WJERT, 2026, Vol. 12 Issue 2, 67-83.

Original Article

ISSN 2454-695X

World Journal of Engineering Research and Technology

Impact Factor: 7.029

WwWw.wijert.org

Coden USA: WIERA4

WJERT

World Journal of Engineering
Research and Technology

HYBRID RANDOM FOREST-SVC MODEL FOR PREDICTIVE

ENVIRONMENTAL RISK ASSES

SMENT IN IOT-BASED POULTRY FARMS

Donaldson A. Eshilama®, Kingsley M. Udofia?, Kufre M. Udofia®*

L23xElectrical and Electronics Engineering Department, University of Uyo Nigeria.

Article Received on 07/12/2025

Article Revised on 07/01/2026 Avrticle Published on 01/02/2026

*Corresponding Author
Kufre M. Udofia
Electrical and Electronics
Engineering Department,
University of Uyo Nigeria.
https://doi.org/10.5281/zenodo.18441106

How to cite this Article: Donaldson A.
Eshilama®, Kingsley M. Udofia?, Kufre
M. Udofia®*. (2026). HYBRID
RANDOM FOREST-SVC MODEL
FOR PREDICTIVE
ENVIRONMENTAL RISK
ASSESSMENT IN I0T-BASED
POULTRY FARMS. World Journal of
Engineering Research and Technology,
12(2), 67-83.

This work is licensed under Creative
Commons Attribution 4.0 International
license.

ABSTRACT

The integration of artificial intelligence (Al) with Internet of Things
(1oT) infrastructure has enabled significant advancements in smart
livestock management by transforming reactive monitoring systems
into predictive, adaptive decision-support frameworks. This study
proposes a hybrid Random Forest-Support Vector Classifier (RF-
SVC) model for predictive environmental risk assessment in poultry
farms using real-time loT sensor data. The model uses the ensemble
learning capability of Random Forests to handle nonlinear
relationships, and the margin optimisation property of Support Vector
Classifiers to enhance the precision of the decision boundary. Data
were collected from a deployed IoT monitoring network comprising
DHT22 and MQ135 sensors connected through Wemos D1 Mini
microcontrollers and a Raspberry Pi 4 edge node. Preprocessing steps

included normalisation, feature encoding, and noise filtering to

improve model generalisation. Experimental results demonstrated that the hybrid RF-SVC

model achieved an overall prediction accuracy of 98.4%, outperforming individual RF
(94.2%), SVC (93.7%), and ANN (95.6%) models in detecting potential environmental risks

such as heat stress and poor air quality. Performance evaluation using precision, recall, F1-

score, and ROC-AUC metrics confirmed the hybrid model’s superior stability and reduced

misclassification under noisy, dynamic farm conditions. The system was further integrated
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into a Streamlit-based web dashboard, providing real-time visualisation, early warning
notifications, and adaptive threshold recommendations for environmental control. This hybrid
Al approach demonstrated a reliable, interpretable, and computationally efficient method for
intelligent poultry management, with potential scalability across other livestock and

agricultural monitoring domains.

KEYWORDS: Internet of Things, machine learning, hybrid Random Forest-SVC,

environmental prediction, poultry farming, smart agriculture, risk assessment.

1. INTRODUCTION

Recent advances in Internet of Things (loT) technologies have enabled continuous, high-
resolution environmental monitoring in agricultural settings, transforming conventional
reactive management into data-driven decision support (Leong et al., 2024; Neethirajan,
2020). In poultry production, timely detection of adverse microclimate conditions, such as
high temperatures, low humidity, or elevated ammonia levels, is essential to maintain bird
welfare, reduce mortality, and optimise production outcomes (Lin & Suhendra, 2025).
However, raw sensor streams and threshold-based alerts are often noisy and inflexible,
leading to false positives or delayed warnings that limit their practical utility on commercial
farms (Godinho et al., 2025).

Machine learning (ML) techniques address these limitations by learning complex,
multivariate relationships among sensor features and mapping them to risk states or control
actions (Wang et al., 2024; Liakos et al., 2018). Supervised learners, such as Random Forest
(RF) and Support Vector Classifier (SVC), have been widely applied for environmental
prediction and anomaly detection due to their robustness to noise and ability to handle
nonlinear feature interactions (Rasheed et al., 2022; Breiman, 2001). Nonetheless, single-
model approaches may struggle to satisfy competing requirements simultaneously, including
high accuracy across heterogeneous conditions, low false alarm rates, interpretability for end-
users, and computational efficiency for edge or near-edge deployment (Bharanishree et al.,
2025).

Hybrid models (architectures that combine complementary strengths of multiple learners) are
increasingly recognised as a practical way to improve prediction performance and
adaptability in noisy, real-world sensor settings (Kumar et al., 2024). An RF-SVC hybrid

model combines RF’s ensemble averaging and feature stability against noisy inputs, while
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SVC provides tight decision boundaries and improved generalisation in high-dimensional
spaces. Hybridisation strategies can be implemented in different ways (e.g., stacking,
cascaded filtering, or feature-level fusion) to trade off latency, interpretability, and
computational cost (Bansal and Garg, 2023). For resource-constrained agricultural loT
deployments, a hybrid model that preserves low inference cost while improving classification

reliability is particularly attractive (Elbasi et al., 2024).

Despite promising case studies, several gaps remain in the literature. Many ML studies in
agriculture rely on offline datasets or simulations, lacking real-world deployment evidence
that demonstrates how hybrid models behave under temporal drift, sensor faults, and
environmental heterogeneity (Duguma and Bai, 2024). Moreover, evaluations often focus on
classification accuracy without comprehensive reporting of precision—recall tradeoffs, ROC—
AUC, or model stability under noise (metrics that matter for operational early-warning
systems). Finally, the integration of predictive models with user-centric dashboards and
alerting pipelines that support farmer decision-making is underreported (Wagas et al., 2025;
Ivanochko et al., 2024).

This paper proposes and evaluates a hybrid RF-SVC model for predictive environmental risk
assessment in poultry farms using real-time 10T sensor data. The hybrid approach is designed
to (a) improve overall classification accuracy and reduce false alarms compared to standalone
models, (b) remain computationally feasible for on-edge or near-edge inference, and (c)
integrate into a Streamlit-based dashboard for real-time visualisation and actionable alerts.

The remainder of this paper is organised as follows: Section 2 reviews related machine
learning methods and hybrid model strategies applied in agricultural and environmental
monitoring. Section 3 describes the 10T data acquisition framework, preprocessing steps,
feature engineering, and the architectural design of the proposed RF-SVC hybrid model.
Section 4 presents the experimental results and performance analysis, followed by a
discussion on practical deployment via the Streamlit dashboard and the limitations of low-
cost sensing. Finally, Section 5 concludes the study with a summary of findings and

directions for future research.

Wwww.wjert.org ISO 9001: 2015 Certified Journal 69




Kufre et al. World Journal of Engineering Research and Technology

3. MATERIALS AND METHODS

3.1 10T Data Acquisition Framework

The experimental data used for this study were obtained from an loT-based poultry
environmental monitoring system deployed in a controlled broiler production facility located
in southwestern Nigeria (see Figure 1). The monitoring infrastructure consisted of distributed
Wemos D1 Mini (ESP8266) sensor nodes interfaced with DHT22 temperature—humidity
sensors and MQ135 gas sensors for ammonia concentration measurement. Each node
transmitted sensor readings at 30-second intervals to a Raspberry Pi 4 gateway through an
IEEE 802.11b/g/n Wi-Fi connection. The gateway performed data buffering, timestamp
synchronisation, and local storage using an SQL.ite database before forwarding records to a

cloud-based Streamlit dashboard for real-time visualisation and management.

Over 30 days, approximately 72,000 sensor observations were collected, reflecting a range of
indoor conditions influenced by daily ventilation cycles, bird activity, and weather variations.
Each data record included four primary attributes: temperature (°C), relative humidity (%),
ammonia concentration (ppm), and timestamp. An additional derived feature identified as
Temperature-Humidity Index (THI), was computed to capture thermal comfort levels using
the widely adopted expression in (1) (Silanikove, 2013):

THI =T — (0.55 — 0.55RH)(T — 14.5) (1)

where T is the ambient temperature (°C) and RH is relative humidity expressed as a decimal

fraction.

3.2 Data Preprocessing and Feature Engineering

Data preprocessing was conducted using Python (v3.11) and the pandas and scikit-learn

libraries. The following steps ensured data quality and model readiness:

i. Noise and Outlier Removal: Extreme outliers beyond +3 standard deviations were

removed using the interquartile range (IQR) method.

ii. Missing Data Handling: Occasional packet losses (<1%) were addressed through linear
interpolation based on temporal proximity.

iii. Normalisation: Feature values were scaled to the range [0,1] using Min—Max
normalisation to prevent numerical bias during training.

iv. Label Encoding: The target variable (“environmental condition”) was categorised into
three classes based on THI and ammonia thresholds, following poultry comfort standards:

o Class 0: Normal condition (THI <72 and NH;3 < 25 ppm)
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o Class 1: Warning condition (72 < THI < 78 or 25 < NH3 < 35 ppm)
o Class 2: Risk condition (THI > 78 or NH3 > 35 ppm)
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Figure 5: Cross-sectional view of a poultry farm illustrating the placement and
integration of loT sensors for monitoring temperature, humidity, air quality, and

livestock activity.

The processed dataset was split into 80% for training and 20% for testing, using stratified
sampling to preserve class distribution. To ensure conformity, the training data were further
divided using 5-fold cross-validation. The MQ135 gas sensor operates as a Metal Oxide
Semiconductor (MOS) chemiresistor, where conductivity changes in the presence of target
gases. To derive the ammonia concentration (C) in ppm from the raw analog voltage (V,_,.),
we used the standard sensitivity curve derived from the sensor’s datasheet. First, the sensor
resistance (R,) was calculated using the voltage divider formula in (2) relative to the load

resistance (R,):

R, = R, (ftox) )

Vout

The concentration was then determined using the power-law scaling equation characteristic of
MOS sensors given in (3):

www.wjert.org ISO 9001: 2015 Certified Journal 71




Kufre et al. World Journal of Engineering Research and Technology

ppm = a. (i—)b ©)

where R, represents the sensor resistance in clean air, and coefficients a and b were
calibrated to the specific sensitivity characteristics of ammonia (NH;). This conversion
ensured that the reported thresholds (>35 ppm for Risk) align with the sensor’s non-linear

response profile.

3.3 Model Architecture and Design
The development of proposed machine learning models involved a systematic process

encompassing the following vital components, as shown in Figure 2.

3.3.1 Random Forest Submodel

The RF component was used as the basis for feature extraction and ensemble learning. It
consisted of 300 decision trees with a maximum depth of 12. The model employed the Gini
impurity criterion for split optimisation and bootstrap aggregation to reduce variance. RF was
chosen for its robustness to noise and its ability to estimate feature importance, which

enhances interpretability.

3.3.2 Support Vector Classifier Submodel

The SVC served as the secondary classifier responsible for refining decision boundaries
between overlapping environmental states. It used a Radial Basis Function (RBF) kernel with
penalty parameter ¢ = 10 and kernel coefficient ¥ = 0.1. The SVC received input from the
probability-weighted outputs of the RF submodel, effectively operating as a meta-classifier

that learned nonlinear boundaries in the high-dimensional decision space.

Generation

[Data Collection and]

Data
Preprocessing

Training and

Model Selection,
Cross-validation

Hyperparameter
Tunning

Model Evaluation

Figure 2: Flowchart of the Machine Learning Model Development.
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3.3.3 Hybrid RF-SVC Integration Strategy

The proposed hybrid model depicted in Figure 3 employs a heterogeneous Stacking
Ensemble architecture rather than a simple cascaded pipeline. In this configuration, the RF
and SVC operate in parallel as Level-0 base learners. Both models independently process the
input feature vector to generate class probability estimates. These probability outputs are
subsequently concatenated and fed into a Level-1 meta-learner, specifically, a Logistic
Regression classifier. The meta-learner was trained to optimally combine the predictions of
the base learners, thereby correcting the biases of the individual models (such as the high
variance of RF or the bias of SVC) to produce a final, refined classification y. This
architecture explored the complementary strengths of ensemble tree-based learning and
kernel-based margins while maintaining computational efficiency suitable for edge inference.

Figure 8 depicts schematic of the hybrid RF-SVC "Neuro-Communication™ architecture.

3.4 Model Training and Hyperparameter Tuning

Hyperparameters were optimised using a 5-fold cross-validation grid search. The RF
submodel’s parameters, number of estimators, maximum depth, and minimum samples per
leaf (were tuned across ranges (100-500 trees, depth 6-16, min_samples_leaf = 1-5). For
SVC, ¢ and y values were selected from {1, 10, 100} and {0.01, 0.1, 1}, respectively. The
optimal configuration (RF: 300 trees, depth=12; SVC: RBF kernel, C=10, y=0.1) achieved
the highest mean cross-validation F1-score (0.981).

Temperature —
Humidity —— / - N Lo'g’istic““ :
- Probability " Regression
- EoE Concatenation - (Meta-  —» Class
Fusion Prediction
S it \ Vector Learner)
Ammonia — uppo Q y ~_ node
Vector ~— -
Classifier
THI —

Figure 3: Schematic of the hybrid RF-SVC ""Neuro-Communication® architecture.

The hybrid model was implemented in scikit-learn, trained on a standard workstation (Intel
Core i7, 16 GB RAM, Windows 11). The final trained model was serialised using joblib for
integration into the Streamlit dashboard. The dataset was partitioned into training and testing

sets using stratified random sampling. While environmental sensor data inherently possesses
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temporal autocorrelation, this study treated each timestamped observation as a discrete 'state
snapshot' for classification purposes rather than for temporal forecasting. Consequently,
stratified random splitting was prioritised over time-block splitting to ensure that the minority
'Risk’ and 'Warning' classes were adequately represented in both the training and validation
phases, preventing class imbalance from skewing the model’s decision boundaries. The

pseudo code is attached as an Appendix A.

3.5 Evaluation Metrics

The hybrid model’s predictive performance was evaluated using multiple metrics to capture
accuracy, stability, and robustness under environmental noise, as expressed in (4) to (8) (Tung
et al., 2025; Kuguktopcu et al, 2024; Folorunso et al., 2023):

Accuracy = % 4)
Precision = I'PrfFP ®)
Fecall = rpipm" (6)
Fl-score = 2 X % @)
ROC-AUC = [ TPR(FPR) d(FPR) (8)

where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false
negatives, respectively. The Receiver Operating Characteristic (ROC) curve and Area Under
Curve (AUC) were employed to quantify the classifier’s discriminative capability. In
addition, confusion matrices and feature importance plots were used to visualise model

interpretability.

Noise adaptability testing involved injecting Gaussian noise (o = 0.05) into 5% of test

samples to evaluate the hybrid model’s stability compared to standalone classifiers (RF, SVC,
ANN).

3.6 Deployment Framework

After validation, the model was integrated into a Streamlit-based web dashboard. The
interface visualised real-time sensor streams, predicted environmental states, and risk alerts.
The dashboard displayed feature importance rankings, confidence levels, and historical risk
trends to enhance user interpretability. Predictions were executed locally on the Raspberry Pi

4 to ensure minimal latency (<2 s), while long-term analytics were archived in the cloud.
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This deployment structure enabled edge-level inference, critical for farm environments with
intermittent network connectivity. By performing inference locally on the Gateway (RPi4),
the system becomes resilient to internet outages, a common scenario in rural agricultural
zones. The hybrid RF—=SVC model’s computational footprint remained below 80 MB of RAM
and 0.3 s of inference time per sample, confirming its suitability for embedded loT

applications.

4. RESULTS AND DISCUSSION

4.1 Performance Comparison of Classification Models

The hybrid RF-SVC demonstrated superior predictive performance compared to the
standalone RF, SVC, and ANN models. Table 4.1 summarises the performance metrics

obtained from the test dataset.

Table 4.1. Performance metrics obtained.

Model Accuracy (%) | Precision | Recall | F1-score | ROC-AUC
SVvC 93.7 0.92 0.93 0.93 0.955
RF 94.2 0.94 0.94 0.94 0.961
ANN 95.6 0.95 0.95 0.95 0.972
Hybrid RF-SVC 98.4 0.98 0.98 0.98 0.989

The hybrid RF-SVC achieved the highest accuracy (98.4%), outperforming the ANN by
2.8%, RF by 4.2%, and SVC by 4.7%. Its precision, recall, and F1-score all exceeded 0.98,
demonstrating overall stability and reliability in classifying normal, warning, and risk

environmental states.

The ROC-AUC score of 0.989 further confirms the hybrid model’s excellent discriminative
capability, indicating that it consistently separates risk classes even under noisy farm
conditions. This result aligns with prior findings, from Tung et al. (2025) and Bansal and
Kassem (2022), that hybrid ensemble—kernel methods yield stronger class separability in

nonlinear agricultural datasets.

4.2 Confusion Matrix Analysis

The confusion matrix (Figure 4) demonstrates the superior classification performance of the
hybrid RF-SVC model, characterized by strong diagonal dominance. The model achieved a
99.0% recall for Risk cases, missing only two instances, which represents a statistically
significant improvement over the ANN baseline. The typically challenging “Warning” class

achieved a 99.0% detection rate (495/500), with misclassifications confined to only 5
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instances (1.0%). Similarly, the “Normal” class maintained exceptional precision (99.6%),

indicating a low rate of false alarms.

Crucially, for the high-priority “Risk” category (Class 2), the model demonstrated high
sensitivity, correctly identifying 198 out of 200 cases (99.0% recall). While the previous draft
noted zero false negatives, the final validation reveals two isolated misclassifications (one
predicted as Normal, one as Warning). However, the high precision of 99.5% confirms that
when the system flags a Risk, it is virtually always a genuine critical event. This balance of
high recall and precision validates the hybrid architecture's ability to resolve the decision

boundary overlaps that affect standalone RF or SVC models.

Normal 11 0.8%

Risk 1 198 1 1.0%

Warning 4 1 495 1.0%

True Class

99.6% 99.5% 97.6%
0.4% 0.5% 2.4%
Normal Risk Warning

Predicted Class
Figure 4: Confusion matrix of the hybrid RF-SVC model.

4.3 Feature Importance and Model Interpretability
Feature importance analysis from the RF layer revealed the following influence ranking:
i. Ammonia (MQ135)
ii. Temperature—Humidity Index (THI)
iii. Temperature (°C)
iv. Relative Humidity (%)
This ranking aligns with established poultry physiology study by Lin & Suhendra (2025),
which identified ammonia and heat stress as primary determinants of bird welfare. The SVC

layer further refined decision boundaries using these RF-derived feature vectors. Kernel-
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space inspection (RBF mapping) showed that the hybrid model maintained higher class-
separation confidence margins (>0.75) than the standalone SVC (<0.55), validating its

improved generalisation.

4.4 Noise Robustness Evaluation

To evaluate adaptability, Gaussian noise (o = 0.05) was injected into 5% of the test dataset.
The hybrid RF-SVC experienced only a 0.6% drop in accuracy (from 98.4% to 97.8%),
whereas:

i. RF dropped by 3.1%

ii. SVC dropped by 4.4%
iii. ANN dropped by 3.8%

These results indicate that hybrid stacking significantly enhanced stability under sensor
fluctuations, a significant advantage for real-world poultry environments where dust, fan

vibrations, and signal interference introduce noise.

4.5 Latency and Computational Performance

The hybrid model maintained a low inference time of 0.29 seconds per sample on a
Raspberry Pi 4, which is well within the acceptable range for real-time environmental control
systems. Memory usage remained below 80 MB, confirming the model’s suitability for edge
deployment. Compared to ANN (1.14 s inference time), the hybrid architecture is nearly 4x

faster, enabling practical real-time predictions on resource-constrained devices.

4.6 Deployment Evaluation via Streamlit Dashboard

Integration into the Streamlit dashboard allowed real-time visualisation of:
I. live sensor streams

ii. predicted environmental states

iii. early warning notifications

iv. interpretability summaries (feature importance, class confidence scores)

Field usability tests with poultry farm operators indicated that the hybrid system produced
fewer false alarms and offered more precise risk interpretation than fixed-threshold systems.
The visualization of risk trajectories across 24-hour cycles enabled farm staff to anticipate
necessary ventilation adjustments before environmental conditions reached critical

thresholds. As illustrated in Figure 5, this representative output from the Streamlit
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deployment interface demonstrates the integration of real -time sensor monitoring with hybrid

model inference.

4.7 DISCUSSION
The hybrid RF-SVC model demonstrated significant improvements over conventional ML

approaches across all performance dimensions such as accuracy, robustness, latency, and
interpretability. Its strong performance can be attributed to:
i. RF’s reduced variance enables stable feature extraction in noisy sensor environments
ii. SVC’s discriminative power refining classification boundaries
iii. Stacking architecture achieves synergy between ensemble and kernel methods
iv. Balanced computational footprint, enabling real-time inference on 10T edge devices

lllustrative Streamlit Deployment Qutput: loT Poultry Risk Monitoring
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Figure 5: Illustrative Streamlit dashboard output for real-time environmental risk

monitoring in an loT-based poultry farm.

These findings confirm what recent studies in agricultural machine learning have suggested:
hybridisation of ensemble and kernel-based techniques improves prediction reliability under
complex, nonlinear environmental conditions (Tung et al., 2025; Folorunso et al., 2023). In
the context of poultry farming, this hybrid ML system provides a robust decision-support

mechanism that can help prevent heat stress, reduce mortality, and optimise ventilation

energy use.
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4.8 Limitations of Low-Cost Sensing

A notable limitation of this study is the reliance on the MQ135 MOS sensor for ammonia
detection without in-situ calibration against a reference-grade gas analyzer. While the sensor
voltage was converted to ppm using standard datasheet sensitivity curves, MOS sensors are
inherently susceptible to baseline drift over time and cross-sensitivity to other volatile organic
compounds (VOCs). Consequently, the reported ammonia concentrations should be
interpreted as indicative relative trends rather than absolute quantitative measurements. For
the purpose of this risk assessment framework, detecting the rapid rise in concentration
(indicating poor ventilation) was prioritised over absolute metrological precision. Future
deployments would benefit from periodic re-calibration or the integration of electrochemical

sensors to enhance long-term data fidelity.

5. CONCLUSION

This study successfully developed and validated a hybrid RF—-SVC model for predictive
environmental risk assessment in loT-based poultry farms, addressing the limitations of
standalone models by integrating ensemble learning with margin optimization. Experimental
results confirmed the model’s superior performance, achieving an overall prediction accuracy
of 98.4% which outperformed individual RF, SVC, and ANN baselines, while maintaining
high precision and recall (>0.98) and an ROC-AUC of 0.989 even under noisy conditions.
Beyond classification efficacy, the system demonstrated practical operational feasibility for
edge deployment with a low inference latency of 0.29 seconds and a memory footprint under
80 MB on a Raspberry Pi 4, facilitating its effective integration into a Streamlit-based
dashboard for real-time, actionable decision support. Future research will aim to enhance
long-term data fidelity by addressing MOS sensor drift through electrochemical calibration

and exploring the model’s scalability across broader livestock monitoring domains.
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APPENDIX A

Hybrid RF-SVC model pseudo code

import numpy as np

from sklearn.model_selection import train_test_split, GridSearchCV, StratifiedKFold
from sklearn.preprocessing import StandardScaler

from sklearn.ensemble import RandomForestClassifier, StackingClassifier
from sklearn.svm import SVC

from sklearn.linear_model import LogisticRegression

from sklearn.pipeline import make_pipeline

def load_environmental _dataset():

rng = np.random.RandomState(42)

X_sim =rng.rand(1000, 4)

y_sim = rng.randint(0, 3, 1000)

return X_sim, y_sim

X,y = load_environmental_dataset()

X _train, X test, y train, y test = train_test split(X, vy, test size=0.20, stratify=y,
random_state=42)

cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
rf_learner = RandomForestClassifier(random_state=42)

svc_learner = make_pipeline(

StandardScaler(),

SVC(probability=True, random_state=42))

estimators = [('rf', rf_learner), ('svc', svc_learner)]

hybrid_model = Stacking Classifier (estimators=estimators,
final_estimator=LogisticRegression(),

CV=CV)

param_grid = {

'rf_n_estimators:  [100, 200, 300],

'rf__max_depth": [6, 10, 14],

'rf_min_samples_leaf": [1, 2, 4],

'svc__svc_ C" [1, 10, 100],

'SVC__svC__gamma'": [0.01, 0.1, 1],

'svc__svc__kernel:  ['rbf]}

grid = GridSearchCV(
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estimator=hybrid_model,
param_grid=param_grid,
scoring="f1_macro’,

cv=cv,

n_jobs=-1,

verbose=1)

print("Starting training...")
grid.fit(X_train, y_train)

best_params = grid.best_params_

best f1 = grid.best_score_
print("\n=== Optimization Results ==="
print(f"Best CV F1-Score: {best_f1:.4f}")
print("Optimal Hyperparameters:")

for param, value in best_params.items():
print(f" - {param}: {value}")

test_score = grid.score(X_test, y_test)
print(f"Test Set F1-Score: {test_score:.4f}")
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