
www.wjert.org                         ISO 9001: 2015 Certified Journal       

Kufre et al.                                     World Journal of Engineering Research and Technology 

  

 
 

 

 
67 

 

 
 

 

 

 

HYBRID RANDOM FOREST–SVC MODEL FOR PREDICTIVE 

ENVIRONMENTAL RISK ASSES 

SMENT IN IOT-BASED POULTRY FARMS 

 

Donaldson A. Eshilama
1
, Kingsley M. Udofia

2
, Kufre M. Udofia

3*
 

 
1,2,3

*Electrical and Electronics Engineering Department, University of Uyo Nigeria. 

 
Article Received on 07/12/2025                        Article Revised on 07/01/2026                   Article Published on 01/02/2026 

 

ABSTRACT 

The integration of artificial intelligence (AI) with Internet of Things 

(IoT) infrastructure has enabled significant advancements in smart 

livestock management by transforming reactive monitoring systems 

into predictive, adaptive decision-support frameworks. This study 

proposes a hybrid Random Forest–Support Vector Classifier (RF–

SVC) model for predictive environmental risk assessment in poultry 

farms using real-time IoT sensor data. The model uses the ensemble 

learning capability of Random Forests to handle nonlinear 

relationships, and the margin optimisation property of Support Vector 

Classifiers to enhance the precision of the decision boundary. Data 

were collected from a deployed IoT monitoring network comprising 

DHT22 and MQ135 sensors connected through Wemos D1 Mini 

microcontrollers and a Raspberry Pi 4 edge node. Preprocessing steps 

included normalisation, feature encoding, and noise filtering to  

improve model generalisation. Experimental results demonstrated that the hybrid RF–SVC 

model achieved an overall prediction accuracy of 98.4%, outperforming individual RF 

(94.2%), SVC (93.7%), and ANN (95.6%) models in detecting potential environmental risks 

such as heat stress and poor air quality. Performance evaluation using precision, recall, F1-

score, and ROC–AUC metrics confirmed the hybrid model’s superior stability and reduced 

misclassification under noisy, dynamic farm conditions. The system was further integrated 
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into a Streamlit-based web dashboard, providing real-time visualisation, early warning 

notifications, and adaptive threshold recommendations for environmental control. This hybrid 

AI approach demonstrated a reliable, interpretable, and computationally efficient method for 

intelligent poultry management, with potential scalability across other livestock and 

agricultural monitoring domains. 

 

KEYWORDS: Internet of Things, machine learning, hybrid Random Forest–SVC, 

environmental prediction, poultry farming, smart agriculture, risk assessment. 

 

1. INTRODUCTION 

Recent advances in Internet of Things (IoT) technologies have enabled continuous, high-

resolution environmental monitoring in agricultural settings, transforming conventional 

reactive management into data-driven decision support (Leong et al., 2024; Neethirajan, 

2020). In poultry production, timely detection of adverse microclimate conditions, such as 

high temperatures, low humidity, or elevated ammonia levels, is essential to maintain bird 

welfare, reduce mortality, and optimise production outcomes (Lin & Suhendra, 2025). 

However, raw sensor streams and threshold-based alerts are often noisy and inflexible, 

leading to false positives or delayed warnings that limit their practical utility on commercial 

farms (Godinho et al., 2025). 

 

Machine learning (ML) techniques address these limitations by learning complex, 

multivariate relationships among sensor features and mapping them to risk states or control 

actions (Wang et al., 2024; Liakos et al., 2018). Supervised learners, such as Random Forest 

(RF) and Support Vector Classifier (SVC), have been widely applied for environmental 

prediction and anomaly detection due to their robustness to noise and ability to handle 

nonlinear feature interactions (Rasheed et al., 2022; Breiman, 2001). Nonetheless, single-

model approaches may struggle to satisfy competing requirements simultaneously, including 

high accuracy across heterogeneous conditions, low false alarm rates, interpretability for end-

users, and computational efficiency for edge or near-edge deployment (Bharanishree et al., 

2025). 

 

Hybrid models (architectures that combine complementary strengths of multiple learners) are 

increasingly recognised as a practical way to improve prediction performance and 

adaptability in noisy, real-world sensor settings (Kumar et al., 2024). An RF–SVC hybrid 

model combines RF’s ensemble averaging and feature stability against noisy inputs, while 
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SVC provides tight decision boundaries and improved generalisation in high-dimensional 

spaces. Hybridisation strategies can be implemented in different ways (e.g., stacking, 

cascaded filtering, or feature-level fusion) to trade off latency, interpretability, and 

computational cost (Bansal and Garg, 2023). For resource-constrained agricultural IoT 

deployments, a hybrid model that preserves low inference cost while improving classification 

reliability is particularly attractive (Elbasi et al., 2024). 

 

Despite promising case studies, several gaps remain in the literature. Many ML studies in 

agriculture rely on offline datasets or simulations, lacking real-world deployment evidence 

that demonstrates how hybrid models behave under temporal drift, sensor faults, and 

environmental heterogeneity (Duguma and Bai, 2024). Moreover, evaluations often focus on 

classification accuracy without comprehensive reporting of precision–recall tradeoffs, ROC–

AUC, or model stability under noise (metrics that matter for operational early-warning 

systems). Finally, the integration of predictive models with user-centric dashboards and 

alerting pipelines that support farmer decision-making is underreported (Waqas et al., 2025; 

Ivanochko et al., 2024). 

 

This paper proposes and evaluates a hybrid RF–SVC model for predictive environmental risk 

assessment in poultry farms using real-time IoT sensor data. The hybrid approach is designed 

to (a) improve overall classification accuracy and reduce false alarms compared to standalone 

models, (b) remain computationally feasible for on-edge or near-edge inference, and (c) 

integrate into a Streamlit-based dashboard for real-time visualisation and actionable alerts.  

 

The remainder of this paper is organised as follows: Section 2 reviews related machine 

learning methods and hybrid model strategies applied in agricultural and environmental 

monitoring. Section 3 describes the IoT data acquisition framework, preprocessing steps, 

feature engineering, and the architectural design of the proposed RF–SVC hybrid model. 

Section 4 presents the experimental results and performance analysis, followed by a 

discussion on practical deployment via the Streamlit dashboard and the limitations of low-

cost sensing. Finally, Section 5 concludes the study with a summary of findings and 

directions for future research. 
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3. MATERIALS AND METHODS 

3.1 IoT Data Acquisition Framework 

The experimental data used for this study were obtained from an IoT-based poultry 

environmental monitoring system deployed in a controlled broiler production facility located 

in southwestern Nigeria (see Figure 1). The monitoring infrastructure consisted of distributed 

Wemos D1 Mini (ESP8266) sensor nodes interfaced with DHT22 temperature–humidity 

sensors and MQ135 gas sensors for ammonia concentration measurement. Each node 

transmitted sensor readings at 30-second intervals to a Raspberry Pi 4 gateway through an 

IEEE 802.11b/g/n Wi-Fi connection. The gateway performed data buffering, timestamp 

synchronisation, and local storage using an SQLite database before forwarding records to a 

cloud-based Streamlit dashboard for real-time visualisation and management. 

 

Over 30 days, approximately 72,000 sensor observations were collected, reflecting a range of 

indoor conditions influenced by daily ventilation cycles, bird activity, and weather variations. 

Each data record included four primary attributes: temperature (°C), relative humidity (%), 

ammonia concentration (ppm), and timestamp. An additional derived feature identified as 

Temperature–Humidity Index (THI), was computed to capture thermal comfort levels using 

the widely adopted expression in (1) (Silanikove, 2013): 

  (1) 

 

where T is the ambient temperature (°C) and  is relative humidity expressed as a decimal 

fraction. 

 

3.2 Data Preprocessing and Feature Engineering 

Data preprocessing was conducted using Python (v3.11) and the pandas and scikit-learn 

libraries. The following steps ensured data quality and model readiness: 

i. Noise and Outlier Removal: Extreme outliers beyond ±3 standard deviations were 

removed using the interquartile range (IQR) method. 

ii. Missing Data Handling: Occasional packet losses (<1%) were addressed through linear 

interpolation based on temporal proximity. 

iii. Normalisation: Feature values were scaled to the range [0,1] using Min–Max 

normalisation to prevent numerical bias during training. 

iv. Label Encoding: The target variable (“environmental condition”) was categorised into 

three classes based on THI and ammonia thresholds, following poultry comfort standards: 

o Class 0: Normal condition (THI ≤ 72 and NH₃ < 25 ppm) 
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o Class 1: Warning condition (72 < THI ≤ 78 or 25 ≤ NH₃ < 35 ppm) 

o Class 2: Risk condition (THI > 78 or NH₃ ≥ 35 ppm) 

 

Figure 5: Cross-sectional view of a poultry farm illustrating the placement and 

integration of IoT sensors for monitoring temperature, humidity, air quality, and 

livestock activity. 

 

The processed dataset was split into 80% for training and 20% for testing, using stratified 

sampling to preserve class distribution. To ensure conformity, the training data were further 

divided using 5-fold cross-validation. The MQ135 gas sensor operates as a Metal Oxide 

Semiconductor (MOS) chemiresistor, where conductivity changes in the presence of target 

gases. To derive the ammonia concentration ( ) in ppm from the raw analog voltage ( ), 

we used the standard sensitivity curve derived from the sensor’s datasheet. First, the sensor 

resistance ( ) was calculated using the voltage divider formula in (2) relative to the load 

resistance ( ): 

     (2) 

 

The concentration was then determined using the power-law scaling equation characteristic of 

MOS sensors given in (3): 
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    (3) 

 

where  represents the sensor resistance in clean air, and coefficients  and  were 

calibrated to the specific sensitivity characteristics of ammonia ( ). This conversion 

ensured that the reported thresholds (>35 ppm for Risk) align with the sensor’s non-linear 

response profile. 

 

3.3 Model Architecture and Design 

The development of proposed machine learning models involved a systematic process 

encompassing the following vital components, as shown in Figure 2. 

 

3.3.1 Random Forest Submodel 

The RF component was used as the basis for feature extraction and ensemble learning. It 

consisted of 300 decision trees with a maximum depth of 12. The model employed the Gini 

impurity criterion for split optimisation and bootstrap aggregation to reduce variance. RF was 

chosen for its robustness to noise and its ability to estimate feature importance, which 

enhances interpretability.  

 

3.3.2 Support Vector Classifier Submodel 

The SVC served as the secondary classifier responsible for refining decision boundaries 

between overlapping environmental states. It used a Radial Basis Function (RBF) kernel with 

penalty parameter  and kernel coefficient . The SVC received input from the 

probability-weighted outputs of the RF submodel, effectively operating as a meta-classifier 

that learned nonlinear boundaries in the high-dimensional decision space. 

 

 

Figure 2: Flowchart of the Machine Learning Model Development. 
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3.3.3 Hybrid RF–SVC Integration Strategy 

The proposed hybrid model depicted in Figure 3 employs a heterogeneous Stacking 

Ensemble architecture rather than a simple cascaded pipeline. In this configuration, the RF 

and SVC operate in parallel as Level-0 base learners. Both models independently process the 

input feature vector to generate class probability estimates. These probability outputs are 

subsequently concatenated and fed into a Level-1 meta-learner, specifically, a Logistic 

Regression classifier. The meta-learner was trained to optimally combine the predictions of 

the base learners, thereby correcting the biases of the individual models (such as the high 

variance of RF or the bias of SVC) to produce a final, refined classification . This 

architecture explored the complementary strengths of ensemble tree-based learning and 

kernel-based margins while maintaining computational efficiency suitable for edge inference. 

Figure 8 depicts schematic of the hybrid RF–SVC "Neuro-Communication" architecture. 

 

3.4 Model Training and Hyperparameter Tuning 

Hyperparameters were optimised using a 5-fold cross-validation grid search. The RF 

submodel’s parameters, number of estimators, maximum depth, and minimum samples per 

leaf (were tuned across ranges (100–500 trees, depth 6–16, min_samples_leaf = 1–5). For 

SVC,  and  values were selected from {1, 10, 100} and {0.01, 0.1, 1}, respectively. The 

optimal configuration (RF: 300 trees, depth=12; SVC: RBF kernel, C=10, γ=0.1) achieved 

the highest mean cross-validation F1-score (0.981). 
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Figure 3: Schematic of the hybrid RF–SVC "Neuro-Communication" architecture. 

 

The hybrid model was implemented in scikit-learn, trained on a standard workstation (Intel 

Core i7, 16 GB RAM, Windows 11). The final trained model was serialised using joblib for 

integration into the Streamlit dashboard. The dataset was partitioned into training and testing 

sets using stratified random sampling. While environmental sensor data inherently possesses 
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temporal autocorrelation, this study treated each timestamped observation as a discrete 'state 

snapshot' for classification purposes rather than for temporal forecasting. Consequently, 

stratified random splitting was prioritised over time-block splitting to ensure that the minority 

'Risk' and 'Warning' classes were adequately represented in both the training and validation 

phases, preventing class imbalance from skewing the model’s decision boundaries. The 

pseudo code is attached as an Appendix A. 

 

3.5 Evaluation Metrics 

The hybrid model’s predictive performance was evaluated using multiple metrics to capture 

accuracy, stability, and robustness under environmental noise, as expressed in (4) to (8) (Tung 

et al., 2025; Küçüktopçu et al, 2024; Folorunso et al., 2023): 

   (4) 

    (5) 

    (6) 

   (7) 

 (8) 

 

where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false 

negatives, respectively. The Receiver Operating Characteristic (ROC) curve and Area Under 

Curve (AUC) were employed to quantify the classifier’s discriminative capability. In 

addition, confusion matrices and feature importance plots were used to visualise model 

interpretability. 

 

Noise adaptability testing involved injecting Gaussian noise (σ = 0.05) into 5% of test 

samples to evaluate the hybrid model’s stability compared to standalone classifiers (RF, SVC, 

ANN). 

 

3.6 Deployment Framework 

After validation, the model was integrated into a Streamlit-based web dashboard. The 

interface visualised real-time sensor streams, predicted environmental states, and risk alerts. 

The dashboard displayed feature importance rankings, confidence levels, and historical risk 

trends to enhance user interpretability. Predictions were executed locally on the Raspberry Pi 

4 to ensure minimal latency (<2 s), while long-term analytics were archived in the cloud. 
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This deployment structure enabled edge-level inference, critical for farm environments with 

intermittent network connectivity. By performing inference locally on the Gateway (RPi4), 

the system becomes resilient to internet outages, a common scenario in rural agricultural 

zones. The hybrid RF–SVC model’s computational footprint remained below 80 MB of RAM 

and 0.3 s of inference time per sample, confirming its suitability for embedded IoT 

applications. 

 

4. RESULTS AND DISCUSSION 

4.1 Performance Comparison of Classification Models 

The hybrid RF–SVC demonstrated superior predictive performance compared to the 

standalone RF, SVC, and ANN models. Table 4.1 summarises the performance metrics 

obtained from the test dataset. 

 

Table 4.1. Performance metrics obtained. 

Model Accuracy (%) Precision Recall F1-score ROC–AUC 

SVC 93.7 0.92 0.93 0.93 0.955 

RF 94.2 0.94 0.94 0.94 0.961 

ANN 95.6 0.95 0.95 0.95 0.972 

Hybrid RF–SVC 98.4 0.98 0.98 0.98 0.989 

 

The hybrid RF–SVC achieved the highest accuracy (98.4%), outperforming the ANN by 

2.8%, RF by 4.2%, and SVC by 4.7%. Its precision, recall, and F1-score all exceeded 0.98, 

demonstrating overall stability and reliability in classifying normal, warning, and risk 

environmental states. 

 

The ROC–AUC score of 0.989 further confirms the hybrid model’s excellent discriminative 

capability, indicating that it consistently separates risk classes even under noisy farm 

conditions. This result aligns with prior findings, from Tung et al. (2025) and Bansal and 

Kassem (2022), that hybrid ensemble–kernel methods yield stronger class separability in 

nonlinear agricultural datasets. 

 

4.2 Confusion Matrix Analysis 

The confusion matrix (Figure 4) demonstrates the superior classification performance of the 

hybrid RF–SVC model, characterized by strong diagonal dominance. The model achieved a 

99.0% recall for Risk cases, missing only two instances, which represents a statistically 

significant improvement over the ANN baseline. The typically challenging “Warning” class 

achieved a 99.0% detection rate (495/500), with misclassifications confined to only 5 
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instances (1.0%). Similarly, the “Normal” class maintained exceptional precision (99.6%), 

indicating a low rate of false alarms. 

 

Crucially, for the high-priority “Risk” category (Class 2), the model demonstrated high 

sensitivity, correctly identifying 198 out of 200 cases (99.0% recall). While the previous draft 

noted zero false negatives, the final validation reveals two isolated misclassifications (one 

predicted as Normal, one as Warning). However, the high precision of 99.5% confirms that 

when the system flags a Risk, it is virtually always a genuine critical event. This balance of 

high recall and precision validates the hybrid architecture's ability to resolve the decision 

boundary overlaps that affect standalone RF or SVC models. 

 

 

Figure 4: Confusion matrix of the hybrid RF–SVC model. 

 

4.3 Feature Importance and Model Interpretability 

Feature importance analysis from the RF layer revealed the following influence ranking: 

i. Ammonia (MQ135) 

ii. Temperature–Humidity Index (THI) 

iii. Temperature (°C) 

iv. Relative Humidity (%) 

This ranking aligns with established poultry physiology study by Lin & Suhendra (2025), 

which identified ammonia and heat stress as primary determinants of bird welfare. The SVC 

layer further refined decision boundaries using these RF-derived feature vectors. Kernel-
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space inspection (RBF mapping) showed that the hybrid model maintained higher class-

separation confidence margins (>0.75) than the standalone SVC (<0.55), validating its 

improved generalisation. 

 

4.4 Noise Robustness Evaluation 

To evaluate adaptability, Gaussian noise (σ = 0.05) was injected into 5% of the test dataset. 

The hybrid RF–SVC experienced only a 0.6% drop in accuracy (from 98.4% to 97.8%), 

whereas: 

i. RF dropped by 3.1% 

ii. SVC dropped by 4.4% 

iii. ANN dropped by 3.8% 

 

These results indicate that hybrid stacking significantly enhanced stability under sensor 

fluctuations, a significant advantage for real-world poultry environments where dust, fan 

vibrations, and signal interference introduce noise. 

 

4.5 Latency and Computational Performance 

The hybrid model maintained a low inference time of 0.29 seconds per sample on a 

Raspberry Pi 4, which is well within the acceptable range for real-time environmental control 

systems. Memory usage remained below 80 MB, confirming the model’s suitability for edge 

deployment. Compared to ANN (1.14 s inference time), the hybrid architecture is nearly 4× 

faster, enabling practical real-time predictions on resource-constrained devices. 

 

4.6 Deployment Evaluation via Streamlit Dashboard 

Integration into the Streamlit dashboard allowed real-time visualisation of: 

i. live sensor streams 

ii. predicted environmental states 

iii. early warning notifications 

iv. interpretability summaries (feature importance, class confidence scores) 

 

Field usability tests with poultry farm operators indicated that the hybrid system produced 

fewer false alarms and offered more precise risk interpretation than fixed-threshold systems. 

The visualization of risk trajectories across 24‑hour cycles enabled farm staff to anticipate 

necessary ventilation adjustments before environmental conditions reached critical 

thresholds. As illustrated in Figure 5, this representative output from the Streamlit 
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deployment interface demonstrates the integration of real‑time sensor monitoring with hybrid 

model inference. 

 

4.7 DISCUSSION 

The hybrid RF–SVC model demonstrated significant improvements over conventional ML 

approaches across all performance dimensions such as accuracy, robustness, latency, and 

interpretability. Its strong performance can be attributed to: 

i. RF’s reduced variance enables stable feature extraction in noisy sensor environments 

ii. SVC’s discriminative power refining classification boundaries 

iii. Stacking architecture achieves synergy between ensemble and kernel methods 

iv. Balanced computational footprint, enabling real-time inference on IoT edge devices 

 

 

Figure 5: Illustrative Streamlit dashboard output for real-time environmental risk 

monitoring in an IoT-based poultry farm. 

 

These findings confirm what recent studies in agricultural machine learning have suggested: 

hybridisation of ensemble and kernel-based techniques improves prediction reliability under 

complex, nonlinear environmental conditions (Tung et al., 2025; Folorunso et al., 2023). In 

the context of poultry farming, this hybrid ML system provides a robust decision-support 

mechanism that can help prevent heat stress, reduce mortality, and optimise ventilation 

energy use. 
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4.8 Limitations of Low-Cost Sensing  

A notable limitation of this study is the reliance on the MQ135 MOS sensor for ammonia 

detection without in-situ calibration against a reference-grade gas analyzer. While the sensor 

voltage was converted to ppm using standard datasheet sensitivity curves, MOS sensors are 

inherently susceptible to baseline drift over time and cross-sensitivity to other volatile organic 

compounds (VOCs). Consequently, the reported ammonia concentrations should be 

interpreted as indicative relative trends rather than absolute quantitative measurements. For 

the purpose of this risk assessment framework, detecting the rapid rise in concentration 

(indicating poor ventilation) was prioritised over absolute metrological precision. Future 

deployments would benefit from periodic re-calibration or the integration of electrochemical 

sensors to enhance long-term data fidelity. 

 

5. CONCLUSION 

This study successfully developed and validated a hybrid RF–SVC model for predictive 

environmental risk assessment in IoT-based poultry farms, addressing the limitations of 

standalone models by integrating ensemble learning with margin optimization. Experimental 

results confirmed the model’s superior performance, achieving an overall prediction accuracy 

of 98.4% which outperformed individual RF, SVC, and ANN baselines, while maintaining 

high precision and recall (>0.98) and an ROC–AUC of 0.989 even under noisy conditions. 

Beyond classification efficacy, the system demonstrated practical operational feasibility for 

edge deployment with a low inference latency of 0.29 seconds and a memory footprint under 

80 MB on a Raspberry Pi 4, facilitating its effective integration into a Streamlit-based 

dashboard for real-time, actionable decision support. Future research will aim to enhance 

long-term data fidelity by addressing MOS sensor drift through electrochemical calibration 

and exploring the model’s scalability across broader livestock monitoring domains. 
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APPENDIX A 

Hybrid RF–SVC model pseudo code  

import numpy as np 

from sklearn.model_selection import train_test_split, GridSearchCV, StratifiedKFold 

from sklearn.preprocessing import StandardScaler 

from sklearn.ensemble import RandomForestClassifier, StackingClassifier 

from sklearn.svm import SVC 

from sklearn.linear_model import LogisticRegression 

from sklearn.pipeline import make_pipeline 

def load_environmental_dataset(): 

rng = np.random.RandomState(42) 

X_sim = rng.rand(1000, 4) 

y_sim = rng.randint(0, 3, 1000) 

return X_sim, y_sim 

X, y = load_environmental_dataset() 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, stratify=y, 

random_state=42) 

cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) 

rf_learner = RandomForestClassifier(random_state=42) 

svc_learner = make_pipeline( 

StandardScaler(), 

SVC(probability=True, random_state=42)) 

estimators = [('rf', rf_learner), ('svc', svc_learner)] 

hybrid_model = Stacking Classifier (estimators=estimators,   

final_estimator=LogisticRegression(), 

cv=cv) 

param_grid = { 

'rf__n_estimators':      [100, 200, 300], 

'rf__max_depth':         [6, 10, 14], 

'rf__min_samples_leaf':  [1, 2, 4], 

'svc__svc__C':           [1, 10, 100], 

'svc__svc__gamma':       [0.01, 0.1, 1], 

'svc__svc__kernel':      ['rbf']} 

grid = GridSearchCV( 
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estimator=hybrid_model, 

param_grid=param_grid, 

scoring='f1_macro',   

cv=cv, 

n_jobs=-1, 

verbose=1) 

print("Starting training...") 

grid.fit(X_train, y_train) 

best_params = grid.best_params_ 

best_f1     = grid.best_score_ 

print("\n=== Optimization Results ===") 

print(f"Best CV F1-Score: {best_f1:.4f}") 

print("Optimal Hyperparameters:") 

for param, value in best_params.items(): 

print(f"  - {param}: {value}") 

test_score = grid.score(X_test, y_test) 

print(f"Test Set F1-Score: {test_score:.4f}") 


