |
| For x=1 and a                        | nt T=77 K   |                                             |                                             |
| N (10 <sup>19</sup> cm <sup>-3</sup> | 3)          |                                             |                                             |
| 3                                    |             | 6.654 [4.531], 13.85 [9.433], 4.061 [2.211] | 5.540 [3.781], 11.54 [7.874], 3.381 [1.846] |
| 7                                    |             | 14.07 [9.433], 12.55 [8.413], 6.474 [3.472] | 11.69 [7.849], 10.42 [7.002], 5.377 [2.889] |
| 10                                   |             | 19.55 [13.04], 12.19 [8.141], 7.976 [4.262] | 16.20 [10.84], 10.12 [6.768], 6.620 [3.543] |
|                                      |             |                                             |                                             |

**Table 9p:** For given x,  $r_a$ , and T=(4.2 K and 77 K), the numerical results of  $\sigma_{O[E]}$ ,  $\mu_{O[E]}$  and  $D_{O[E]}$ , expressed respectively in  $\left(\frac{10^4}{\text{ohm}\times\text{cm}}, \frac{10^4\times\text{cm}^2}{\text{V}\times\text{s}}, \frac{10^3\times\text{cm}^2}{\text{s}}\right)$ , and as functions of N, are obtained by using Equations (20a, 22 and 24), suggesting that, for a given N, they decrease [decrease] with increasing  $r_a$ .

| Acceptor                     | Mg    | In    |
|------------------------------|-------|-------|
| $r_a$ (nm) $\nearrow$        | 0.140 | 0.144 |
| For x=0 and at T=4.2 K       |       |       |
| $N(10^{19} \text{ cm}^{-3})$ |       |       |

| 3                                      | 6.089 [0.509], 1.306 [0.109], 4.338 [0.084]   | 6.049 [0.506], 1.298 [0.108], 4.310 [0.083]   |
|----------------------------------------|-----------------------------------------------|-----------------------------------------------|
| 5                                      | 9.937 [0.795], 1.263 [0.101], 5.946 [0.110]   | 9.873 [0.791], 1.255 [0.100], 5.910 [0.109]   |
| 10                                     | 19.24 [1.466], 1.212 [0.092], 9.112 [0.160]   | 19.12 [1.457], 1.204 [0.091], 9.054 [0.159]   |
| For x=0.5 and at T=4.2 I               | Κ                                             |                                               |
| $N (10^{19} \text{ cm}^{-3})$          |                                               |                                               |
| 3                                      | 6.021 [0.447], 1.303 [0.097], 3.986 [0.063]   | 5.982 [0.445], 1.295 [0.096], 3.960 [0.062]   |
| 5                                      | 9.857 [0.698], 1.260 [0.089], 5.475 [0.083]   | 9.794 [0.695], 1.252 [0.088], 5.440 [0.082]   |
| 10                                     | 19.13 [1.284], 1.208 [0.081], 8.402 [0.120]   | 19.01 [1.277], 1.201 [0.080], 8.349 [0.119]   |
| For x=1 and at T=4.2 K                 |                                               |                                               |
| $N (10^{19} \text{ cm}^{-3})$          |                                               |                                               |
| 3                                      | 5.984 [0.403], 1.306 [0.088], 3.710 [0.050]   | 5.944 [0.401], 1.298 [0.087], 3.686 [0.049]   |
| 5                                      | 9.829 [0.630], 1.262 [0.081], 5.107 [0.065]   | 9.765 [0.626], 1.254 [0.080], 4.616 [0.064]   |
| 10                                     | 19.13 [1.155], 1.211 [0.073], 7.850 [0.095]   | 19.00 [1.149], 1.203 [0.072], 7.800 [0.094]   |
| For x=0 and at T=77 K                  |                                               |                                               |
| N (10 <sup>19</sup> cm <sup>-3</sup> ) |                                               |                                               |
| 3                                      | 6.095 [0.519], 1.308 [0.111], 4.341 [0.085]   | 6.056 [0.516], 1.300 [0.110], 4.314 [0.084]   |
| 5                                      | 9.942 [0.803], 1.264 [0.102], 5.949 [0.111]   | 9.878 [0.798], 1.256 [0.101], 5.911 [0.110]   |
| 10                                     | 19.25 [1.471], 1.212 [0.093], 9.114 [0.160]   | 19.12 [1.463], 1.205 [0.092], 9.056 [0.159]   |
|                                        |                                               | · · · · · · · · · · · · · · · · · · ·         |
| For x=0.5 and at T=77 K                |                                               |                                               |
| $N (10^{19} \text{ cm}^{-3})$          |                                               |                                               |
| 3                                      | 6.028 [0.459], 1.304 [0.099], 3.990 [0.0645]  | 5.989 [0.457], 1.296 [0.098], 3.964 [0.0642]  |
| 5                                      | 9.863 [0.708], 1.260 [0.090], 5.477 [0.084]   | 9.800 [0.704], 1.252 [0.089], 5.442 [0.083]   |
| 10                                     | 19.14 [1.291], 1.208 [0.0815], 8.404 [0.121]  | 19.02 [1.283], 1.201 [0.0810], 8.350 [0.120]  |
| For x=1 and at T=77 K                  |                                               |                                               |
| $N (10^{19} \text{ cm}^{-3})$          |                                               |                                               |
| 3                                      | 5.992 [0.418], 1.308 [0.0911], 3.715 [0.0514] | 5.953 [0.415], 1.300 [0.0907], 3.691 [0.0511] |
| 5                                      | 9.836 [0.640], 1.263 [0.082], 5.110 [0.066]   | 9.772 [0.637], 1.255 [0.0818], 5.077 [0.065]  |
| 10                                     | 19.13 [1.163], 1.211 [0.0736], 7.852 [0.095]  | 19.01 [1.156], 1.203 [0.0732], 7.802 [0.094]  |
|                                        |                                               |                                               |

**Table 10n:** For given x,  $r_d$ , T=(3K and 80K) and N, the numerical results of various thermoelectric coefficients:  $\sigma_{Th.O[E]}$ ,  $S_{O[E]}$ ,  $VC1_{O[E]}$ ,  $VC2_{O[E]}$ ,  $Ts_{O[E]}$ ,  $Pt_{O[E]}$  and  $Pt_{O[E]}$ , are obtained by using Equations (21, 25, 27, 28, 29, 30 and 26), respectively. Further, their variations with increasing  $r_d$  are represented by the arrows:  $\nearrow$  (increase), and  $\searrow$  (decrease).

| Donor                                                                                  | P                  | As                | Sb                |  |
|----------------------------------------------------------------------------------------|--------------------|-------------------|-------------------|--|
| For $x=0$ and $N=3.233 \times 10^{18}$                                                 | cm <sup>-3</sup> , |                   |                   |  |
| $\xi_{n(T=3K)}$                                                                        | 443.221 [340.940]  | 443.085 [340.836] | 442.266 [340.206] |  |
| $\xi_{n(T=80K)}$                                                                       | 16.695 [12.883]    | 16.690 [12.879]   | 16.660 [12.856]   |  |
| $\sigma_{\text{Th.O[E]] (3K)}}\left(\frac{10^{-4}\times W}{\text{cm}\times K}\right)$  | 6.051 [3.891]      | 5.842 [3.760]     | 4.902 [3.173]     |  |
| $\sigma_{\text{Th.O[E]] (80K)}}\left(\frac{10^{-1}\times W}{\text{cm}\times K}\right)$ | 0.574 [0.341]      | 0.555 [0.330]     | 0.467 [0.256]     |  |
| $-S_{O[E](3K)}\left(\frac{10^{-6}\times V}{K}\right) \qquad \searrow$                  | 1.279 [1.663]      | 1.280 [1.664]     | 1.282 [1.666]     |  |
| $-S_{0[E](80K)}(\frac{10^{-5}\times V}{K})$                                            | 3.356 [4.315]      | 3.357 [4.316]     | 3.363 [4.324]     |  |
| $-VC1_{0[E](3K)}\left(\frac{10^{-7}\times V}{K}\right)$                                | 8.528 [11.08]      | 8.530 [11.09]     | 8.546 [11.11]     |  |
| $-VC1_{O[E](80K)}\left(\frac{10^{-5}\times V}{K}\right)$                               | 2.165 [2.722]      | 2.166 [2.723]     | 2.170 [2.727]     |  |
| $-VC2_{0[E](3K)}\left(\frac{10^{-6}\times V}{K}\right)$                                | 2.558 [3.325]      | 2.559 [3.326]     | 2.564 [3.333]     |  |
| $-VC2_{O[E](80K)}\left(\frac{10^{-3}\times V}{K}\right)$                               | 1.732 [2.178]      | 1.733 [2.179]     | 1.736 [2.182]     |  |
| $-Ts_{0[E](3K)}\left(\frac{10^{-6}\times V}{K}\right)  \vee$                           | 1.279 [1.662]      | 1.280 [1.663]     | 1.282 [1.666]     |  |
| $-Ts_{O[E](80K)}\left(\frac{10^{-5}\times V}{K}\right)$                                | 3.248 [4.083]      | 3.249 [4.084]     | 3.255 [4.091]     |  |
| $-\text{Pt}_{0[E](3K)}(10^{-6} \times \text{V})  \checkmark$                           | 3.837 [4.998]      | 3.838 [4.999]     | 3.846 [5.000]     |  |
| $-\text{Pt}_{0[E] (80K)}(10^{-3} \times \text{V})  \text{`}$                           | 2.685 [3.452]      | 2.686 [3.453]     | 2.691 [3.459]     |  |

| $ZT_{0[E](3K)}(10^{-5})$                                                                                                                                             | 6.698 [11.32]                                                    | 6.702 [11.327]                                                    | 6.727 [11.369]                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|
| $ZT_{O[E](80K)}(10^{-2})$                                                                                                                                            | 4.611 [7.623]                                                    | 4.614 [7.628]                                                     | 4.631 [7.656]                                                    |
| For $x=0.5$ and $N=3.6294 \times 10^{11}$                                                                                                                            | <sup>8</sup> cm <sup>-3</sup> , one has:                         |                                                                   |                                                                  |
| $\xi_{n(T=3K)}$                                                                                                                                                      | 443.931 [349.160]                                                | 443.817 [349.071]                                                 | 443.131 [348.531]                                                |
| $\xi_{\rm n(T=80K)}$                                                                                                                                                 | 16.722 [13.189]                                                  | 16.718 [13.185]                                                   | 16.692 [13.165]                                                  |
| $\sigma_{\text{Th.O[E]] (3K)}} \left( \frac{10^{-4} \times W}{\text{cm} \times \text{K}} \right) \qquad \searrow$                                                    | 6.705 [4.465]                                                    | 6.472 [4.314]                                                     | 5.430 [3.637]                                                    |
| $\sigma_{\text{Th.O[E]] (80K)}} \left( \frac{10^{-1} \times W}{\text{cm} \times \text{K}} \right) \qquad \searrow$                                                   | 0.428 [0.324]                                                    | 0.413 [0.313]                                                     | 0.347 [0.265]                                                    |
| $-S_{0[E](3K)}\left(\frac{10^{-6}\times V}{K}\right) \qquad \searrow$                                                                                                | 1.277 [1.624]                                                    | 1.278 [1.625]                                                     | 1.279 [1.627]                                                    |
| $-S_{O[E](80K)}\left(\frac{10^{-5}\times V}{K}\right)  \searrow$                                                                                                     | 3.351 [4.219]                                                    | 3.352 [4.220]                                                     | 3.357 [4.226]                                                    |
| $-VC1_{O[E](3K)}\left(\frac{10^{-7}\times V}{K}\right)$                                                                                                              | 8.514 [10.82]                                                    | 8.516 [10.83]                                                     | 8.532 [10.84]                                                    |
| $-VC1_{O[E](80K)}\left(\frac{10^{-5}\times V}{K}\right)$                                                                                                             | 2.162 [2.668]                                                    | 2.163 [2.669]                                                     | 2.166 [2.673]                                                    |
| $-VC2_{O[E](3K)}\left(\frac{10^{-6}\times V}{K}\right)$                                                                                                              | 2.554 [3.247]                                                    | 2.555 [3.248]                                                     | 2.559 [3.253]                                                    |
| $-VC2_{O[E](80K)}\left(\frac{10^{-3}\times V}{K}\right)$                                                                                                             | 1.730 [2.134]                                                    | 1.731 [2.135]                                                     | 1.733 [2.138]                                                    |
| $-\operatorname{Ts}_{O[E](3K)}\left(\frac{10^{-6}\times V}{K}\right)$                                                                                                | 1.277 [1.623]                                                    | 1.278 [1.624]                                                     | 1.279 [1.627]                                                    |
| $-Ts_{O[E](80K)}\left(\frac{10^{-5}\times V}{K}\right) \searrow$                                                                                                     | 3.244 [4.002]                                                    | 3.245 [4.003]                                                     | 3.249 [4.009]                                                    |
| $-Pt_{O[E](3K)}(10^{-6} \times V)$ \(\)                                                                                                                              | 3.831 [4.871]                                                    | 3.832 [4.872]                                                     | 3.838 [4.880]                                                    |
| $-Pt_{0[E](80K)}(10^{-3} \times V)$                                                                                                                                  | 2.681 [3.375]                                                    | 2.682 [3.376]                                                     | 2.686 [3.381]                                                    |
| $ZT_{O[E](3K)}(10^{-5})$                                                                                                                                             | 6.677 [10.79]                                                    | 6.681 [10.80]                                                     | 6.701 [10.83]                                                    |
| $ZT_{0[E](80K)}(10^{-2})$                                                                                                                                            | 4.597 [7.286]                                                    | 4.599 [7.290]                                                     | 4.613 [7.312]                                                    |
| For $x=1$ and $N=4.0078 \times 10^{18}$                                                                                                                              | cm <sup>-3</sup> , one has:                                      |                                                                   |                                                                  |
| $\xi_{n(T=3K)}$                                                                                                                                                      | 443.222 [354.579]                                                | 443.125 [354.501]                                                 | 442.538 [354.031]                                                |
| $\xi_{\rm n(T=80K)}$                                                                                                                                                 | 16.696 [13.391]                                                  | 16.692 [13.388]                                                   | 16.670 [13.370]                                                  |
| $\sigma_{\text{Th.O[E]] (3K)}} \left(\frac{10^{-4} \times W}{\text{cm} \times K}\right) \qquad \searrow$                                                             | 7.354 [5.031]                                                    | 7.098 [4.860]                                                     | 5.953 [4.094]                                                    |
| $\sigma_{\text{Th.O[E]] (80K)}}\left(\frac{10^{-1}\times W}{\text{cm}\times K}\right)$                                                                               | 0.436 [0.336]                                                    | 0.420 [0.325]                                                     | 0.353 [0.274]                                                    |
| $-S_{0[E](3K)}\left(\frac{10^{-6}\times V}{K}\right) \qquad \searrow$                                                                                                | 1.279 [1.599]                                                    | 1.280 [1.5994]                                                    | 1.281 [1.601]                                                    |
| $-S_{O[E](80K)}(\frac{10^{-5}\times V}{K})$                                                                                                                          | 3.356 [4.158]                                                    | 3.357 [4.159]                                                     | 3.361 [4.164]                                                    |
| $-VC1_{0[E](3K)}\left(\frac{10^{-7}\times V}{K}\right)  \searrow$                                                                                                    | 8.528 [10.659]                                                   | 8.530 [10.66]                                                     | 8.541 [10.67]                                                    |
| $-VC1_{0[E] (80K)} \left(\frac{10^{-5} \times V}{K}\right)  \searrow$                                                                                                | 2.166 [2.634]                                                    | 2.167 [2.635]                                                     | 2.169 [2.637]                                                    |
| $-VC2_{0[E](3K)}\left(\frac{10^{-6}\times V}{K}\right)  \searrow$                                                                                                    | 2.558 [3.198]                                                    | 2.559 [3.1985]                                                    | 2.562 [3.203]                                                    |
| $-VC2_{O[E](80K)}\left(\frac{10^{-3}\times V}{K}\right) \searrow$                                                                                                    |                                                                  | 1.733 [2.108]                                                     | 1.735 [2.110]                                                    |
|                                                                                                                                                                      | 1.732 [2.107]                                                    | 1.755 [2.108]                                                     |                                                                  |
| $-Ts_{0[E](3K)}\left(\frac{10^{-6}\times V}{K}\right)$                                                                                                               | 1.732 [2.107]<br>1.279 [1.599]                                   | 1.280 [1.5992]                                                    | 1.281 [1.601]                                                    |
| $-Ts_{0[E](3K)}\left(\frac{10^{-6}\times V}{K}\right)$                                                                                                               |                                                                  |                                                                   |                                                                  |
| $-\operatorname{Ts}_{O[E] (3K)} \left(\frac{10^{-6} \times V}{K}\right) \searrow$ $-\operatorname{Ts}_{O[E] (80K)} \left(\frac{10^{-5} \times V}{K}\right) \searrow$ | 1.279 [1.599]                                                    | 1.280 [1.5992]                                                    | 1.281 [1.601]                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                 | 1.279 [1.599]<br>3.248 [3.951]                                   | 1.280 [1.5992]<br>3.249 [3.952]                                   | 1.281 [1.601]<br>3.253 [3.956]                                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                 | 1.279 [1.599]<br>3.248 [3.951]<br>3.838 [4.797]                  | 1.280 [1.5992]<br>3.249 [3.952]<br>3.839 [4.798]                  | 1.281 [1.601]<br>3.253 [3.956]<br>3.844 [4.804]                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                 | 1.279 [1.599]<br>3.248 [3.951]<br>3.838 [4.797]<br>2.685 [3.326] | 1.280 [1.5992]<br>3.249 [3.952]<br>3.839 [4.798]<br>2.686 [3.327] | 1.281 [1.601]<br>3.253 [3.956]<br>3.844 [4.804]<br>2.689 [3.331] |

**Table 10p:** For given x,  $r_a$ , T=(3K and 80K) and N, the numerical results of various thermoelectric coefficients:  $\sigma_{Th.O[E]}$ ,  $S_{O[E]}$ ,  $VC1_{O[E]}$ ,  $VC2_{O[E]}$ ,  $Ts_{O[E]}$ ,  $Pt_{O[E]}$  and  $ZT_{O[E]}$ , are obtained by using Equations (21, 25, 27, 28, 29, 30 and 26), respectively. Further, their variations with increasing  $r_a$  are represented by the arrows:  $\nearrow$  (increase), and  $\searrow$  (decrease.

| Acceptor        |                       | Ga                                     | Mg               | In               |
|-----------------|-----------------------|----------------------------------------|------------------|------------------|
| For x=0 and     | $N=2.4 \times 10^{1}$ | <sup>9</sup> cm <sup>-3</sup> one has: |                  |                  |
| $\xi_{n(T=3K)}$ | 7                     | 1659.6 [382.991]                       | 1651.7 [381.157] | 1651.2 [381.054] |

| $\xi_{n(T=80K)}$                                                                                                         | 62.255 [14.449]                         | 61.957 [14.380]  | 61.941 [14.377]  |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------|------------------|
| $\sigma_{\text{Th.O[E]] (3K)}} \left( \frac{10^{-3} \times W}{\text{cm} \times \text{K}} \right) \qquad \searrow$        | 4.089 [0.342]                           | 3.598 [0.307]    | 3.574 [0.305]    |
| $\sigma_{\text{Th.O[E]] (80K)}} \left( \frac{10^{-2} \times \text{W}}{\text{cm} \times \text{K}} \right) \qquad \forall$ | 10.920 [0.939]                          | 9.608 [0.842]    | 9.546 [0.837]    |
| $-S_{0[E](3K)}\left(\frac{10^{-7}\times V}{K}\right) \qquad \searrow$                                                    | 3.416 [14.804]                          | 3.432 [14.875]   | 3.434 [14.879]   |
| $-S_{O[E](80K)}(\frac{10^{-6}\times V}{K})$                                                                              | 9.100 [38.632]                          | 9.143 [38.810]   | 9.146 [38.820]   |
| $-VC1_{0[E](3K)}\left(\frac{10^{-7}\times V}{K}\right)$                                                                  | 2.277 [9.869]                           | 2.288 [9.916]    | 2.289 [9.919]    |
| $-VC1_{O[E](80K)}\left(\frac{10^{-6}\times V}{K}\right)$                                                                 | 6.052 [24.652]                          | 6.081 [24.755]   | 6.083 [24.761]   |
| $-VC2_{0[E](3K)}\left(\frac{10^{-7}\times V}{K}\right) \qquad \searrow$                                                  | 6.833 [29.606]                          | 6.865 [29.748]   | 6.867 [29.757]   |
| $-VC2_{O[E](80K)}\left(\frac{10^{-4}\times V}{K}\right)  \searrow$                                                       | 4.842 [19.722]                          | 4.865 [19.804]   | 4.866 [19.809]   |
| $-\operatorname{Ts}_{O[E](3K)}\left(\frac{10^{-7}\times V}{K}\right)$                                                    | 3.416 [14.803]                          | 3.432 [14.874]   | 3.434 [14.878]   |
| $-Ts_{O[E](80K)}\left(\frac{10^{-6}\times V}{K}\right)  \searrow$                                                        | 9.078 [36.979]                          | 9.121 [37.133]   | 9.124 [37.142]   |
| $-Pt_{O[E](3K)}(10^{-6} \times V)$                                                                                       | 1.025 [4.441]                           | 1.029 [4.462]    | 1.030 [4.464]    |
| $-\text{Pt}_{0[E] (80K)}(10^{-4} \times \text{V})$ \(\sigma\)                                                            | 7.280 [30.906]                          | 7.314 [31.048]   | 7.317 [31.056]   |
| $ZT_{O[E](3K)}(10^{-6})$                                                                                                 | 4.778 [89.710]                          | 4.823 [90.575]   | 4.826 [90.625]   |
| $ZT_{0[E](80K)}(10^{-3})$                                                                                                | 3.389 [61.092]                          | 3.422 [61.656]   | 3.424 [61.688]   |
| For $x=0.5$ and $N=2.702 \times 10$                                                                                      | <sup>19</sup> cm <sup>-3</sup> one has: |                  |                  |
| $\xi_{n(T=3K)}$                                                                                                          | 1659.6 [354.300]                        | 1650.6 [352.378] | 1650.1 [352.269] |
| $\xi_{\rm n(T=80K)}$                                                                                                     | 62.255 [13.380]                         | 61.917 [13.309]  | 61.898 [13.305]  |
| $\sigma_{\text{Th.O[E]] (3K)}} \left( \frac{10^{-3} \times W}{\text{cm} \times \text{K}} \right) \qquad \searrow$        | 4.535 [0.334]                           | 3.986 [0.299]    | 3.960 [0.298]    |
| $\sigma_{\text{Th.O[E]] (80K)}} \left( \frac{10^{-2} \times W}{\text{cm} \times \text{K}} \right)$                       | 12.112 [0.919]                          | 10.645 [0.825]   | 10.575 [0.820]   |
| $-S_{O[E](3K)}\left(\frac{10^{-7}\times V}{K}\right) \qquad \searrow$                                                    | 3.416 [16.003]                          | 3.435 [16.090]   | 3.436 [16.095]   |
| $-S_{0[E](80K)}\left(\frac{10^{-6}\times V}{K}\right)  \searrow$                                                         | 9.100 [41.611]                          | 9.149 [41.826]   | 9.152 [41.839]   |
| $-VC1_{0[E](3K)}\left(\frac{10^{-7}\times V}{K}\right)$                                                                  | 2.277 [10.668]                          | 2.290 [10.726]   | 2.291 [10.729]   |
| $-VC1_{O[E](80K)}\left(\frac{10^{-6}\times V}{K}\right)  \checkmark$                                                     | 6.052 [26.358]                          | 6.085 [26.480]   | 6.087 [26.487]   |
| $-VC2_{0[E](3K)}\left(\frac{10^{-7}\times V}{K}\right)$                                                                  | 6.833 [32.003]                          | 6.870 [32.177]   | 6.872 [32.188]   |
| $-VC2_{O[E](80K)}\left(\frac{10^{-4}\times V}{K}\right)$                                                                 | 4.842 [21.087]                          | 4.868 [21.184]   | 4.870 [21.190]   |
| $-Ts_{O[E](3K)}\left(\frac{10^{-7}\times V}{K}\right)  \Sigma$                                                           | 3.416 [16.002]                          | 3.435[16.089]    | 3.436 [16.094]   |
| $-Ts_{O[E](80K)}\left(\frac{10^{-6}\times V}{K}\right)$                                                                  | 9.078 [39.538]                          | 9.127 [39.720]   | 9.131 [39.731]   |
| $-Pt_{O[E](3K)}(10^{-6} \times V)$                                                                                       | 1.025 [4.801]                           | 1.030 [4.827]    | 1.031 [4.828]    |
| $-\text{Pt}_{0[E](80K)}(10^{-4} \times \text{V})$                                                                        | 7.280 [33.288]                          | 7.319 [33.461]   | 7.322 [33.471]   |
| $ZT_{0[E](3K)}(10^{-6})$                                                                                                 | 4.778 [104.82]                          | 4.830 [105.97]   | 4.833 [106.04]   |
| $ZT_{0[E](80K)}(10^{-3})$                                                                                                | 3.389 [70.875]                          | 3.426 [71.612]   | 3.429 [71.654]   |
| For $x=1$ and $N=3.0034 \times 10^{-2}$                                                                                  |                                         |                  |                  |
| $\xi_{\text{n(T=3K)}}$                                                                                                   | 1659.6 [331.928]                        | 1649.8 [329.957] | 1649.2 [329.846] |
| $\xi_{\rm n(T=80K)}$                                                                                                     | 62.256 [12.548]                         | 61.886 [12.474]  | 61.865 [12.470]  |
| $\sigma_{\text{Th.O[E]] (3K)}} \left( \frac{10^{-3} \times W}{\text{cm} \times \text{K}} \right) \qquad \forall$         | 5.000 [0.330]                           | 4.391 [0.296]    | 4.361 [0.294]    |
| $\sigma_{\text{Th.O[E]] (80K)}} \left( \frac{10^{-2} \times W}{\text{cm} \times K} \right)$                              | 13.354 [0.913]                          | 11.726 [0.819]   | 11.65 [0.815]    |
| $-S_{0[E](3K)}\left(\frac{10^{-7}\times V}{K}\right) \qquad \searrow$                                                    | 3.416 [17.081]                          | 3.436 [17.183]   | 3.438 [17.189]   |
| $-S_{O[E](80K)}\left(\frac{10^{-6}\times V}{K}\right)$                                                                   | 9.0997 [44.262]                         | 9.154 [44.511]   | 9.157 [44.525]   |
| $-VC1_{0[E](3K)}(\frac{10^{-7}\times V}{K})$                                                                             | 2.277 [11.386]                          | 2.291 [11.454]   | 2.292 [11.458]   |
| $-VC1_{0[E](80K)}\left(\frac{10^{-6}\times V}{K}\right)$                                                                 | 6.052 [27.840]                          | 6.088 [27.977]   | 6.090 [27.985]   |
| $-VC2_{0[E](3K)}\left(\frac{10^{-7}\times V}{K}\right)$                                                                  | 6.833 [34.16]                           | 6.873 [34.36]    | 6.876 [34.37]    |

| $-VC2_{O[E](80K)}\left(\frac{10^{-4}\times V}{K}\right)$                                                      | 4.842 [22.272] | 4.870 [22.381] | 4.872 [22.388] |
|---------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|
| $-\mathrm{Ts}_{\mathrm{O[E]}(3\mathrm{K})}\left(\frac{10^{-7}\times\mathrm{V}}{\mathrm{K}}\right) \mathbf{V}$ | 3.416 [17.080] | 3.436 [17.181] | 3.438 [17.188] |
| $-Ts_{O[E](80K)}\left(\frac{10^{-6}\times V}{K}\right)$                                                       | 9.078 [41.760] | 9.132 [41.966] | 9.135 [41.978] |
| $-Pt_{0[E](3K)}(10^{-6} \times V)$ \(                                                                         | 1.025 [5.124]  | 1.0310 [5.155] | 1.0314 [5.157] |
| $-\text{Pt}_{O[E](80K)}(10^{-4} \times \text{V})$ \(                                                          | 7.280 [35.409] | 7.323 [35.609] | 7.326 [35.620] |
| $ZT_{0[E](3K)}(10^{-6})$                                                                                      | 4.778 [119.43] | 4.835 [120.86] | 4.838 [120.94] |
| $ZT_{0[E](80K)}(10^{-3})$                                                                                     | 3.389 [80.194] | 3.430 [81.100] | 3.432 [81.152] |

**Table 11:** Here, in the O-EP [E-OP] and for given physical conditions: x,  $r_{d(a)}$ , N (or T), the same values of  $\xi_{n(p)}$  decrease, according to the increasing T (or to the decreasing N), and other thermoelectric coefficients are in variations, as indicated by the arrows as: (increase:  $\nearrow$ , decrease:  $\searrow$ ). One notes here that (i) for  $\xi_{n(p)} \simeq 1.8138$ , while the numerical results of  $S_{O[E]}$  present a same minimum  $S_{O[E] \, min.} \left( \simeq -1.563 \times 10^{-4} \frac{V}{K} \right)$ , those of  $ZT_{O[E]}$  show a same maximum  $ZT_{O[E] \, max.} = 1$ , (ii) for  $\xi_p = 1$ , those of  $S_{O[E]}$ ,  $ZT_{O[E]}$ ,  $ZT_{O[E]Mott}$ ,  $VC1_{E[O]}$ , and  $TS_{O[E]}$  present the same results:  $-1.322 \times 10^{-4} \frac{V}{K}$ , 0.715, 3.290,  $1.105 \times 10^{-4} \frac{V}{K}$ , and  $1.657 \times 10^{-4} \frac{V}{K}$ , respectively, and (iii) for  $\xi_p \simeq 1.8138$ ,  $(ZT)_{O[E]\, Mott} = 1$ .

| $\xi_{n(p)}$                                  | 1.880 [1.880]   | 1.8138     | 3 [1.8138] |     | 1.750 [1.750]   |   | 1 [1]           |   | 0.998 [0.998]   |
|-----------------------------------------------|-----------------|------------|------------|-----|-----------------|---|-----------------|---|-----------------|
| $S_{O[E]}\left(10^{-4}\frac{V}{K}\right)$     | -1.562 [-1.562] | -1.563     | [-1.563]   | 1 - | -1.562 [-1.562] | 7 | -1.322 [-1.322] | 7 | -1.320 [-1.320] |
| $ZT_{O[E]}$                                   | 0.999 [0.999]   | <b>7</b> 1 | [1]        | 7   | 0.999 [0.999]   | 7 | 0.715 [0.715]   | 7 | 0.713 [0.713]   |
| $(ZT)_{O[E] Mott}$ 7                          | 0.931 [0.931]   | 1          | [1]        |     | 1.074 [1.074]   |   | 3.290 [3.290]   |   | 3.306 [3.306]   |
| $VC1_{E[O]} \left(10^{-4} \frac{V}{K}\right)$ | ,               | <b>⊅</b> 0 | [0]        | 7   | 0.063 [0.063]   | 7 | 1.105 [1.105]   | 7 | 1.109 [1.109]   |
| $Ts_{O[E]}\left(10^{-4}\frac{V}{K}\right)$    | -0.092[-0.092]  | <b>⊅</b> 0 | [0]        | 7   | 0.094 [0.094]   | 7 | 1.657 [1.657]   | 7 | 1.663 [1.663]   |