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ABSTRACT
In  degenerate n*(p*) —p(n) — X(x) = GaAs(1 —x)P(x) -
crystalline alloy, 0 <x <1 , various optical, electrical and

thermoelectric laws and Stokes-Einstein-Sutherland-Reynolds-Van
Cong relations, enhanced by: the optico-electrical phenomenon (O-EP)
and the electro-optical phenomenon (E-OP), our static dielectric
constant law given in Equations (1a, 1b), our accurate Fermi energy
expression given in Eq.*! and finally our conductivity model given in
Eq.l*® are now investigated, by basing on the same physical model and
the mathematical treatment method, as those used in our recent
works."*1 One notes that, for x=0 (1), this crystalline alloy is reduced
to the n(p)-type degenerate GaAs (GaP)-crystals. For the physical
conditions, as those given in Eq.* one remarks that the optical
conductivity, o, obtained from the O-EP, has a same form with that of
the electrical conductivity, given from the E-OP, oy, as those
determined in Eq. (20a), but g > og since m,(x) < m¢q,)(X), My

and m,, being the unperturbed reduced effective electron (hole) mass
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in conduction (valence) bands and the relative carrier mass, respectively. Then, by basing on
our optical [electrical] conductivity models, oggj, given in Eq.l'® he diffusion-mobility-
viscosity-activation energy-Fermi energy relations are determined, and their numerical results
are reported in Tables 3n(p), 4n(p), 5n(p) and 6n(p), suggesting an equivalence between the
degeneracy-and-viscosity concept in this X(x)-degenerate (viscous) crystalline alloy.

KEYWORDS: Conductivity, Mobility, Viscosity coefficient, Diffusion coefficient,
Activation energy, Fermi energy.

INTRODUCTION

In the n* (p*) — X(x) = GaAs;_,P,-crystalline alloy, 0 < x < 1, x being the concentration,
the optical, electrical and thermoelectric coefficients, enhanced by : (i) the optico-electrical
phenomenon (O-EP) and the electro-optical phenomenon (E-OP), (ii) our static dielectric
constant law, e(rq(a), X), Tq(a) being the donor (acceptor) d(a)-radius, given in Equations (1a,
1b), (iii) our accurate reduced Fermi energy, &), given in Eq.Y accurate with a precision
of the order of 2.11 x 107* " affecting all the expressions of optical, electrical and
thermoelectric coefficients, and (iv) our optical-and-electrical conductivity models, given in
Eqg. (18, 20a), are now investigated by basing on our physical model and Fermi-Dirac
distribution function, as those given in our recent works,™>* It should be noted here that for
x=0 (1), the present obtained numerical results are reduced to those given in the n(p)-type

degenerate GaAs (GaP)-crystals,*®!

Then, some important remarks can be reported as follows.

(1) As observed in Equations (3, 5, 6a, 6b), the critical impurity density Ncpncpp), defined
by the generalized Mott criterium in the metal-insulator transition (MIT), is just the density
of electrons (holes), localized in the exponential conduction (valence)-band tail (EBT),
NEbncop): being obtained with a precision of the order of 2.92 x 1077, as given in our
recent work,"®! Therefore, the effective electron (hole)-density can be defined as: N* = N —
Nepnceop) = N — N¢bhcppy: N being the total impurity density, as that observed in the

compensated crystals.

(2) The ratio of the inverse effective screening length kg spy to Fermi wave number kepip)

at 0 K, Rgp(sp)(N"), defined in Eq.l"is valid at any N*.
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(3) For given [N, rqc), %, T], the coefficients: ogg;(E), ko[g) (E), € o) (E), and g (E),
are determined in Equations (18, 19b-19d), as functions of the photon energy E, and then

their numerical results are reported in Tables 3-8, being new ones.

(4) Finally, for particular physical conditions, as those given in Eq.,[*® one observes that the
optical conductivity og has a same form with that of the electrical conductivity, og, as those
given in Eq. (20a), but oo > og since m.(x) < mw)(x) , mey and m,, being the
unperturbed reduced effective electron (hole) mass in conduction (valence) bands and the
relative carrier mass, respectively. Then, by basing on those oqgj-expressions, the diffusion-
mobility-viscosity-activation energy-Fermi energy relations are determined, and their
numerical results are reported in Tables 3n(p), 4n(p), 5n(p) and 6n(p), suggesting an
equivalence between the degeneracy-and-viscosity concept in this X(x)-degenerate (viscous)

crystalline alloy.

In the following, various Sections are presented in order to investigate the conductivity, the
mobility, the viscosity coefficient, and the activation energy, expressed as functions of the

Fermi energy, given in the degenerate (viscous) n*(p*) — X(x)- crystalline alloy.

OUR STATIC DIELECTRIC CONSTANT LAW AND GENERALIZED MOTT
CRITERIUM IN THE METAL-INSULATOR TRANSITION

First of all, in the degenerate n*(p*) — X(x)- crystalline alloy, at T=0 K, we denote : the
donor (acceptor) d(a)-radius by rqc,), the corresponding intrinsic one by: rye(ae)=Tas(Ga)
respectively, the effective averaged numbers of equivalent conduction (valence)-bands by:
gc(v) » the unperturbed reduced effective electron (hole) mass in conduction (valence) bands

by m¢)(x)/m,, m, being the free electron mass, the relative carrier mass by: m.(x) =

mc¢(X)Xmy(X) . . . . .
m < m)(x) for given x , the unperturbed static dielectric constant by: g,(x), and

the intrinsic band gap by: E,, (), as those given in Table 1, reported in Appendix 1.

*

n(p
effective donor (acceptor)-ionization energy in absolute values as:

Here, the effective carrier mass my,y(x) is equal to m)(x). Therefore, we can define the

13600X[m(y)(x)/mo]
[e0(X)]?

_ _E x)
BdO(aO) (X) - (4_1-[)10((::)( ))3 '
3 o(ao

Edo(ao)(X) = meV , and then, the isothermal bulk modulus, by :
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Our Static Dielectric Constant Law [my, ) (x) = m¢y(x)]

Here, the changes in all the energy-band-structure parameters, expressed in terms of the

effective dielectric constant e(rq(,), X), are developed as follows.

Al rqa) = I'do(ao), the needed boundary conditions are found to be, for the impurity-atom

volumes: V = (4m/3) X (rd(a))3 and Vyo(ao) = (41/3) X (rdo(ao))3 , according to the
pressures : p, p, = 0, and to the deformation potential energies (or the strain energies) : «,

a, = 0. Further, the two important equations, used to determine the « -variation, A @ =

B o(ao =, - B o(ao
— Bdo@o® .4 p=—32 giving rise to ;: —(2%)= 2de@® rpop,

. = i . dp
a, = a, are defined by : v v v v v

by an integration, one gets :

3
[Aa(rd(a),x)] BdO(aO)(X) x(V—- Vdo(ao))x In ( )= Edo(ao)(x) [ d(a) _1]><

T'do(ao)

n(p)
"d(a) 3
_d@ ) >

In (rdo(ao)) 2 0.

Furthermore, we also showed that, as rqg) > I'qo(ao) (Td(a) < 'doao)). the compression

Vd()

(dilatation) gives rise to the increase (the decrease) in the energy gap Egn(gp)(rd(a),x), and
the effective donor (acceptor)-ionization energy Eqa) (rd(a),x) in absolute values, obtained in

the effective Bohr model, which is represented respectively by : + [Aa(rd(a), X)]n(p)’

2
(x)
Egnep)(Td@a), X) — Ego(X) = Eq@a)(Taa) X) — Edoao)(X) = Edoao)(X) X l ;:d;)> — 1] =

+ [Aa(rd(a),x)]n(p), for rd(a) = rdo(ao), and for I'd(a) < T'do(ao) Egn(gp) (rd(a),x) — Ego (X) =

2
£0(X)
Eqa)(Tda) X) — Edoao)(X) = Edo(an)(X) X I(m) - 1] == [Aa(rd(a)rx)]n(p)'

Therefore, one obtains the expressions for relative dielectric constant e(rq(,), x) and energy

band gap Egn(gp)(Tacay X), as :

€0 (X)

3 3

Td(a) ( T'd(a) )
1 - —)
+[(rdo(ao)) 1]X1n T'do(ao)

<¢&,(x), being a new

(i)-for rqa) = rao@oy, Since s(rd(a),x):J

S(rd(a), X)-IaW,
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r a 3
Egn(gp) (rd(a):X) - Ego(X) = Ed(a) (rd(a)’x) - Edo(ao) (X) = Edo(ao) (X) X [(L) - 1] X

T'do(ao)

In ()" > o, (1)

Tdo(ao)
according to the increase in both Egpgp)(Tacay, x) and Eqcay (racay, x), With increasing rqca)

and for a given x, and

(ii)-for Taga) < Tdo(aoy » SiNCE &(rgay X) = 8:(") = > £,(x), with a
J [(L) ~1]xin( 242
Tdo(ao) Tdo(ao)
condition, given by: [(r;df‘)) 1] ln ;“Ea))) < 1, being a new &(rqca), X)-law,
gn(gp)(rd(a):X) Ego(X) - Ed(a) (rd(a)'x) Edo(ao)(X) - Edo(ao) (X) [ rdzgl) - 1] X
r@ )" <
In (rdo(ao)) - O’ (1b)

corresponding to the decrease in both Egpngp)(racay, x) and Eqca(raca), x), With decreasing

Iq) and for a given x.

It should be noted that, in the following, all the optical, electrical and thermoelectric
properties strongly depend on this new &(rg,), X)-law.

Furthermore, the effective Bohr radius agngp) (raca), X) is defined by:

_ e(rga)yX)xh? _8 £(rd(a)X)
aBn(Bp)(rd(a),X) = —m;(p)(x)xmoxqz =0.53%x10"°cm X —m*n(p)(x), (2)

where =g, according to an electron charge equal to : -e

Generalized Mott Criterium in the MIT [m},)(X) = mcq,) (X)]
Now, it is interesting to remark that the critical total donor (acceptor)-density in the MIT at
T=0 K, Nepn(npp) (Ta(a), X), Was given by the Mott’s criterium, with an empirical parameter,

M, ., ast] :

n(p)

1
Ncpn(epp) (Tacay %) /3 x apn(p) (Tdca)y X) = Mnp), Mpep) = 0.25, 3)

depending thus on our new &(ryca), X)-law.

This excellent one can be explained from the definition of the reduced effective Wigner-Seitz

(WS) radius rgp(sp),m. in the Mott’s criterium, being characteristic of interactions, by :
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1
3 3 1
r'sn(sp),M(N = NCDn(CDp) (rd(a)» X), I'd(a), X) = ( ) X =

41tNcpn(cpp) (Td(a)X) aBn(Bp) (rd(a)'x)

2.4813963, ()

for any (rqca), x)-values. Then, from Eq. (4), one also has :

1
1 3)\3 1
Nepn(cop) (Tagay %) /3 X apn(ep) (Taca), X) = (E)S X zastsses ~ 025 = Mg, ()

explaining thus the existence of the Mott’s criterium.

Furthermore, by using M) = 0.25, according to the empirical Heisenberg parameter
H ey = 0.47137, as those given in our previous work.”) we have also showed that
Ncpn(epp) 1S just the density of electrons (holes) localized in the exponential conduction
(valence)-band tail ,  Nghicpp . With a precision of the order of
2.92 x 1077 ,respectively ! So,

Ncpnnop) (Td(ay, X) = N(E:JE’IE(CDp) (raa) X). (6a)

It shoud be noted that the values of M, and H, ., could be chosen so that those of

N¢pn(cpp) and NEgﬁ(CDp) are found to be in good agreement with their experimental results.

Therefore, the effective density of electrons (holes) given in parabolic conduction (valence)

bands, N*, can be defined, as that given in compensated materials:

N*(N, rg(a), X) = N = Nepnenop) (Fagay, ¥) = N = NEBL eppy (Taca), X) = 0. (6b)

One notes here that, with increasing rqc,) and for given x and N, N¢pnnpp) (Taca)) increases,

as observed in Ref.l’l, and therefore, N*(rq,)) decreases.

In summary, as observed in our previous paper®, for a given x and an increasing Td(a)»

e(Taca), X) decreases, while Egno(gpoy(Tacay *)+ Nepnvp) (Faca), %) and NEBT cpp) (Facay X)
increase, affecting strongly all the optical, electrical, and thermoelectric coefficients, as those

observed in following Sections.

PHYSICAL MODEL
In the degenerate n* (p*) — X(x) -crystalline alloy, the reduced effective Wigner-Seitz (WS)

radius rg,(sp), Characteristic of interactions, being given in Eq. (4), in which N is replaced by

N*, is now defined by:
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kEﬁ(F ) 38c(v) 1/3 1
Xr N*r xE—p<1, r N*r XE(—) X —
¥ X Tsn(sp) (N, Taca) X) Bn(Bp) sn(sp) (N, Taay X) ppren a5np) Ta(a)X)

1

2Nn*\ 3
3N )3 is the Fermi

being proportional to N*~"/3. Here, y = (4/9m)3, Kenqrpy(N*) = (gcm

wave.

Then, the ratio of the inverse effective screening length kg, (sp) to Fermi wave number

Kenkp) 1S defined by:

_ Kongsp) _ Keneep) -r
Ron(spy(N7) = =212 = Ronws(spws) + [RenTr(spTF) — Rsnws(spwsy]e 7sne» <
Fn(Fp) sn(sp)

L (7)

being valid at any N*.
Here, these ratios, Rsntr(sprr) and Rgaws(spws), can be determined as follows.
First, for N> Nepnnpp)(fd@),X) . according to the Thomas-Fermi (TF)-

approximation, the ratio R, rr(sprr (N*) is reduced to

_ ksnTF(spTF) kl;rll(Fp) 4YTsn(sp)
RsnTF(spTF)(N*) =K = L = < 1, (8)
Fn(Fp) SnTF(spTF) [

being proportional to N*~*/°,

Secondly, for N < N¢pnnpp) (fagay). according to the Wigner-Seitz (WS)-approximation,

the ratio Rs,ws(snws) is respectively reduced to

«\ — Ksn(spyws d[rZ; spy<EcE(N)]
Rsnspyws(N) = S 0.5 x (% 4 Snf;r?n(sp) ) (99)

where Ecg(N™) is the majority-carrier correlation energy (CE), being determined by:

0.87553 2[1-1n(2)]
: xIn(r -0.093288
E (N*) _ —0.87553 0.0908+I'gp (sp) ( 2 ) ( sn(sp))
¢e 0.0908+Tsn(sp) 1+0.03847728xr /378876

Furthermore, in the highly degenerate case, the physical conditions are found to be given by:

N*
kgd U kgd 21TX(gc(v))
Fn(Fp) ne _—_1 Fn(Fp) _ * —
< = — =R <1 , U N*rga),x) = ———
anBp)  EFno(Fpo)  Anm)  Ksn(sp) sn(sp) n(®) ( d@ ) &(rgca)X)
A*Kon(any (9b)
H H * EFno(Fpo)(N*) * — thk%n(Fp)(N*)
which gives: A N* rgca, x) = ———>—— E N* r4ca), X) = —————.
g n(p) ( d(a) ) Un(p)(N*'rd(a)'x) Fno(Fpo) ( d(a) ) 2xm} ) (xX)xm,
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Here, one remarks that: (i) the generalized Thomas-Fermi energy [Un(p)(N*, rd(a),x) can thus
VN*

be approximately expressed as: C X ,
e(Td(a)X)

C being a constant, and (ii) Uy (Trac))

increases with increasing rqc,) and for given x and N, since e(rq(,)) decreases, as given in

Ref.l’l

BAND GAP NARROWING (BGN)
First, the BGN is found to be given by

AEgn(gp)(N*' Td(a), x) =

£0(x)
S(rd(a)rx)

£0(x)
S(Fd(a)rx)

5 1 3
= 1 - 1 - 1
Eo(x 4 m 2 go(x 2 5 go(x 2 -
[ o) ] X | xN;+2a4x[ o) xN§+2a5><[ o _I* N5, N, =
g(racayx) my, ) (%) £(racayX) £(racayX)
N
9.999x1017cm~3’

a; +

1 1
X N3 +a, X X N2 X (2.503 X [—Ecg(Tsn(sp) )] X Tsnespy) + @z X

(10a)

Here, for AEg,n(N*,rq,X), One has: a; = 3.8 x1073(eV), a, = 6.5x 107*(eV), a3 =
28x1073(eV) , a,=5597%x10"3(V) , and as=81x10"%EV) , and for
AEg,n(N¥,15,%), One has: a; =3.15 X 1073(eV), a, = 5.41 x 107*(eV), a3 = 2.32 X
1073(eV), a, = 4.12 x 1073(eV), and a5 = 9.8 x 10~5(eV).

Therefore, at T=0 K and N* = 0, and for any x and rq,), one gets: AEg,gpy = 0, according
to the metal-insulator transition (MIT).

Secondly, one has:

AE g gp) (T, x) = 1074T2 x [Z209% 4 5405<0-9)] (eV). (10b)

T+94 T+204

FERMI ENERGY AND FERMI-DIRAC DISTRIBUTION FUNCTION

Fermi Energy

Here, for a presentation simplicity, we change all the sign of various parameters, given in the
degenerate p* — X(x)-crystalline alloy, in order to obtain the same one, as given in the
degenerate n* — X(x) - crystalline alloy, according to the reduced Fermi energy

Efngrp) » &npy(N* Tag), % T) = EF“(F")(:B?(Z")'X'T) > 0(< 0), obtained respectively in the

degenerate (non-degenerate) case.
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For any (N*, rqc), %, T), the reduced Fermi energy &,,)(N*, rqc), %, T) or the Fermi energy
Epnerp)(N*, Tq@), X, T), obtained in our previous paper™, obtained with a precision of the

order of 2.11 x 1074, is found to be given by:

Epn(p W _ G+AUPFW _ V(u)
Enpy (W) = — A = way A = 0.0005372 and B = 4.82842262, (11)

*

where u is the reduced electron density, u(N*, rqe), %, T) = NN—(TX) New) (T, X) = 28y X
cv)\L

3 2

(m;(p)(x)xm_(’XRBT)E (cm™3), F(u) = aug (1 + bu_g + cu_g) a= [3\/5/4]2/3, b= %(g)z

2mh?

_ 62.3739855 (n)

1920 and G(u) = Ln(u) + 2~ zxuxe —du. d—23/2[1 ]>0

So, in the non-degenerate case (u <« 1), one has: Epyrpy(u) = kgT X G(u) = kgT X Ln(u)

as u — 0, the limiting non-degenerate condition, and in the very degenerate case (u > 1),

2
2 _4 _8\73  AZxKE g (N*
one gets: Eppeppy(u > 1) = kgT X F(u) = kgT X aus (1 +bu s+ cu 3) ? o e )

2><m:1(p)(x)><m0

FH(FP)

as u — oo, the limiting degenerate condition. In other words, &, = IS accurate,

and it also verifies the correct limiting conditions.

In particular, as T— 0K, since u™' -0, Eq. (11) is reduced t0: Epporpo)(N*) =

A2 XK rp)y(N¥)
me;(p) (X)xmg

, proportional to (N*)#/3, noting that, for a given N*, Epyo(rpo) (m;(p)(x) =

mr(x)) > Efno(Fpo) (m;(p) (X) = M) (x)) since m,.(x) < mgy,)(x) for given x. Further, at
T=0 K and N* = 0, being the physical conditions, given for the metal-insulator transition
(MIT).

In the following, it should be noted that all the optical and electrical-and-thermoelectric

properties strongly depend on such the accurate expression of En(p)(N*, Td(a) X T).[g]

Fermi-Dirac Distribution Function (FDDF)
The Fermi-Dirac distribution function (FDDF) is given by: f(E) = (1 +e¥)™ !, y= (E—
Eneep))/(kgT).

So, the average of EP, calculated using the FDDF-method, as developed in our previous

works [1, 6] is found to be given by:
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_ p _ of af 1 eV
(EPYeppE = Gp(Epnerp)) X Epngrpy = J_o, EP x (_ E) dE, -—-—-= kaT  (LreV)?

of . .
Further, one notes that, at 0 K, —— = 8(E — Egno(ipo)): S(E — Egno(rpoy) being the Dirac

delta (8)-function. Therefore, G, (Egno(epo)) = 1-

Then, at low T, by a variable change y = (E — Egn(gp))/(kgT), One has:

_ -p ©o eY p —_ p B
Gp(Erngrp)) = 1+ Egnepp) X f—wm X (ke Ty + Epngepy) dy = 14 Eyyp Cp X

(kgT)B x EFE(FP) X Ig, where CE =p(p—-1)..p—B+1)/B! and the integral Ig is

given by:

oo yBxeY (o™ yB e .
Ig = f—oo(l.:,.eY)Z dy = f_oo—(eV/2+e—V/2)2 dy, vanishing for old values of B. Then, for even
values of = 2n, with n=1, 2, ..., one obtains:

_ 0 y2n><ey
=2 fo (1+eY)? dy -

I2n

Now, using an identity(1 + e¥)™2 = Y% ,(—1)5*1s x e¥S~1, a variable change: sy = —t,
the Gamma function: f0°° t?"e"tdt =T (2n + 1) = (2n)!, and also the definition of the
Riemann’s zeta function: {(2n) = 22" 112%|B,,|/(2n)!, B,, being the Bernoulli numbers,
one finally gets: I,, = (22" — 2) x 2" x |B,,|. So, from above Eq. of (EP)gppr, We get in

the degenerate case the following ratio:

_ {EP) (p-1)..(p—2n+1 _
Gp(EFn(Fp)) = EP FRF — 1+ 2E=1p P 2(p| nth) X (22n - 2) X |B2n| X y2n = szl(Y) )
Fn(Fp) (2n)!

(12)
nikg T T

noting that Gy_y(y = — %) =1,

T _ nikg T
Enp)(N*ra@)XT)  Epnp)(N*rq@)xT)’

where y =

andas T- 0K, Gp51(y > 0) - 1.

Then, some usual results of G,-,(y) are given in the Table 2, reported in Appendix 1,
suggesting that, with increasing T (or decreasing T) and for given (N, rg,x), since &, (T)

decreases (or increases), the function G, (T) increases (or decreases).

OPTICAL-AND-ELECTRICAL PROPERTIES
Optico-Electrical Phenomenon (O-EP) and Electro-Optical Phenomenon (E-OP)

In the degenerate n* (p*) — X(x)-crystalline alloy, one has:
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(i) in the E-OP, the reduced band gap is defined by:

Egn2(gp2) = Egn(gp) — AEgn(gp)(l\l*'l"d(a)'x) — AEgn(gp) (T,x), (13)

where the intrinsic band gap Egp(gp) is defined in Equations (1a, 1b), AEgn(gp)(N*, rd(a),x)
and AEgy,gp) (T, x) are respectively determined in Equations (10a, 10b), and

(ii) in the (O-EP), the photon energy is defined by: E = Aw, and the optical band gap, as:

Egn1(gp1) = Egna(gp2) T Ern(rp)-

Therefore, for E = Egn1(gp1) (Egn2(gp2)). the effective photon energy E* is found to be given
by:
E"=E- Egnl(gpl)(EgnZ(ng)) =0. (14

From above Equations, one notes that: E* = [E — Egn1(gp1)] = Epn(rp), given in the O-EP, if
E = [Egni(gpn) + Ernrp)| = Egngpro and my(x) = me(x), and E* = E — Egna(gpz) =
Epnepy » given in the E-OP, if E = [Egnz(gpa) + Ernrp)] = Egngpe and my,)(x) =

My (%), noting that Eppyep)(my (%)) > Egncep) (M) (%)), since m,(x) < meqy(x), for a

given x. (15)

Eq. (15) thus shows that, in both O-EP and E-OP, the Fermi energy-level penetrations into
conduction (valence)-bands, observed in the n*(p*™) — type degenerate n*(p*) — X(x) -

crystalline alloy, Egp(gp), are well defined.

Optical Coefficients
The optical properties for any medium, defined in the O-EP and E-OP, respectively,

according to: [m;(p) = m (%) [m(y) (x)]] , can be described by the complex
refraction: Nog) = nopg; — iKopgy » oy and  Kopg) being the refraction index and the
extinction coefficient, the complex dielectric function: Eqg) = € og; — i€2 0[g), Where
i2 =—1, and Eog) = NO[E]Z. Further, if denoting the normal-incidence reflectance and the
optical absorption by Rq(g) and <), and the effective joint parabolic conduction (parabolic

valence)-band density of states by:
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JDOSyp) 0[] (E.N*rqaa, % T) =

* 3/2
1 2mp, ) (%) m E-Egn1(gp1) (Egnz(gp2))
2 < (h— XV Epno(rpo) (N*) X |7

gni(gp1) (Egnz(gpz))"'EFn(Fp) _EFno(Fpo)]

and

hq®x|v(E)|?

no[g) (E)XCEXe(rq(a)X) XEfree space

Forg (E) = , One gets [2]:

Exe; o[g)(E) _ 2EXkogj(E)
hc I’IO[E](E) - hc -

Xorg] (E) = JDOS,p) 015 (E) X Fopg(E) =

4tmoo[g) (E)

cno(g](E)Xe(rgca) X)X Efree Space’

_ [nog—1]"+xopes? 16
5 . (16a)

&1 o) (E) = nojg)® — Kog)”, €2 ofg) (E) = 2Ko[gnog), and Royg (E) = [ISTL—

One notes here that, at the MIT-conditions : N* = 0, both Egn(gp1)(Egn2(ep2)) =Egn(ap)

according to :

2
E-E (E ) 0
gni(gp1)'tgn2(gp2) _9 —
[E—[E (E V+E —E ]] T o for E=Egn(gp).
gni(gp1)\“gn2(gp2) Fn(Fp) ™ EFno(Fpo)

2
E-E E .
[ en1(gpy) Panz(gp2) ] =1 for E 2 Egygp), S0 that, in such the MIT,
E_[Egnl(gpl)(Egnz(gpz))+EFn(Fp)_EFno(Fpo)]

]DOSn(p)O[E] (E, N yTd@), X T) =z X (T) X \/EFno(Fpo)(N = 0) =0, for E=

Egn(gp): which is largely verified since Nepn(npp) (Faca), X)= Népncop) (Faca) X) OF

Egnz(gpz)(NCDn(NDp);T = 0K) = Egnz(gpz)(Ngg;[l‘(CDp);T = 0K) = Egn(gp)a as those given in

Equations (6a, 6b). In other words, the critical photon energy can be defined by: E = Egy(gp)-
Then, Eq. (6a) states that N¢pn(cpp), given in parabolic conduction (parabolic valence)-band
density of states, is just the density of electrons (holes) localized in the exponential
conduction (valence)-band tail, NEpicpp). With a precision of the order of 2.92 x
1077 ,respectively.[3] Therefore, for E = Egp(gp), the exponential conduction (valence)-

band tail states can be approximated with a same precision to:

JDOS; ) ore) (B N, Taga), %, T) = 7z X (T) X JEFno(Fpo)(N = Ncpn(npp))- (16b)

Here, €¢ee space = 8.854187817 x 1071%( c? ) is the permittivity of the free space, - (<0)

Nxm?2

is the charge of the electron, |V0[E](E)| is the matrix elements of the velocity operator

between valence (conduction)-and-conduction (valence) bands, and our approximate

expression for the refraction index ngg is found to be defined by:
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. Xi(Egn )XE+Y;(Egn )
noe] (B, N* T, % T) = Noo (Tga), X) + Dieqg —— 1(gp];;—BiE+Ci EniEpl) (17)

going to a constant as E — oo, since n(E — o, rg(),X) = N (Tgea), X) = /€(Tq@), X) X =

wr,

given in the well-known Lyddane-Sachs-Teller relation, in which wr =~ 5.1 x 1013 s~ and

wy, = 8.9755 x 1013 s71 are the transverse (longitudinal) optical phonon frequencies, giving
rise t0: N (rgca), X) = ’s(rd(a),x) %X 0.568.

. 2

Here, the other parameters are determined by: Xi(Egnl(gpl)) = % X [—Bj + Egn1(gp1)Bi —
A Bix(E2, +Cy) /4ci—BiZ

Eénl(gpl) + Ci]’ Yi(Egnl(gpl)) =3 [ . 12(gp1) — 2EgnigpnCif, Qi =-"—;

fori=(1, 2, 3, and 4),

A; = 4.7314 x 1074, 0.2313655,0.1117995,0.0116323 , B; =5.871,6.154,9.679

13.232, and C; = 8.619,9.784,23.803, 44.119.

, Where,

Now, the optical [electrical] conductivity og) can be defined and expressed in terms of the

2 2
kinetic energy of the electron (hole), Eyx = ﬁ k being the wave number, as:
n(p) o
1
2xk k Ex \2 . . .
oorg) (k) = (jwh X o < [k X apngp)] % (ﬁ) (5==), Which is thus proportional to

2
where & = 7.7480735 x 1075 ohm™?! and Un(p)(N*,rd(a),x) is determined in Eqg. Eq.
(9b).

T[kBT
EFn(Fp)

) 2
Then, we obtain: (E?)pppr = Go(y = )xEEn(Fp) , and Gy(y) = (1+y?)5

Go(N*, Tgca) % T), with y = %(m Enp) = &npy(N", Tacay, x, T) for a presentation simplicity.

Therefore, from above equations (16, 17), if denoting the function H(N*, rgca), %, T) by:
H(N*, rqq), % T) =

[an(Fp) (N

. - Ermoroe, (N9
fon v % [Kencep) (N X aBnap) (Faca, X)) X JAn(p) (N = =i e—5| %

Upp)(N* rq(a)x)

G, (N*,rqca), %, T), which can be approximately expressed in terms of: EZ,p0)(N) X

Gz (N*, rd(a)' X, T) X —E(rd(a)‘X)

—, since as noted in Eq. (9b), Uy, (N*, racay, x) is approximately
(N*)2
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expressed as: C X C being a constant. Thus, with increasing rq(,) and for given x, T

e(rgcayx)’

and N, the function H(rq(,) ) therefore decreases since £(rqc,)) decreases, as noted in Ref.”!

Then, our optical [electrical] conductivity models, defined in the O-EP and E-OP,
respectively, for a simply representation, can thus be assumed to be as:
00(EN* rq@a) % T) =

E-E

2
gni(gp1)
and
E_[Egnl(gp1)+EFn(Fp)_EFno(Fpo)]] (.().xcm)

2
—— X H(N",rq(a), %, T) X [

O'E(E, N, rqca), X, T) =

L X H(N", T, %, T) X [ " gna(gp2) L) (18)

(Egnz(gpz)+EFn(Fp)_EFno(Fpo)]] (Qxcm

It should be noted here that

Q) O'O[E](E = Egn1(gp1) [Egnz(gpz)]) =0 , and ogg(E - ) — Constant for given

(N, r4c),x T) —physical conditions, and

(i) as T> 0Kand N* = 0 [0r Egyo(rpo)(N*) = 0],according to: H(N*, Td@a) % T) =0, and

for a given E, [E— Egnigp)] = [E — Egngpy] =Constant, then from Equations (16-18),
£ (E)= Constant, oo (E) =0, ko_gpr—op](E) = 0, & o[ (E) = (ne)? = Constant,

£,(E) = 0, and o (E) = 0.

This result (18) should be new, in comparison with that, obtained from an improved Forouhi-

Bloomer parameterization, as given in our previous work.?

Using Equations (16-18), one obtains all the analytically results as:

lv(E)|? 8% h an(Fp)(N )
e T 5 % [encep (N X apnep) (racay, )] |
(2my)zx lUn(p)(N*,rd(a),x Rsn(sp)
G, (N*, Iq(a), X T), (19a)
Ko(E) = 29° X H(N*, Faca), X T) X
n(E)Xe(rd(a)X)Xfree space XE
2
E-E
[ gni(gp1) ] and
E:_[Egnl(gpl)'+'EF11(F1:))_EFno(Fpo)]
(E) 292 X H(N* T) X [ E—Egna(gp2) ]2
K = ) r ) X’
E n(E)Xe(rdca)X) XEfree space XE d@ E_[(Egnz(gpz)+EFn(Fp)_EFno(Fpo)]

(19b)
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which gives: KO[E](E = Egni1(gp1) [Egnz(gpz)]) = 0, and ko (E — o) — 0, as those given in
Ref.1,

g,0(E) =

4q? E—Egn1(gp1) 2

X H(N*, rqcay, %, T) X [ ETEP and g, g(E) =
S(rd(a)'x)xsfree space XE E_[Egnl(gpl)+EFn(Fp)_EFno(Fpo)]
2
402 E-E
4 X H(N*, rqca), %, T) X [ gn2(gp2) ] , (19¢)

S(rd(a)'x)xsfree space XE E_[(Egnz(gpz)+EFn(Fp)_EFno(Fpo)]

which gives: £,0_gp(2e-0p] (E = Egn1(gp1)[Egn2(gpz)]) = 0, and e20_gpze—op) (E = ©) = 0,

as those given in Ref.!?),

X (E) =
49° * E—Egni(gp1) 2 1
X H(N", rq(a), %, T) % (—) and
hcn(E)Xs(rd(a)'X)Xsfree space E_[Egnl(gpl) +EFn(Fp)—EFno(Fpo)] cm
xg (E) =
4q? .
X H(N%, r x, T) X
hen(E)Xe(rd(a)X) XEfree space ( yLd(a), 4 )
E-E 2
e m— ] (=) @
E_[(Egnz(gpz)+EFn(Fp)_EFno(Fpo)] cm/’

which gives: og) (E = Egn1(gp1)[Egnzcgpz)]) = 0,and  oog (E = o) — Constant.

Furthermore, from Equations (16, 17, 19b), we can also determine & o[g)(E) and Rog; (E).

Now, from Equations (18, 19b, 19c, 19d), using Eq. (15) as E = Egngp)o[g, One obtains

respectively, as:

2
. qz . Egn
0_O(N yTd@), % T) = nxh X H(N yTd@)y X% T) X ( R > (Qxlcm)’

EFno(Fpo)

having the same form with that of og(N, rge),x T) [1], as:

* 2 * Epn 2
O-E(N lrd(a)rxr T) = ﬁ x H(N ’rd(a)’x’ T) x ( Lol ) ( : )' (zoa)

EFno(F]:\o) Q2xcm

noting here that for given (N*, Td(a) X T) -physical conditions we obtain: 6o > o since

mr(x) < Me(y) (X)1

2

2q *
Ko(N* Iy, % T) = X H(N*, rqea, % T) X
0 ( d(a) ) n(E)Xe(rg(a)X)XEfree space X (Egn1(gp1) TErn(rp)) ( d(@) )
2
E
(ﬂ) and
EFno(Fpo)

www.wjert.org ISO 9001: 2015 Certified Journal 174




Guo. World Journal of Engineering Research and Technology

2

KE(N*, Td(a), X T) = 24

n(E)x&(rd(a)X)X€free space X (Egn2(gp2) + EFn(Fp))

( EFn(Fp) )2 (20b)

EFno(Fpo)

X H(N*, rga), %, T) X

4q?

€(rq(a)X)X€free space X(Egn1(gp1) TEFn(Fp))

2
X H(N*, rgqea), %, T) X <—EFH(FP) )

EFno(Fpo)

&y O(N*, rd(a), X, T) =
and
2

4q
€(rq(a)X)X€free space X(Egn2(gp2) TEFn(Fp))

2
£25(N" Ta@, % T) = X H(N*, rg(a), %, T) X (M)

EFno(Fpo)

(20c)

Xo (N*, rd(a): X, T) =

4q?

hen(E)Xe(rqa)X) X Efree space

2
xH(N*,rd(a),x,T)x(m) (=) and

EFno(Fpo) cm

2
x H(N", rg(a), % T) X (M> (=)- (20d)

EFno(Fpo)

4q?

hen(E)Xe(rqayX) XEfree space

Xg (N*, rd(a): X, T) =

Further, from Equations (16, 17, 20b), we can also determine &; o(gj(E) and Rog (E).
Now, going back to Eq. (20a), one remarks that, as noted above for the function

H(N*, ray, %, T), the function ooz (N*, rqca), %, T) can thus be approximately expressed in

terms of EZpp)(N",Taca), %, T) X Go(N*, rgqa), X, T) X ~——=— , being proportional to:
(N*)2

Go(N*, raea) % T) X _[&(rqca), X) X (N*)g at low T and high N, giving raise to some
concluding remarks as follows.

(1) With increasing rq(,) and for given x, T and N, since as observed in Ref.”, g(rye))
decreases, thus oopg;(racay) decreases, as observed in Tables 9n and 9p given in Ref.l"

(2) With decreasing T and for given x, N and rg(y), since G,(T) decreases as noted in Table
2, thus oy (T) decreases, as observed in Tables 9n and 9p given in Ref.!"

(3) With increasing N and for given x, T and rg(,), as noted above, o (N) increases, as

observed in Tables 9n and 9p given in Ref.l!

OPTICAL [ELECTRICAL] PROPERTIES [mj, ;) = m(x)[mcqy,)(X)]]

Here, if denoting, for majority electrons (holes), the thermal conductivity by:

2 2
orh. ofg](N*, Ta@), % T) in Cn‘i’(K, and the Lorenz number L by: Lz%x(%) =
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Wxohm
KZ

2.4429637 ( ) = 2.4429637 x 10~8 (V2 x K~2), then the well-known Wiedemann-

Frank law states that the ratio, =22l due to the O-EP [E-OP], is proportional to the

Oo[E]|

oTh.o[E](N".rqea)xT)
oo[E](N",rq(a)%xT)

temperature T(K), as: =LxT. (21)

Further, the resistivity is found to be given by: pog|(N*, rgca), X, T) = 1/00g) (N, ra@a), % T),

noting again that N* = N — Ncpnnpp) (Tdca), X)-

In Eq. (20a), one notes that at T= 0 K, o5 (N*, rgca), %, T) is proportional to Eéno(Fpo), or to

(N*)%.Thus , from Eq. (21), one has: oo (N =0,r4@),xT=0K)=0 and
also oy, oig)(N* = 0,rga), % T = 0K) = 0 at N* = 0, at which the MIT occurs,

New Optical [Electrical] Coefficients
The relaxation time tog; is related to oopg by ™

m;(p) (x)x mg

TSR Therefore, the mobility pog is

ToE](N", Taga), % T) = 0oig)(N*, rqa), %, T) X

given by:

qxtog) (N* raca)xT) _ oo(e) (N ra@*T) (ﬁ) (22a)

”O[E]](N Ta@y % T) = mp o) (X)X mg ax(N*/8c(v)) Vxs

oo[E)(N* rq(a)xT)

being expressed in terms of . Further, as noted in above Eq. (20a) for

oore](N* Tagay % T), Bogey (N*, Taay, %, T) can thus be expressed in terms of:

2 . . /E(rd(a)'x)
Efnp) (N Ta@) % T) X Go(N*, rg@a), %, T) X T

N*)4
Then, from the well-known idea of Stokes, Einstein, Sutherland and Reynolds, we can define

our viscosity coefficient, Vg (N*, rqa), x, T), and its reduced one, RVq g (N*, rqy, x, T),

by:
Vo) (N" r@)xT) _ 1 (V s ) . _
a — 61X popE) (N*rga) % T)XRws(N*x) \em * cm? ! RVo(g) (N7, T'd), % T) =
Voie)(N".rqea)xT) (22b)

Vorg)(N*,rg(a)x T=0K)’
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1/3
3’gL")(X)) is the effective Wigner-Seitz radius, decreasing with

where Rys(N*, x) = ( N

increasing N.

Further, as noted above for poe;(N*, racay, % T), Vog)(N*, raca), , T) can thus be expressed

in terms of

at

19 1
N*)12 . . N*)z
) , being proportional to: )
Efn(rp) (N* Ta(a) X T)XGa2 (N* rqea) X T)X |&(raca)x) G2 (N*,rq(a)x.T)x /s(rd(a),x)

low T and high N, giving raise to some concluding remarks as follows.

(1) With increasing rq(,) and for given x, T and N, since as observed in Ref.”l, g(rye))
decreases, thus Vo (rac)) increases, as observed in next Tables 4n and 4p in Appendix 1.
(2) With decreasing T and for given x, N and rqc,), since G,(T) decreases as noted in Table
2, thus Vo (g (rqca) ) increases, as observed in next Tables 4n and 4p in Appendix 1.

(3) With increasing N and for given x, T and rq(,), as noted above: Vo (N) is proportional

to: (N*)Z, thus Vg (N) increases, as observed in next Tables 4n and 4p in Appendix 1.

Now, it is interesting to define the activation energy, AEq[g (N, rqc), %, T), ast by:
AEo() (N, rgay % T) = kT x L (RV oy (N, raay, %, T) ) < 0 eV, (220)

according to the reduced activation energy, RAEO[E](N*,rd(a),x, T), given by:

RAEO[E](N*, I'q(a), X T) = AEO[E](I;I;;d(a)’X’T) =Ln (RWO[E](N*, Iqa) X T)) <0.

Furthermore, the Hall factor is defined by:

LY = = , and
[(TO[E )FDDF] [GZ(Y)]Z y En(p)(N*,rd(a),X,T) EFn(Fp)(N*,rd(a),X,T)

* (T %) G4(y) _ o .
raopue)(N* Ty, % T) = —2H 2T . ) B

therefore, the Hall mobility yields:

aopue] (N Ta@), % T) = o (N, Facy, % T) X ruopmg) (N* ra), % T) (—) (23)

noting that, at T=0K, since rygmoj(N*rg@),xT)=1 , one therefore gets:

Unome](N* Ta@), % T) = poE(N*, Tae), %, T).

Our new relation between the diffusion, mobility, and viscosity
By taking into account Equations (22a, 22b), our relation is found to be defined by™:
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Dog](N* rgea)xT) _

WO [E] (N*,I‘d(a),X,T)
¥ = X
uO[E] (N ,I‘d(a) ,X,T)

Rejo] (N Ta@ay, % T) = Doe (N, Tacay %, T) X

q
N*  dEpnepp) _ kgxT ( dEn(p)(u)) 3xL ( dEn(p)(u))
x * =2 % = X —— )= |— X T X E—
61 X R (N3 = o S0 = Koo (o S0 [S00 o px ( Sot ’
kg 3xL
9w @

where Dgjo1(N*, racay, %, T) is the diffusion coefficient, &, (u) is defined in Eq. (11), the
mobility pog (N*, Td(a), % T) is determined in Eq. (22a), and finally the viscosity coefficient
Vorg)(N*, rgqc), %, T) is defined in Eq. (22b).

Ernrp)(W) _ G(W+AuPF(w) _ V()
kgT  1+AuB  — w@'

dlén(p) (w)

Then, by differentiating this function &,,)(u) = with

respect to u, being defined in Eq. (11), one thus obtains

kgxT % u V (W)xW(w)-V()xW' (u)
W2 (u)

Therefore, Eq. (24) can also be rewritten as: Rgjo(u) =

3
where W'(u) = ABuP™! and V'(u) = u™ + 272e" (1 — du) + 2AuB~*F(w) | (1 + &) +

4 8

sxbu Stz 3 | One remarks that: (i) asu — 0, one has: W2 = 1and u[V' X W — V x W'] =

14+bu” 3+cu 3

1, and therefore: Rpgjo)(u — 0) = =1

, being a well-known relation given by Stokes,

Einstein, Sutherland and Reynolds, and (ii) as u — oo, one has: W? ~ A?u?B and u[V' x W —

V x W'] ~ Zau?/3A%u?B, and therefore, in this highly degenerate case and at T=0K, our
relation (24) is reduced to: RE[O](N*, T4, % T = OK) ~ EEFno(Fpo)(N*)/q- In other words,

Eq. (24) verifies all the correct limiting conditions.

Furthermore, in the present degenerate case (u > 1), Eq. (24) can be rewritten as:

4 8
bu 3+2cu 3
Efno(Fpo) (w 4 ( )

% 2
Rejojvey (N Faa) % T = 0K) = 2. *[THsX <1+b =N -§> |
u cu

where a = [3\/5/4]2/3, b= l(g)z and ¢ = M(z)“_

8 1920 a
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Then, in Tables 3n and 3p, reported in Appendix 1, for given (rg,x and T), the numerical

s 103M4Ix cm? 103><cm2)
]

)

results of Vog), Hog) and Dog), expressed respectively in (% X — s :

as functions of N, are obtained by using Equations (22b, 22a and 24).

In Tables 4n and 4p, reported in Appendix 1, the numerical results of the viscosity coefficient

Vore)(N*, r4ca), %, T), expressed in (% X C;—Z) are obtained by using Eq. (22b).
In Tables 5n and 5p, reported in Appendix 1, the numerical results of reduced Fermi energy
Enoel(N", Tq@@), %, T) . mobility  pog (N, rq@),x,T) ,  diffusion  coefficient

Dog)(N*, rga), % T) , Viscosity coefficient VO[E](N*,rd(a),x,T), and activation energy

AEog(N*, rqca), %, T), are obtained by using Equations (11, 22a, 24, 22b, 22c), respectively.

Finally, in Tables 6n and 6p, For given X, r,, T and N, the numerical results of reduced
Fermi energy &,0(g)(N*, ra@), % T), mobility poE(N*, rq@), % T) , diffusion coefficient
Dog)(N*, rgca), % T) , Viscosity coefficient VO[E](N*,rd(a),x,T), and activation energy

AEO[E](N*, Td@a), % T), are obtained by using Equations (11, 22a, 24, 22b, 22c), respectively.

CONCLUDING REMARKS

In the n*(p™) — X(x)-crystalline alloy, 0 < x < 1, x being the concentration, the diffusion-
mobility-activation energy-Fermi energy relations, enhanced by : (i) the optico-electrical
phenomenon (O-EP) and the electro-optical phenomenon (E-OP), (ii) our static dielectric
constant law, (rqca), X), T'q(a) being the donor (acceptor) d(a)-radius, given in Equations (1a,
1b), (iii) our accurate reduced Fermi energy, §,.,, given in Eqg. (11), accurate with a
precision of the order of 2.11x10~* " and finally (iv) our optical-and-electrical
conductivity models, given in Eq. (18, 20a), are now investigated by basing on our physical

model and Fermi-Dirac distribution function, as those given in our recent works.*™!

Some important concluding remarks can be given and discussed as follows.
(I)- Then, in Tables 3n and 3p, reported in Appendix 1, for given X, rq¢,), and T=(4.2 K and

77 K [300K]), the numerical results of Vo g}, Lo and Dogy, expressed respectively in

3[4] 2 103 2 . . ) .
(ﬂ x — 1 xem’ 10 Zcm ) as functions of N, are obtained by using Equations (22b, 22a

cm cm?’ Vxs

and 24). In particular, for given (X, rq) and N), those of g (T) decrease [decrease] with
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decreasing T, due to the increasing reduced Fermi energy &,o(g;. Further, for given (X, rqc
and N) the numerical results of Vg increase with decreasing T, in good agreement with
those, obtained in liquids by Ewell and Eyring™*”! and complex fluids by Wenhao™!, and for
given (x, T and rqc,)) they increase with increasing N, in good agreement with those,
obtained in complex fluids by Wenhao.*®! In other words, with increasing degeneracy (or
with decreasing T and increasing N), both the reduced Fermi energy &,o[g) and the viscosity
coefficient Vg increase, according to an equivalence between the degeneracy-and-

viscosity concept.

In Tables 4n and 4p, the numerical results of the viscosity coefficient Vg (N*, rqca), %, T),

expressed in (:_:1 X C%) are obtained by using Eq. (22b), suggesting that: (i) for given (x, T
and N), they increase with increasing rqc), (ii) for given (X, rqc) and N) the numerical
results of Vg increase with decreasing T, in good agreement with those, obtained in liquids
by Ewell and Eyring!*” and complex fluids by Wenhao™, and (iii) for given (x, T and rq(x))
they increase with increasing N, in good agreement with those, obtained in complex fluids by
Wenhao.™ In other words, with increasing degeneracy (or with decreasing T and increasing

N), both the reduced Fermi energy &, o[ and the viscosity coefficient Vq(g) increase,

according to an equivalence between the degeneracy-and-viscosity concept.

In Tables 5n and 5p, reported in Appendix 1, the numerical results of reduced Fermi energy
Enoe]l(N", Tq@), %, T) , mobility  popg (N, Tt gy X T) , diffusion coefficient
Doe](N*, racay, x, T) , Viscosity coefficient Vg (N*, racy, % T), and activation energy
AEqg) (N*, Ity % T), are obtained by using Equations (11, 22a, 24, 22b, 22c), respectively.
In particular, from the numerical results of Vg, one notes that, for given (X, rqc,) and N),
they increase with decreasing T, in good agreement with those, obtained in liquids by Ewell
and Eyring™*” and complex fluids by Wenhao.[*®! In other words, with increasing degeneracy,
both the reduced Fermi energy &,o(g) and the viscosity coefficient Vg increase, according

to an equivalence between the degeneracy-and-viscosity concept.

Finally, in Tables 6n and 6p, For given x, r,, T and N, the numerical results of reduced
Fermi energy &,o(5)(N", ra@), % T), mobility popg (N, rq@),x T) , diffusion coefficient

Doej(N*, rq@), % T) , viscosity coefficient VO[E](N*,rd(a),x,T), and activation energy
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AEog](N*,rqca), %, T), are obtained by using Equations (11, 22a, 24, 22b, 22c), respectively.

In particular, from the numerical results of Vo (N*, rqca), x, T), one observes that, for given

(X, rqca) and T), they increase with increasing N, in good agreement with those, obtained in

complex fluids by Wenhao.™® In other words, with increasing degeneracy, both the reduced

Fermi energy &,p)org; and the viscosity coefficient Vo) increase, according to an

equivalence between the degeneracy-and-viscosity concept.
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APPENDIX 1
Table 1: In the X(x) = GaAs,_,P,-crystalline alloy, the different values of energy-band-
structure parameters, for a given X, are given in the following."!

In the X(X)-crystalline alloy, in which rgo(a0)=Tas(Ga)=0.118 nm (0.126 nm), we havel” gey(x) =
IXx+1X(1=%) =1, me®)/m,=0.13(05) X x+0.066(0.291) X (1-%) , £(X) =
111 x x + 1313 X (1 = %), Ego(X) = 1.796 X x + 1.52 X (1 — %).

Table 2: Expressions for Gy, (y = iL)’ due to the Fermi-Dirac distribution function, are used to determine
n(p)

the electrical-and-thermoelectric coefficients, suggesting that, with increasing T (or decreasing T) and for given
(N, rg, %), since &,y (T) decreases (or increases), the function Gy, (T) increases (or decreases).

G3/2 ) G, (y) Gs/z ) Gs3(y) G7/2 o) G4(y) G9/2 )
y? | 7yt y? s5y2  7y* 35y2 | 49y* 7y* 21y? | 147y*
(+5+5g) (+%5) (+3-30) a+yd) (+50+30) (+2y2+7p) (1+55+5)

Table 3n: For given x, rg, and T=(4.2 K and 77 K), the numerical results of Vo g), Hog) and Dog), expressed

S 103x cm? 103xcm?

s ), as functions of N, are obtained by using Equations (22b, 22a and

respectively in (ﬂ X —

cm ~ cm?2’  Vxs
24). In particular, for given (X, rq and N), those of g (T) decrease [decrease] with decreasing T, due to the
increasing reduced Fermi energy &,o(g) (or with increasing degeneracy), and therefore, those of the viscosity
coefficient V(g increase with decreasing T, in good agreement with those, obtained in liquids by Ewell and
Eyring,!'” and complex fluids by Wenhao,"®! Further, for given (x, T and ry), those of Voig) increase with
increasing N, due to the increasing reduced Fermi energy &,o[g) (or with increasing degeneracy), in good
agreement with those, obtained in complex fluids by Wenhao,!"® In other words, with increasing degeneracy (or
with decreasing T and increasing N), both &,0[g) and V(g increase, according to an equivalence between the
degeneracy-and-viscosity concept.

Donor As Sb
rq (nm) 7 0.118 0.136

For x=0 and at T=4.2 K
N (10*° cm™3)

3 15.65 [22.64], 16.97 [11.73], 7.401 [4.171]  18.52 [27.13], 14.11 [9.778], 6.153 [3.475]
7 21.83 [31.70], 16.15 [11.12], 12.39 [6.952]  26.30 [38.15], 13.40 [9.238], 10.28 [5.777]
10 25.07 [36.46], 15.83 [10.88], 15.41 [8.635]  30.23 [43.91], 13.13 [9.038], 12.78 [7.170]

For x=0 and at T=77 K
N (10*° cm™3)

3 5.769 [5.779], 46.05 [45.97], 20.08 [16.34]  6.936 [6.935], 38.30 [38.31], 16.70 [13.61]
7 14.05 [16.32], 25.08 [21.59], 19.24 [13.50]  16.93 [19.64], 20.81 [17.94], 15.97 [11.22]
10 18.65 [23.00], 21.28 [17.26], 20.71 [13.69]  22.49 [27.70], 17.65 [14.33], 17.17 [11.37]

For x=0.5 and at T=4.2 K

N (10*° cm~3)

3 35.61 [52.52], 7.456 [5.056], 2.225 [1.209]  42.61 [62.64], 6.230 [4.238], 1.858 [1.013]
7 50.22[74.61], 7.016 [4.723], 3.685 [1.988]  60.29 [89.35], 5.843 [3.943], 3.069 [1.660]
10 57.90 [86.24], 6.854 [4.602], 4.568 [2.458]  69.59 [103.4], 5.702 [3.837], 3.800 [2.049]

For x=0.5 and at T=77 K

N (10%° cm™3)

3 13.10 [13.38], 20.26 [19.85], 6.045 [4.744]  15.67 [15.95], 16.94 [16.65], 5.052 [3.977]
7 32.32[38.39], 10.90 [9.177], 5.727 [3.863]  38.79 [45.97], 9.081 [7.663], 4.769 [3.225]
10 43.08 [54.37],9.213 [7.299], 6.140 [3.898]  51.77 [65.20], 7.665 [6.086], 5.108 [3.250]

For x=1 and at T=4.2 K

N (10%% cm™3)
3 66.67 [98.68], 3.978 [2.688], 0.901 [0.483]

79.29 [116.8], 3.343 [2.269], 0.756 [0.407]
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7 95.32[142.6], 3.694 [2.469], 1.476 [0.783]
10 110.4 [165.8], 3.593 [2.393], 1.821 [0.963]

113.9 [169.8], 3.090 [2.073], 1.234 [0.657]
132.2[197.8], 3.001 [2.005], 1.521 [0.806]

For x=1 and at T=77 K

N (10'° cm™3)

3 24.45[25.03], 10.85 [10.59], 2.457 [1.904]
61.28 [73.29], 5.746 [4.805], 2.295 [1.523]
10 82.10 [104.5], 4.832 [3.797], 2.449 [1.528]

29.02 [29.57], 9.132 [8.962], 2.065 [1.608]
73.21 [87.24], 4.808 [4.035], 1.919 [1.278]
98.27 [124.6], 4.036 [3.182], 2.045 [1.280]

Table 3p: For given x, ry, and T=(4.2 K and 300 K), the numerical results of Vg (g}, Hopg) and Dojg;, expressed

S 104x cm? 103xcm?

- ), as functions of N, are obtained by using Equations (22b, 22a and

. . eV
respectively in (5 7 vas
24). In particular, for given (x, r, and N), those of g (T) decrease [decrease] with decreasing T, due to the
increasing reduced Fermi energy §,0(g; (or with increasing degeneracy), and therefore, those of the viscosity
coefficient Vg increase with decreasing T, in good agreement with those, obtained in liquids by Ewell and
Eyring,!'” and complex fluids by Wenhao,"® Further, for given (x, T and r,), those of Vo[g) increase with
increasing N, due to the increasing reduced Fermi energy §,o[g) (or with increasing degeneracy), in good
agreement with those, obtained in complex fluids by Wenhao,""* In other words, with increasing degeneracy (or
with decreasing T and increasing N), both &,0[g) and V(g increase, according to an equivalence between the

degeneracy-and-viscosity concept.

Acceptor Mg
I, (nm) 7 0.140

In
0.144

For x=0 and at T=4.2 K

N (10*° cm™3)

3 16.99 [291.6], 1.540 [0.090], 6.513 [0.070]  18.05 [306.2], 1.447 [0.083], 6.100 [0.066]
5 20.95 [378.7], 1.490 [0.082], 8.972[0.092]  22.28 [398.8], 1.400 [0.078], 8.410 [0.087]
10 27.61 [529.4], 1.431 [0.075], 13.80 [0.133]  29.39 [559.2], 1.343 [0.071], 12.95 [0.126]

For x=0 and at T=300 K
N (10*° cm™3)

3 16.83 [229.5], 1.554 [0.114], 6.562 [0.090]  17.88 [240.8], 1.461 [0.108], 6.146 [0.086]
5 20.85 [331.8], 1.497 [0.094], 9.005 [0.101]  22.17 [349.3], 1.406 [0.089], 8.441 [0.096]
10 27.55[502.1], 1.434 [0.079], 13.82 [0.139]  29.34 [530.3], 1.346 [0.074], 12.96 [0.131]

For x=0.5 and at T=4.2 K

N (10%° cm™3)

3 36.86 [479.2], 0.685 [0.053], 1.844 [0.028]  38.85 [497.2], 0.645 [0.050], 1.717 [0.027]
5 46.69 [652.1], 0.655 [0.047], 2.589 [0.037]  49.44 [681.1], 0.616 [0.045], 2.420 [0.035]
10 62.89 [952.8], 0.622 [0.041], 4.026 [0.053]  66.80 [1001], 0.585 [0.039], 3.772 [0.050]

For x=0.5 and at T=300 K

N (10%% cm™3)

3 36.00 [365.0], 0.701 [0.069], 1.878 [0.052]  37.93 [379.4], 0.661 [0.066], 1.750 [0.050]
5 46.19 [514.0], 0.662 [0.059], 2.611 [0.047]  48.89 [535.7], 0.623 [0.057], 2.441 [0.045]
10 62.64 [861.9], 0.624 [0.045], 4.039 [0.057]  66.52 [904.6], 0.587 [0.043], 3.784 [0.054]

For x=1 and at T=4.2 K

N (10*° cm™3)

3 59.77[613.3], 0.379 [0.037], 0.629 [0.013] 61.43[616.7], 0.361 [0.036], 0.572 [0.012]
5 81.92[925.9],0.353 [0.031], 0.951 [0.017] 85.72 [951.5], 0.334 [0.030], 0.880 [0.016]
10 116.0 [1459], 0.329 [0.026], 1.540 [0.025] 122.5[1519], 0.310 [0.024], 1.437 [0.024]

For x=1 and at T=300 K

N (10%° cm™3)

3 56.22 [437.4], 0.403 [0.052], 0.659 [0.024]  57.46 [428.4], 0.386 [0.051], 0.602 [0.023]
5 80.02 [701.8], 0.361 [0.041], 0.968 [0.032]  83.65 [723.2], 0.342 [0.039], 0.896 [0.030]
10 115.1 [1230], 0.331 [0.031], 1.550 [0.029]  121.5 [1277], 0.312 [0.030], 1.446 [0.027]
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Table 4n:  The numerical results of the viscosity coefficient Vo (N*, 14, X, T), expressed in (% X ﬁ), are
obtained by using Eq. (22b), suggesting that: (i) for given (x, T and N), they increase with increasing rg, (ii) for
given (X, rq and N) the numerical results of Vg increase with decreasing T, in good agreement with those,

obtained in liquids by Ewell and Eyring!"” and complex fluids by Wenhao!" and (iii) for given (x, T and ry)

they increase with increasing N, in good agreement with those, obtained in complex fluids by Wenhao [18]. In
other words, as discussed in above Table 3n, with increasing degeneracy (or with decreasing T and increasing
N), both the reduced Fermi energy &,o(g and the viscosity coefficient Vo) increase, according to an

equivalence between the degeneracy-and-viscosity concept.

Donor

P

As

Sb

Sn

rq (nm) [4] 2

0.110

0.118

0.136

0.140

For x=0 and at T=4.2 K

N (10%° cm~3)

3 7 15.08 [21.82] 15.65 [22.64] 18.82[27.17] 20.44 [29.48]
7 7 21.02 [30.55] 21.83 [31.70] 26.30 [38.15] 28.59 [41.44]
10 7 24.14 [35.13] 25.07 [36.46] 30.23 [43.91] 32.87[47.72]

For x=0 and at T=77 K

N (10*° cm~3)

3 2 5.559[5.571] 5.769 [5.779] 6.936 [6.935] 7.532[7.524]
7 2 13.53[15.73] 14.05 [16.32] 16.93 [19.64] 18.40 [21.33]
10 2 17.96 [22.15] 17.65 [23.00] 22.49 [27.70] 24.46 [30.10]

For x=0.5 and at T=4.2 K

N (10*° cm~3)

3 2 34.35[50.69] 35.61 [52.52] 42.61[62.64] 46.16 [67.76]
7 2 48.41[71.95] 50.22 [74.61] 60.29 [89.35] 65.43 [96.84]
0 55.80 [83.14] 57.90 [86.24] 69.59 [103.4] 75.56 [112.2]

For x=0.5 and at T=77 K

N (10%° cm™3)

3 7 12.64 [12.92] 13.10 [13.38] 15.67 [15.95] 16.97 [17.25]
7 2 31.15 [37.03] 32.32[38.39] 38.78 [45.97] 42.09 [49.82]
0 41.52 [52.42] 43.08 [54.37] 51.77[65.20] 56.21[70.71]

For x=1and at T=4.2 K

N (10*° cm™3)

3 2 64.38 [95.38] 66.67 [98.68] 79.29[116.8] 85.64 [125.9]
7 7 91.96 [137.7] 95.32 [142.6] 113.9[169.8] 123.3 [183.6]
10 7 106.5 [160.0] 110.4 [165.8] 132.2 [197.8] 143.2 [214.1]

For x=1 and at T=77 K

N (10*° cm™3)

3 2 23.61 [24.20] 24.45 [25.03] 29.02 [29.57] 31.32[31.84]
7 2 59.13 [70.77] 61.28 [73.29] 73.21 [87.24] 79.26 [94.27]
10 2 79.18 [100.8] 82.10 [104.5] 98.27 [124.6] 106.5 [134.8]
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Table 4p: The numerical results of the viscosity coefficient Vg (N*, 1y, X, T), expressed in (% X ﬁ), are
obtained by using Eq. (22b), suggesting that: (i) for given (x, T and N), they increase with increasing r,, (ii) for
given (X, r, and N) the numerical results of Vg increase with decreasing T, in good agreement with those,

obtained in liquids by Ewell and Eyring!'” and complex fluids by Wenhao,!"™® and (iii) for given (x, T and r,)

they increase with increasing N, in good agreement with those, obtained in complex fluids by Wenhao,!"™® In
other words, as discussed in above Table 3p, with increasing degeneracy (or with decreasing T and increasing
N), both the reduced Fermi energy &,o(g and the viscosity coefficient Vq(g increase, according to an

equivalence between the degeneracy-and-viscosity concept.

Acceptor

Ga

Mg

In

Cd

r, (nm) 7

0.126

0.140

0.144

0.148

For x=0 and at T=4.2 K

N (10%° cm~3)

3 7 15.41[269.2] 16.99 [291.6] 18.05 [306.2] 19.38 [324.2]
5 7 18.96 [348.1] 20.95 [378.7] 22.28 [398.8] 23.96 [423.7]
10 7 24.95 [484.4] 27.61 [529.4] 29.39[559.2] 31.66 [596.4]

For x=0 and at T=300 K

N (10*° cm™3)

3 7 1527 [212.2] 16.83 [229.5] 17.88 [240.8] 19.19 [254.5]
5 7 18.87[305.2] 20.85[331.8] 22.17 [349.3] 23.85[370.9]
10 7 24.90 [459.5] 27.56 [502.1] 29.34[530.3] 31.60 [565.5]

For x=0.5 and at T=4.2 K

N (10*° cm~3)

3 7 33.78 [450.1] 36.86 [479.2] 38.85 [497.2] 41.30[518.3]
5 2 42.54 [606.8] 46.69 [652.1] 49.44 [681.1] 52.86 [716.1]
10 7 57.05 [879.3] 62.89 [952.8] 66.80[1000.7]  71.71[1059.8]

For x=0.5 and at T=300 K

N (10%° cm™3)

3 2 33.02 [342.1] 36.00 [365.0] 37.93[379.4] 40.29 [396.3]
5 7 42.09 [479.7] 46.19 [514.0] 48.89 [535.7] 52.27[651.6]
10 2 56.82 [796.1] 62.64 [861.9] 66.52 [904.6] 71.42 [957.2]

For x=1and at T=4.2 K

N (10*° cm™3)
5 2
10 7

75.82 [881.3]
106.0 [1363.7]

81.92 [925.9]
116.0 [1459.0]

85.72[951.5]
122.5[1519.1]

90.19 [978.9]
130.6 [1590.8]

For x=1 and at T=300 K

N (10*° cm™3)
5 2
10 7

74.16 [665.8]
105.2 [1153.8]

80.02 [701.8]
115.1[1229.7]

83.65 [723.5]
121.5 [1276.7]

87.88 [747.0]
129.6 [1331.7]
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Table 5n: For given X, rq , T=[3K, 80K, 300K] and N=
[N1=3 X 10'® cm™3,N2 = 5.47662 X 10'® cm~3,N3 = 8.4391 X 10'® cm~3], the numerical results of
reduced Fermi energy &,o(g)(N", rg, %, T), mobility poig(N*,re, %, T), diffusion coefficient Dog(N*,rq,x,T) ,
viscosity coefficient Vo (N*,rq,x, T), and activation energy AEq(N*,rg, %, T), are obtained by using
Equations (11, 22a, 24, 22b, 22¢), respectively. In particular, from the numerical results of Vo5 (N*, 14, %, T),
one observes that, for given (x, rq and N), they increase with decreasing T, in good agreement with those,
obtained in liquids by Ewell and Eyring,"'”! and complex fluids by Wenhao,!"® In other words, as discussed in
above Table 3n, with increasing degeneracy, both the reduced Fermi energy &,0[g) and the viscosity coefficient
Vorg) increase, according to an equivalence between the degeneracy-and-viscosity concept.

Donor As Sb Sn

For x=0 and N=N1,

Eno[E)(T=3K) N 543.631 [443.128] 543.052 [442.657] 542.728 [442.393]
Eno[E)(T=80K) N 20.447 [16.692] 20.425[16.674] 20.413 [16.665]
Eno[E](T=300K) N 5.6668 [4.6732] 5.6612 [4.6684] 5.6581 [4.6657]

105% cm?
UO[E](SK)( Vs ) N
105x cm?
Ho[E](80K) (—sz ) N
105x cm?
HO[E](soOK)( Vxs )
4 2
10 >;cm ) N
4 2
10*xXcm ) N
S
10" Xcm
Do[e)(z00k) (f) Y
v
\Vo[E](ax)(e Xi) 7

cm  cm?

Do[g)3K) (

Do[e)(sox) (

eV

S
Vore w0 (G X ooz) 7

eV S
Vole] 3ook) (a X —) 7 0. ]
42.468 [69.396]
]

cm?
—AE (g sk (meVx 107%) 2
_AEO[E](BOK) (meV) 7
—AEo[g)3ook) (meV) 7

0.2018 [0.1423]
8.9683 [10.700]
1835.0 [2258.5]
0.1891 [0.1087]
8.3773 [8.1347]

1.6663 [1.7777]
6.1026 [8.6526]
0.1373[0.1151]
00067 [0.00054

26.157[29.782

235.651 [250.049]

0.1694 [0.1199]
7.5449 [9.0367]
1544.0 [1907.5]
0.1586 [0.0915]
7.0401 [6.8624]

1.4007 [1.5008]
7.2652 [10.262]
0.1631 [0.1362]

0.00080 [0.00064]

42.558 [69.544]
26.172 [29.797]

235.710 [250.105]

0.1567[0.1111]
6.9875 [8.3844]
1430.1 [1769.8]
0.1466 [0.0847]
6.5161 [6.3633]

1.2966 [1.3923]
7.8517 [11.070]
0.1761 [0.1468]

0.00086 [0.000709

]
42.609[69.627]
26.180 [29.805]
235.743 [250.136]

For x=0.5 and N=N2, one has:
EnO[E](T=3K) N
€no[E)(T=80K) N
€no[E)(T=300K)
105x cm?
orsicaro (M)
5 2
10°X cm ) N
VXxs
105x cm?
HO[E](300K)( Vxs )
10%xcm?
DO[E](SK)( . ) N
4 2
10%*xcm ) N
S
10%xcm?
DO[E](SOOK)( . )

eV s
Vore) @0 (G X o) 7
eV s
Vo(E] ox) (C—m X Cﬁ) 7
eV S
Vo[g] 300K) (; X mz 7
_AEO[E](3K) (meVX 10~ ) 7

_AEO[E](SOK) (meV) 7
—AEqg)3ook) (MeV) 7

Ho[E](80K) (

Do[e(sok) (

554.097 [444.064]

20.838 [16.727]
5.768 [4.6829]

0.0871 [0.0603]
1.7954 [2.0827]
356.71 [432.55]
0.0831 [0.0462]
1.7096 [1.5567]

329.83 [340.72]
17.253 [24.894]
0.8367 [0.7213]
0.0042 [0.0035]

20.284 [33.112]

20.863 [24.414]

215.037 [229.500]

552.742 [442.978]
20.787 [16.686]
5.755 [4.6717]

0.0735 [0.0512]
1.5223 [1.7751]
302.60 [368.74]
0.0700 [0.0391]
1.4459 [1.3489]
279.15 [290.21]
20.420 [29.312]
0.9857 [0.8453]

0.0049 [0.0041]

20.384 [33.275]
20.895 [24.447]

215.172 [229.629]

551.984 [442.371]

20.759 [16.664]
5.748 [4.6654]

0.0681 [0.0476]
1.4154 [1.6546]
281.45 [343.75]
0.0648 [0.0363]
1.3425 [1.2556]
259.29 [270.41]
22.004 [31.510]

1.0594 [0.9062]

0.0053 [0.0044]

20.440 [33.366]
20.913 [24.466]

215.248 [229.702]

For x=1 and N=N3, one has:

EnolE)(T=3K) N 558.980 [443.636] 556.259 [441.476] 554.736 [440.268]
Enole)(T=80K) N 21.02084 [16.71104] 20.91910 [16.63043] 20.86217 [16.58533]
Eno(E] (T=300K) \ 5.8155 [4.6785] 5.7892 [4.6562] 5.7744 [4.6437)
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105x cm?

UO[E](SK)( VxS ) N 0.0457 [0.0315]
10%x cm?

MO[E](sox)( Vs ) N 0.5559 [0.6332]
10%x cm?

HO[E](soOK)( Vs ) 106.42 [128.69]

4 2
Dolr)c3K) (m) \ 0.0440 [0.0241]

10%xcm?2
Do[)(sox) (7) N

10%xcm?
DO[E](SOOK)( . ) N

Voir a0 (o X o) 7

0.5340 [0.4819]

99.243 [101.33]
37.867 [54.857]

cmV cm?

e

Vore ok (o X =) 7 3.1108 [2.7311]
eV S

Volg] 300K) (CmX—CmZ) 2 0.0162[0.0134]

—AEqg) 3k (MeVX 107% ~ 12.408 [20.253]
—AEg[ggok) (MeV) 7 17.229 [20.6822]
—AEo[g)300k) (MeV) 7 200.4508 [214.9443]

0.0387 [0.0269]
0.4760 [0.5458]
91.258 [110.99]
0.0371 [0.0205]
0.4550 [0.4134]

84.698 [87.250]
44.515 [64.087)
3.6241 [3.1609]

0.0189 [0.0155]

12.530 [20.452]

17.292 [20.7468]

200.7205 [215.2020]

0.0360 [0.0251]
0.4449 [0.5117]
85.356 [104.09]
0.0344 [0.0190]
0.4241 [0.3865]

79.012 [81.747]
47.808 [68.624]
3.8725 [3.3670]

0.0202 [0.0165]

12.599 [20.564]
17.326 [20.7830]

200.8721 [215.3465]

Table 5p: For given x, r,, T=[3K, 80K] and N= [N1=1.707349 x 101° cm~3,N2 = 3.175208 X
101 cm™3,N3 = 5.1903 X 10'% cm™3], the numerical results of reduced Fermi energy Eporef(N%, 15, %, T),
mobility popg (N*, 1y, %, T), diffusion coefficient Dog(N™, 1y, %, T) , viscosity coefficient Vg (N*, 1y, %, T), and
activation energy AEq g (N",1,, %, T), are obtained by using Equations (11, 22a, 24, 22b, 22c), respectively. In
particular, from the numerical results of Vg (N¥, 1y, x, T), one observes that, for given (x, ry and N), they

increase with decreasing T, in good agreement with those, obtained in liquids by Ewell and Eyring,

and

complex fluids by Wenhao,!"® In other words, as discussed in above Table 3p, with increasing degeneracy, both

the reduced Fermi energy &,0(g and the viscosity coefficient Vg
between the degeneracy-and-viscosity concept.

increase, according to an equivalence

Acceptor Ga Mg In

For x=0 and N=N1, one has:

EpotEI(T=3K) N 1659.6 [306.822] 1645.2 [304.156] 1634.9 [302.254]

Eoo[EI(T=50K) N 62.255[11.615] 61.717[11.516] 61.329 [11.445]
3 2

Ho[E]3K) (10 Vxxcsm ) 17.691 [1.0796] 16.029 [0.9989] 15.080 [0.9525]

103x cm?
Ho[E](80K) ( ) N

VXxs
102xcm? )
2

17.717 [1.1269]

DO[E](3K) ( 50.602 [0.5709]

Z
Dotg)(s0K) (10 s ) . 50.661 [0.5901]

ev S
VoiE) o a1 (RXE) 7 1216319932
12,145 [190.95]

eV s
VO[E]O[E] (80K) (c_m X cﬁ)
~AEq (meVx 107%) ~»  0.540 [15.81]

16.053 [1.0434]
45.449 [0.5236]

45.503 [0.5415]
13.366 [214.49]
13.346 [205.32]

0.550 [16.09]
0.01042 [0.301]

15.103 [0.9956]
42.490 [0.4962]

42.541 [0.5134]
14.163 [224.21]
14.141 [214.52]

0.557 [16.29]
0.01055 [0.305]

O[E 1 (3K)
~AEo(g) o 5) (gory V) 7 0.01024 [0.296]
For x=0.5 and N=N2, one has:
$po(E|(T=3K) N 1659.6 [329.571]
€polE)(T=80K) N 62.255 [12.460]
103x cm?
Ho[E](3K) (T) N 7.4958 [0.558]
103x cm?
Hol[E](80K) (T) N 7.5069 [0.579]

2
Dog)3x) (10 Xcm) N 21.4400 [0.3169]

102xcm?
DO[E](SOK)( . )\4
S

eV
VolE o5 a0 (—m X E) 7 34.686 [465.95]

eV s
Vot O[E] (80K) (; X cm_z) 7 34.634 [448.92]
—AEo[E] (g (35, (MEVX 107€) 7 0.540 [13.70]

21.4650 [0.3262]

E] (3K)

1633.4 [324.373]
61.274 [12.267]

6.8096 [0.519]
6.8200 [0.539]
19.1702 [0.2903]
19.1932 [0.2990]
37.878 [496.74]

37.820 [478.00]
0.557 [14.14]

1614.7 [320.653]
60.572 [12.129]

6.4182[0.497]
6.4283[0.517]

17.861 [0.2747]
17.883 [0.2832]
39.957 [515.89]

39.895 [495.99]
0.571 [14.47]
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—AE (mev) 7 0.0102 [0.2572]

10[E] (80K)

0.0105 [0.2654]

0.0108 [0.2715]

For x=1 and N=N3, one has:

€ po[E)(T=3K) N 1659.6 [342.462]

€polE)(T=80K) N 62.255 [12.940]

Ho[E](3K) (% N 3.8547[0.3296]

Ho[E](80K) (%) N 3.8605 [0.3412]

Do(e|3k) (102><cm2) 11.026 [0.1945]
2

102xcm

) N 11.038 [0.1998]

eV s
OlE]o[g] (3K) (;X;) 72 77306 [904.03]

vV
VolEloge @o) (ox X o) 7 77192 [873.35]
~AEqg (meVx107%) 7  0.540 [12.6908]
~AEqy,

(meV) /7 0.01024 [0.2383]

Do[)sox) (
V,

lo[E] (3K)

O[E] (80K)

1613.8 [333.010]
60.538 [12.588]

3.5147 [0.3089]
3.5202 [0.3204]
9.7755 [0.1773]

9.7876 [0.1824]
83.608 [951.14]
83.476 [917.06]

0.571[13.4214]
0.01083 [0.2519]

1550.8 [326.210]

59.302 [12.335]
3.3215[0.2972]
3.3269 [0.3087]
9.0494 [0.1671]
9.0610 [0.1721]
87.563 [978.46]

87.420 [941.96]

0.595 [13.9869]
0.01129 [0.2624]

Table 6n: For given x, rq, T=(50K, 100K, 150K) and N=[N1=10"cm™3, N2=5X 10 cm™3,
N3= 10*°cm™3] , the numerical results of  reduced Fermi energy &,op)(N*rq,x, T) , mobility
Horg] (N, 1q, %, T) , diffusion coefficient Dgpg(N*,1g,x, T) , viscosity coefficient Vorg)(N*, 1g,x, T), and
activation energy AEqg(N", rg, %, T), are obtained by using Equations (11, 22a, 24, 22b, 22¢), respectively. In
particular, from the numerical results of Vo (N¥, rg,x, T), one observes that, for given (x, rq and T), they
increase with increasing N, in good agreement with those, obtained in complex fluids by Wenhao,"™® In other
words, as discussed in above Table 3n, with increasing degeneracy, both the reduced Fermi energy &,o[g) and

the viscosity coefficient Vg increase, according to an equivalence between the degeneracy-and-viscosity

concept.

Donor As Sb Sn

For x=0 and T=50 K

EnoEN) N 72.953 [59.473] 72.930[59.454] 72.917 [59.443]

Enofm(N2) N 213.42 [173.97] 213.41 [173.96] 213.40 [173.95]

EnofE(N3) \ 338.81 [276.18] 338.80 [276.17] 338.79 [276.16]

2

Ho[E](N1) (1 Vxxcsm ) N 0.4278 [0.4178] 0.3572 [0.3498] 0.3296 [0.3231]
105x cm?

Ho[E](N2) ( Vs ) N 0.1903 [0.1437] 0.1581[0.1195] 0.1455[0.1101]
105x cm?

Ho[E](N3) ( - ) N 0.1682 [0.1203] 0.1395 [0.0999] 0.1282[0.0919]

0.8962 [0.7132]

1.1669 [0.7180]

)
o
=
=
Z
N
AqA
BN
— — —
v

1.6366 [0.9547]
4.3043 [4.4079]
16.550 [21.922]

23.602 [32.981]
3.6643 [5.1186]
0.626563 [1.0169]
0.25960 [0.432578]

|U}
NS

— — —
™ N

[E] (N1) ( X cm?2
eV s

Vore) (v2) (— X

Vore ) (5 X oo

—AEqg)(nyy (meV) 7

_AEO[E](NZ) (meV) 7
_AEO[E](N3) (meV) 7

0.7480 [0.5969]
0.9690 [0.5972]

1.3572[0.7927]
5.1545 [5.2642]
19.927 [26.354]

28.460 [39.719]
3.6659 [5.1205]

0.626637 [1.01698]
0.25962 [0.432605]

0.6900 [0.5514]
0.8917 [0.5500]

1.2481 [0.7294]
5.5863 [5.6977]
21.654 [28.616]

30.948 [43.166]
3.6668 [5.1216]

0.626679 [1.01705]
0.25963 [0.432619]

For x=0.5 and T=100 K, one has:

EnoEND) N 24.959 [20.025] 24.926 [19.999] 24.908 [19.984]

EnolEI(N2) N 73.070 [58.567] 73.051 [58.552] 73.040 [58.543]

EnolEI(N3) N 116.02 [92.984] 116.00 [92.972] 115.99 [92.965]
5 2

MoE](N1) (10 VXXCS“‘ ) 1.8165 [2.0903] 1.5305 [1.7690] 1.4186 [1.6430]

5 2
HO[E](Nz)( Vs ) N 0.2480 [0.2510]

0.2068 [0.2100]

0.1907 [0.1939]
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0.1352[0.1223]

=
°
o
=
Z
w
N/
~—
<
X
17}
N
~—
4

2.5943 [2.3897]

1.0404 [0.8441]

0.9010 [0.6530]
1.0124 [0.8798]
12.701 [12.545]

29.354 [32.458]
26.705 [31.151]
10.680 [14.1739]
5.8544 [8.42057]

)
o
w
=
Z
N
Aqﬁ
BI\)
~—_— — —
I'4

DO[E 1(N3)

N ¢

| 1%}

Vorer (v ( X~
ev

Vo[g) (n2) (; X3
eV

Vore (n3) (;

2

w3 |n3
NUPNLPNLD
N

N

cm?

|
>
o]
k=)
=
z
=3
a
S
N

—AEqg)(nz) (meV)
_AEO[E](N3) (meV) 7

0.1125[0.1019]
2.1829 [2.0197]
0.8677 [0.7058]

0.7496 [0.5444]
1.2007 [1.0389]
15.224 [14.995]

35.275 [38.920]
26.727 [31.174]
10.683 [14.1777]
5.8555 [8.42199]

0.1036 [0.0940]
2.0217 [1.8744]
0.8001 [0.6517]

0.6904 [0.5020]
1.2950 [1.1181]
16.506 [16.237]

38.296 [42.208]
26.740 [31.186]
10.685 [14.1797]
5.8562 [8.42279]

For x=1 and T=150 K, one has:

EnoE(N1) N 12.6451 [10.0833]

Eno[E|(N2) N 37.0507 [29.4209]

Eno[E(N3) N 58.8486 [46.7150]
105x cm?

Ho[E](N1) ( VxS ) N 4.9351 [5.8195]
105x cm?

Ho[E](N2) ( v ) N 0.5084 [0.5641]

105x cm?
HO[E](N3) ( ) N 0.2119[0.2237]

Vxs
10%*xcm?

DO[E](NI)( , ) N 5.2916 [4.9270]
4 2

Doggiong (F—) N 16203 [1.4260]
4 2

Dogejovs) (— XCm) \ 1.0739 [0.8996]

eV s
Vors1 o) (Cm X —z) 7
eV S
Vormi oo (o X o) 7
eV S
Voe (n3) (a )
_AEO[E](NI) (meV) Vs

_AEO[E](NZ) (meV) 2
_AEO[E](N3) (meV) Vs

0.3712 [0.3148]
6.1897 [5.5790]

18.721 [17.732]
60.7978 [67.76223]

33.5295 [40.02863]
22.93789 [28.89518]

12.5941 [10.0430]
37.0209 [29.3973]
58.8249 [46.6962]

4.2160 [5.0019]
0.4266 [0.4752]
0.1771 [0.1876]
45017 [4.2171]
1.3586 [1.2004]
0.8971 [0.7539]

0.4336 [0.3655]
7.3734 [6.6195]
22.397 [21.145]

60.9046 [67.8704]
33.5488 [40.0486]
22.94655 [28.9045]

12.5656 [10.0206]
37.0042 [29.3840]
58.8117 [46.6857)

3.9355 [4.6827]
0.3946 [0.4404]
0.1635 [0.1734]
4.1924 [3.9386]
1.2560 [1.1119]
0.8279 [0.6969]

0.4640 [0.3899]
7.9700 [7.1415]
24.261 [22.869]

60.9646 [67.9312]
33.5597 [40.0598]
22.95139 [28.9097]

Table 6p: For given x, r,, T=(50K, 100K, 150K) and N=[N1=3 X 10% cm™

3, N2=5X 10" cm

-3
9

N3=102%° cm~3], the numerical results of reduced Fermi energy &pore)(N*, 15, %, T), mobility popg(N*, 1y, %, T),
diffusion coefficient Dq(N, 1,5, %, T) , viscosity coefficient Vqg(N¥,1,,x,T), and activation energy
AEqg (N, 1y, %, T), are obtained by using Equations (11, 22a, 24, 22b, 22¢), respectively. In particular, from the
numerical results of Vo (N¥, 1y, x, T), one observes that, for given (x, r, and T), they increase with increasing
N, in good agreement with those, obtained in complex fluids by Wenhao,!"® In other words, as discussed in
above Table 3p, with increasing degeneracy, both the reduced Fermi energy &,o[g) and the viscosity coefficient
Voig) increase, according to an equivalence between the degeneracy-and-viscosity concept.

Acceptor Ga Mg In
For x=0 and T=50 K
EpoEi(ND) N 147.98 [27.401] 147.27 [27.270] 146.76 [27.176]

EpolEI(N2) N 210.20 [38.891]
EpolEI(N3) N 336.26 [62.184]
poterony (2™ N 17.023 [0.9817]
Mo[E] (N2) (103‘:;5“12) N 16.489 [0.9016]
Mo[E](N3) (103‘:;5“12) \ 15.850 [0.8174]

72.350 [0.7701]

209.60 [38.781]
335.79 [62.098]

15.402 [0.9042]
14.904 [0.8276]
14.314 [0.7475]

65.145 [0.7059]

209.18 [38.703]
335.45 [62.036]

14.475 [0.8597]
13.999 [0.7851]
13.436 [0.7073]

61.017 [0.6689]
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Do[gjnz)

DO[E ) (103><cm ) N
7

(102

xXcm )

Vo[E] (N1) ( ﬁ)
Vorg| (v2) (::1 Xoa) 7
VO[E] (N3) (cr‘rll criz) 7
6

—AEog)ny) (€Vx 10 ) 2

_AEO[E 1(N2) (CVX 10~ )

-6
_AEO[E](N3) (CVX 10 ) 7

7

99.551 [1.0055]

153.09 [1.4592]
15.409 [267.19]
18.960 [346.76]

24.948 [483.74]
1.1329 [33.08]
0.5614 [16.41]
0.2194 [6.416]

89.731 [0.9204]

138.06 [1.3324]
16.990 [289.39]
20.946 [377.23]

27.606 [528.64]
1.1438 [33.40]
0.5646 [16.50]
0.2200 [6.434]

84.112 [0.8713]

129.47 [1.2597]
18.046 [303.84]
22.278 [397.25]

29.394 [558.35]

1.1517 [33.63]
0.5669 [16.57]
0.2204 [6.447]

For x=0.5 and T=100 K, one has:

EpomNy) Y
EpO[E](NZ)
EpO[E](N3)

\
\Vo[E] (N1) (;

Vole) (v2) (

Ho[E](N1) (—
(

N

X
cm

Vole (n3) (c—m
—AEogam (€Vx 107%) 2

-6
_AEO[E](NZ) (CVX 10 )

cm?

-6
_AEO[E](N3) (eVXx 10 ) 7

7

47.722[9.6051]
69.521[13.892]
113.22 [22.536]

7.5527[0.6021]
7.2296 [0.5216]
6.8754 [0.4509]
20.684 [0.3228]
28.859 [0.4108]
44711 [0.5809]
33.693 [422.65]

42.491 [588.88]

57.022 [869.41]
21.793 [543.1]

10.267 [258.3]
3.8706 [97.864]

46.920 [9.4481]
68.858 [13.762]
112.70 [22.433]

6.8640 [0.5619]
6.5552 [0.4833]
6.2221[0.4152]
18.481 [0.2960]
25.920 [0.3770]

40.277[0.5325]

36.761 [449.05]

46.638 [632.53]

62.865 [942.00]
22.545 [561.5]

10.466 [263.2]
3.9064 [98.765]

46.346 [9.3358]
68.384 [13.668]
112.33 [22.360]

6.4713 [0.5391]
6.1701 [0.4613]
5.8488 [0.3947]
17.210 [0.2804]
24.227[0.3573]
37.737[0.5045]
38.752 [465.20]

49.378 [660.37]

66.767 [989.30]
23.107 [575.2]

10.611 [266.9]
3.9321[99.414]

For x=1 and T=150 K, one has:

EpomNy N
EpormI(N2)
EpO[E](N3)

Ho[E](N3) (—

Doy

Do[gjinz)

\
Vo[E] (N1) (—

Vo(g) (v2) (

cm

eV
Vorst s (5

—AEqEn (VX 107
-6
—AEqgnz) (VX 10

cm?

6
—AEogins) (€VX 10%) /7

20.475 [4.4435]
32.228 [6.8349]
55.087 [11.473]

4.1873 [0.5051]
3.8920 [0.3774]
3.6285[0.2941]
7.3438 [0.1964]
10.783 [0.2097]
17.210 [0.2851]
55.812 [462.68]

75.401[777.61]

105.78 [1304.9]
177.91 [3372.8]
71.716 [1618.8]
24.531[569.32]

19.301 [4.1758]
31.298 [6.6485]
54.379 [11.328]

3.8550 [0.4864]
3.5511[0.3565]
3.2946 [0.2734]
6.3687[0.1891]
9.55330.1922]
15.425[0.2616]
58.849 [465.39]

81.436 [811.22]

115.75 [1394.6]
200.25 [3543.9]
76.043 [1710.8]
25.174 [584.06]

18.445 [3.9691]
30.629 [6.5145]
53.872 [11.225]

3.6713 [0.4760]
3.3576 [0.3450]
3.1040 [0.2616]
5.7925 [0.1862]
8.8387[0.1819]
14.398 [0.2479]
60.397 [465.83]

85.200 [829.12]

122.28 [1450.8]
219.32[3630.0]
79.404 [1781.6]
25.650 [594.95]
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